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Pathologies on Mori fibre spaces in positive characteristic

HIROMU TANAKA

Abstract. We show that there exist Mori fibre spaces whose total spaces are
klt but bases are not. We also construct Mori fibre spaces which have relatively
non-trivial torsion line bundles.

Mathematics Subject Classification (2010): 14E30 (primary).

1. Introduction

Given an algebraic variety X, the minimal model conjecture implies that X is bira-
tional to either a minimal model or a Mori fibre space. The purpose of this paper
is to find some phenomena on Mori fibre spaces that occur only in positive char-
acteristic. Originally, the advantage of Mori fibre spaces is their simple structure,
which allows us to reduce some problems to the study of their fibres and bases. For
instance, given a Mori fibre space f : X — § from a klt variety X in characteristic
zero, it is known that its base space S is also klt (cf. [1, Theorem 0.2], [8, Corollary
4.6]). Unfortunately, the same statement is no longer true in positive characteristic.

Theorem 1.1. Let k be an algebraically closed field whose characteristic is two or
three. Then there exists a projective k-morphism f : V. — W of normal k-varieties
that satisfies the following properties:

(1) V is a 4-dimensional Q-factorial kit variety over k;

(2) W is a 3-dimensional Q-factorial variety over k that is not klit;

3) fxOy =Ow, p(V/W) =1, —Ky is f-ample;

(4) Any fibre of f is an irreducible scheme of dimension one, and there is a non-
empty open subset WO of W such that the fibre V x y Spec k(w) is isomorphic
to IP’}{( w) for any point w € WO, where k(w) denotes the residue field at w.
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A prominent property of Mori fibre spaces in characteristic zero is that any relatively
numerically trivial Cartier divisor is trivial (¢f. [17, Lemma 3-2-5(2)]). We construct
an example in positive characteristic that violates this property.

Theorem 1.2. Let k be an algebraically closed field whose characteristic p is two
or three. Then there exists a projective k-morphism f : V. — W of normal k-
varieties that satisfies the following properties:

(1) V is a 3-dimensional Q-factorial kit variety over k;

(2) W is a smooth curve over k;

3) fxOy =Ow, p(V/W) =1, —Ky is f-ample, and

(4) there is a Cartier divisor D on'V such that D 7%y 0 and pD ~ ¢ 0.

Remark 1.3. Since [17, Lemma 3-2-5(2)] is a formal consequence of the relative
Kawamata—Shokurov base point free theorem [17, Theorem 3-1-1], the same state-
ment as in [17, Theorem 3-1-1] does not hold in positive characteristic.

1.1. Construction of examples

Let us overview how to construct the examples appearing in Theorem 1.1 and The-
orem 1.2.

1.1.1. Pathological surfaces over imperfect fields

To find examples appearing in Theorem 1.1 and Theorem 1.2, we first construct
log del Pezzo surfaces over imperfect fields satisfying pathological properties as
follows.

Theorem 1.4. Let k be an imperfect field whose characteristic p is two or three.
Then there exists a k-morphism p : S — C that satisfies the following properties:

(1) S is a projective regular surface over k and there is an effective Q-divisor Ag
such that (S, Ag) is kit and —(Ks + Ag) is ample;

(2) C is a projective regular curve over k with K¢ ~ 0;

(3) p is a P'-bundle, and

(4) There is a Cartier divisor L on C such that L % 0 and pL ~ 0.

The surface S in Theorem 1.4 is a log Fano variety dominating a Calabi—Yau variety.
Such an example does not exist in characteristic zero (cf. [25, Lemma 2.8], [9,
Theorem 5.1]). For some related results in positive characteristic, we refer to [7].
Let us overview the construction of p : § — C appearing in Theorem 1.4. We
take a regular cubic curve C that is not smooth and has a k-rational point P around
which C is smooth over k. For example, if & is the function field of a curve over an
algebraically closed field, then C is nothing but the generic fibre of a quasi-elliptic
fibration equipped with a section. Since we have that H (C,O0c(—=P)) # 0 by
Serre duality, a nonzero element & of H 1(C, Oc(—P)) induces a locally free sheaf
E of rank two. Then S is the P!-bundle defined as P(E). In order to show that §
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is log del Pezzo, one of the essential facts is that we can find a purely inseparable
field extension k C k" of degree p such that C xj k' is an integral but non-normal
scheme and that its normalisation is isomorphic to ]P’}(,. Since the scheme-theoretic

inverse image ¢! (P) of the k-rational point P is a k’-rational point, we have that
H'(P}, (’)P}(/(—w*P)) =H'(P,, Op, (=1)) =0,

where ¢* P denotes the pull-back of the Cartier divisor P. This implies that the
pull-back ¢*& is zero. This property plays a crucial role in our construction. For
more details, see Section 3.

1.1.2. Proofs of the theorems

Let us overview some of the ideas of the proofs of Theorem 1.1 and Theorem 1.2.

First let us treat the latter one: Theorem 1.2. This is a consequence of The-
orem 1.4. Indeed, for an algebraically closed field kK whose characteristic is two
or three, it follows from Theorem 1.4 that we get a log del Pezzo surface (S, Ag)
over k(¢) which has a non-trivial p-torsion Cartier divisor. Then we can spread it
out over some non-empty open subset W of A,l, i.e., there is a morphism V — W
with V xw Speck(t) = §. Although this example does not satisfy the property
p(V/W) = 1, we may assume this condition by contracting an appropriate curve
on S in advance. For more details, see Subsection 4.1.

Second, let us overview the proof of Theorem 1.1. To this end, we first find a
similar example over imperfect fields (cf. Theorem 4.4). The basic idea is to take
cones over p : S — C. However, there is no morphism between cones. What we
will actually do is to take P! -bundles functorially for an ample divisor M¢ on C:

X =Ps(O® O(p*Mc)) = Pc(O @ OMc)) =: Wo.

Let Wy — W be the birational contraction of the section C~ of Wy — C with
negative self-intersection number. Since K¢ ~ 0, W is not klt.

If there was a divisorial contraction whose exceptional locus is the pull-back
of C™, then the resulting variety would be what we are looking for. Although we
can not hope this, we will get close to this situation by running a suitable minimal
model program. To this end, we first construct a minimal model program after
taking a purely inseparable cover of X, and descend it to X after that. For more
details, see Subsection 4.2.

ACKNOWLEDGEMENTS. The author would like to thank P. Cascini, S. Ejiri,
Y. Gongyo and J. Witaszek for useful comments and answering questions. He also
thanks the referee for many constructive suggestions and reading the manuscript
carefully.
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2. Preliminaries

2.1. Notation

In this subsection we summarise the notation used in this paper.

e We will freely use the notation and terminology in [15] and [20].

e For a scheme X, its reduced structure Xyeq is the reduced closed subscheme of
X such that the induced morphism Xqg — X is surjective.

e For an integral scheme X, we define the function field K (X) of X as Ox ¢ for
the generic point & of X.

e For afield k, X is a variety over k or a k-variety if X is an integral scheme that is
separated and of finite type over k. We say that X is a curve over k or a k-curve
(respectively a surface over k or a k-surface, respectively a threefold over k) if
X is a k-variety of dimension one (respectively two, respectively three).

e We say that two schemes X and Y over a field k are k-isomorphic if there exists
an isomorphism 8 : X — Y of schemes such that both 6 and #~! commute with
the structure morphisms: X — Speck and Y — Speck.

Definition 2.1. Let k be a field.

1. Let C be a proper curve over k. Let M be an invertible sheaf on C. It is
well-known that

x (C,mM) = dimg (H*(C, mM)) — dimg(H' (C, mM)) € Z[m)]

and that the degree of this polynomial is at most one (cf. [19, Chapter I, Section
1, Theorem on page 295]). We define the degree of M over k, denoted by
deg, M or deg M, as the coefficient of m;

2. Let X be a separated scheme of finite type over k, let L be an invertible sheaf
on X, and let C — X be a closed immersion over k from a proper k-curve
C. We define the intersection number over k, denoted by L - C or L - C, as

deg; (Llc)-

2.2. Properties spreading out from the generic fibre

In this subsection we summarise some properties extendable from the generic fi-
bre: Lemma 2.2. Also, we give a criterion for projective morphisms of generically
relative Picard number one (Lemma 2.5). To this end, we establish two auxiliary
lemmas: Lemma 2.3 and Lemma 2 4.

Lemma 2.2. Letk be afield. Let f : X — Y be a projective k-morphism of normal
k-varieties with f,Ox = Oy.

(1) Assume that k is algebraically closed. Then the generic fibre X gy is Q-
factorial if and only if there is a non-empty open subset Y' of Y such that
X xy Y is Q-factorial;
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(2) Let A be an effective Q-divisor such that Kx + A is Q-Cartier. Assume that
there is a log resolution of (Xk(v), Alxgy,)- Then (Xk vy, Alxgy,) is kit
(respectively log canonical) if and only if there is a non-empty open subset Y’
of Y such that (X xy Y', Alxw,y’) is kit (respectively log canonical).

Proof. Assertion (1) holds by [3, the third Theorem in the Introduction]. We now
show (2). After shrinking ¥, we may assume that there is a log resolution g : Z —
X of (X, A). We define a Q-divisor Az on Z by Kz + Az = g*(Kx + A).
Then [20, Corollary 2.13(2)] implies the following:

(a) (X, A) is kit if and only if all the coefficients of Az are less than 1;
(®) (Xk(v), Alxgy,) 1s Klt if and only if all the coefficients of Az|z, ,, are less
than 1.

Shrinking Y again, we may assume that any irreducible component of Az dom-
inates Y. Then all the coefficients of Az are less than 1 if and only if all the
coefficients of Az|z,,, are less than 1. Thanks to (a) and (b), (X, A) is klt if and
only if (XK(Y)9 A|XK(Y)) is klt. ]

Lemma 2.3. Letk be afield. Let f : X — Y be a projective k-morphism of normal
k-varieties. Assume that the generic fibre X g vy is K (Y)-isomorphic to P ) for
some non-negative integer n. Then there exists a non-empty open subset Y' of Y
such that the fibre X is k(y)-isomorphic to ]P’Z(y) for any pointy € Y'.

Proof. Replacing Y by a non-empty open subset, we may assume that the following
properties hold:

(1) f is a smooth morphism and f,Ox = Oy;
(2) —Kx is f-ample;
(3) the tangent bundle T is ample for any y € Y (cf. [14, Proposition 4.4], [21,
Proposition 6.1.9]), and
(4) there is a section of f, i.e., there exists a closed immersion j : Y7 — X such
that the composite morphism ¥; — X — Y is an isomorphism.
Fix y € Y and let Xt be the base change of the fibre X to its algebraic closure
k(y). Since XW is a smooth projective variety whose tangent bundle TXW is
ample, we have that Xj5 is k(y)-isomorphic to }P’Z(T by [23, Theorem 8]. This
implies that X is a Severi—Brauer variety. Since X has a k(y)-rational point by
(4), we have that X is k(y)-isomorphic to PZ(” by [10, Theorem 5.1.3]. O

Lemma 2.4. Let k be a field of characteristic p > 0. Consider a commutative
diagram of projective k-morphisms of normal k-varieties

Y —— 7,

where a and B are finite universal homeomorphisms. Then p(X/Y) = p(X'/Y").
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Proof. As X and Y are normal, the e-th iterated absolute Frobenius morphisms
Fy : X — Xand Fy : Y — Y can be considered as the normalisation of X
in K(X)"/P* and Y in K(Y)"/P°, respectively. Since there is a positive integer e
such that K (X)/7* 5 K(X) D K(X) and K(Y'/P*) 5 K(Y') D K(Y), the e-th
iterated absolute Frobenius morphisms Fy : X — X and Fy : Y — Y factor
through « and 8 respectively:

Foox3xsx revlyly

Then we have that p(X/Y) < p(X’/Y’). The opposite inequality follows from
the fact that the e-th iterated absolute Frobenius morphisms F¢, : X’ — X’ and

Fy, 1 Y' — Y’ factor through & and B, respectively. O

Lemma 2.5. Let k be a field of characteristic p > 0. Let f : X — Y be a
projective k-morphism of normal k-varieties with f,Ox = QOy. Assume that there
exists a finite universal homeomorphism ¢ : P} — Xk ) over K(Y) for some
finite purely inseparable extension K(Y) C L. Then there exists a non-empty open
subset Y' of Y such that p(X'/Y) =1for X' .= X xy Y'.

Proof. We have a commutative diagram

X = ]P)’i —)W XK(Y) — X

I Lo Ir

Y1 :=SpecL —— SpecK(Y) —— Y,

where the right square is cartesian. All the schemes in the left square are projec-
tive over K (Y), hence after shrinking Y, we can find a commutative diagram of
projective k-morphisms of normal k-varieties

X, —» X

s s

v, - v

where « and 8 are finite universal homeomorphisms, K (Y2) = L and the generic
fibre of f; is K (¥2)-isomorphic to P )" Then the assertion follows from Lem-
ma 2.3 and Lemma 2 4. O

2.3. Varieties of Fano type

In this subsection we recall the definition of varieties of Fano type and one of thein
basic properties (Lemma 2.8).
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Definition 2.6. Let k be a field. A projective normal k-variety X is of Fano type if
there is an effective Q-divisor A such that (X, A) is klt and —(Kx + A) is ample.
In this case, (X, A) is called log Fano. We say that (X, A) is log del Pezzo if X is
log Fano and dim X = 2.

Lemma 2.7. Let k be a field of characteristic p > 0 such that [k : kP] < oo. Let
(X, A) be a projective kit pair over k such that dim X < 3. If A is a nef and big
Q-Cartier Q-divisor on X, then there exists an effective Q-Cartier Q-divisor A’
such that A ~q A’ and (X, A + A) is kit.

Proof. Thanks to the assumptions [k : k”] < oo and dim X < 3, we may freely use
log resolutions by [5,6]. Then we can apply the same argument as in [11, Lemma
2.8]. O

Lemma 2.8. Let k be a field of characteristic p > 0. Let X and Y be projective
normal varieties over k. Assume that a rational map f : X --+ Y over k satisfies
one of the following properties:

(1) f is a birational morphism;
(2) f is a birational map which is an isomorphism in codimension one.

If X is of Fano type, [k : kP] < oo and dim X < 3, then Y is of Fano type.
Proof. For both the cases, we can apply the same argument as in [2, Lemma 2.4].
However, we give a proof only for the case (1) since our setting differs from [2,
Lemma 2.4]. Thanks to the assumptions [k : k”] < oo and dim X < 3, we may
freely use log resolutions by [5,6].

Since X is of Fano type, we can find an effective Q-divisor A on X such that
(X, A) is kit and —(Kx + A) is ample. By Lemma 2.7, we can find an effective
Q-divisor Ax on X such that —(Kx + A) ~g Ax and (X, A 4+ Ay) is klt. Taking
the push-forward by f, we have that
Then it holds that

Kx + A+ Ax = f*(Ky + fiA + fiAx),
hence (Y, f«A + f«Ax) is klt. Since f,Ax is big, we can write
J«Ax = Ay + E

for some ample Q-Cartier Q-divisor Ay and an effective QQ-divisor E. Therefore,
it holds that
—(Ky + fx D + (1 —€) fxAx + €E) ~q €Ay

for any rational number €. Since log resolutions exist, the pair
(Y, fxd + (1 —€) fxAx + €E)

is klt if € is a sufficiently small rational number. Hence, Y is of Fano type. O

Remark 2.9. The assumptions [k : k] < oo and dim X < 3 in Lemma 2.8 is used
only to assure the existence of log resolutions [5,6].
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2.4. Jacobian criterion for regularity

For later use, we summarise results for regularity of some explicit varieties that
follow from the Jacobian criterion.

Lemma 2.10. Let k be a field of characteristic p > 0. Take elements s, t € k \ kP.
Then the following hold:

(1) If p =2, then Spec k[x, y]/(x* + ty?) is regular outside the origin {(0, 0)};
() If p =2, then k[x, y]/(tx*> + 1) is regular;

3) If p=2and [k(s'/?,t'/2) : k] = 4, then k[x, y1/(sx* + ty*> + 1) is regular;
4) If p =2, then Proj k[x, v, 21/ (y?z + x> + sxz?) is regular;

(5) If p = 3, then Projk[x, y, z1/(—y?z + x> + s2°) is regular.

Proof. Since all the proofs are quite similar, we only prove (1). We consider the
following open subset of Spec k[x, y]/(x? + ty?):

D(y) = Speck[x, y, z]/(x2 + tyz, zy + 1) = Speck[x, y, y_l]/()c2y_2 +1).

We can find an [Fp-derivation D; of k[x, y, z] with Di(t) = 1 by ¢t & k% and [22,
Theorem 26.5]. We have that the ring k[x, y, z]/(x? + ty?, zy + 1) is regular by
applying the Jacobian criterion [12, Proposition 22.6.7(iii)] for kg := F,, B =
k[x,y, z], q is a prime ideal of B containing (x2 4+ tyZ, zy+ 1, f1 = x4+ tyz,
and the [F>-derivation D; defined above. It follows from the same argument that
also the open subset D(x) of Speck[x, y]/(x? + ty?) is regular. To summarise,
Spec k[x, y1/(x? + ty?) is regular outside the origin (0, 0). O

2.5. Slc-ness of conics

The purpose of this subsection is to show that any plane conic curve is semi log
canonical (Lemma 2.12). We start with a typical case in characteristic two.

Lemma 2.11. Let k be a field of characteristic two with an element t € k such that
t & k2. Let
Z = Specklx, y]/(x2 + tyz).

Then Z is a semi log canonical curve.

Proof. By Lemma 2.10(1), Z is regular outside the origin. By using the assumption:
t ¢ k?, we can directly check that Z has a node at the origin (cf. [20, 1.41]). It
follows from [27, Proposition 3.6] that Z is semi log canonical. ]

Lemma 2.12. Let k be a field and let Z = Speck[x, y1/(f), where Z is reduced
and f is a polynomial of degree two. Then Z is semi log canonical.

Proof. We only treat the case where the characteristic of k is two, since otherwise
the problem is easier. We may assume that & is separably closed. We can write

f = axnx? 4 ayxy + agay? + arox + aory + ago

where g;; € k.
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Step 1. If a;; # 0, then Z is semi log canonical.

Proof. (of Step 1) Assume that aj; # 0. Since k is separably closed, we can write
anx? + ajxy + a02y2 = 1l for some homogeneous polynomials /; and /5 of
degree one with (I1,l3) = (x, y). In particular, we may assume that ag = agy = 0.
After applying a suitable linear transform, we may assume that f = xy + b for
some b € k. Then Z is semi log canonical. This completes the proof of Step 1. [

Step 2. If a;; = 0 and aj9 # 0, then Z is smooth over k.

Proof. (of Step 2) We first prove that we may assume that agg = 0. If apg = 0,
then we are reduced to the case where ago = 0, after applying the linear transform:
ajpx + agp — x,y +— y. Assume that ayp # 0. Since k is separably closed,
axx? +ajox +app = 0 has two distinct solutions if axg # 0. In particular, applying
the linear transform x + o — x, y > y for a solution o € k, we may assume that
ago = 0.

We assume that agg = 0. Thus, we can write
f = axx* + apy* + aiox + aory.

Since ajg # 0, we have that Z ~ k[x, y]/(x + bx%+ cyz) for some b, ¢ € k. It fol-
lows from the Jacobian criterion for smoothness that Z is smooth. This completes
the proof of Step 2. O

Step 3. If a;; = a9 = ag; = 0, then Z is semi log canonical.

Proof. (of Step 3) If app = 0, then we may assume that app = 1 by symmetry, i.e.,
f = x2 4+ amy?. Since Z is reduced, we have that agy & k2. Thus Z is semi log
canonical by Lemma 2.11.

Thus we may assume that agyp # 0. Replacing f by f/apo we get

f = axx® +apy* + 1.

Since f is reduced, we may assume that axy & k%, hence [k(a%z) 1 k] = 2. This
12 172 12 172

implies that [k(a,,", ag,”) © k] is equal to either 4 or 2. If [k(ay, ™, agy”) : k] = 4,

then Z is regular by Lemma 2.10(3).
/2 172

Thus we may assume that [k(a20 1agy ) k] = 2. We have that app €
k%(ax) = k* @ k*ang, hence agy = b* + c%ay for some b, ¢ € k. We get
f = anx® +any® +1 = axx® + (0% +axn)y? + 1 = axn(x +cy)* + (by + )%
After replacing x + cy by x, we can write
f = axx?+ (by + ).

If b =0, then Z is regular by Lemma 2.10(2). If b # 0, then we get k[x, y]/(f) =~
k[x, y1/(axx? + y?). It follows from Lemma 2.11 that Z is semi log canonical.
This completes the proof of Step 3. O

Step 1, Step 2 and Step 3 complete the proof of Lemma 2.12. O
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3. Pathological surfaces over imperfect fields

3.1. Construction in a general setting

In this subsection we give a criterion to find a log Fano variety dominating a Calabi—
Yau variety (Proposition 3.5). Although our construction is analogous to a standard
one over an algebraically closed field (cf. [30], [24]), we give details of them be-
cause our setting is more general and our base field is not necessarily algebraically
closed.

Notation 3.1. Let & be a field of characteristic p > 0. Assume that there exist a
k-morphism ¢ : C’ — C of regular projective k-varieties and a Cartier divisor D
on C which satisfy the following properties.

(1) ¢ is a finite universal homeomorphism of degree p;
(2) There is a nonzero element & € H'(C, Oc(D)) whose pull-back ¢*(&) €
H'(C', Oci(¢* D)) is zero.

The element £ induces a locally free sheaf E of rank two on C equipped with the
following exact sequence that does not split:

0— O0cD)S EL 00 > 0. 3.1)

By our assumption (2), the pull-back of this sequence to C’ splits: ¢*E >~ O¢' &
Oc/(¢*D). We set
S:=Pc(E), § :=Pc(¢*E)

and obtain a cartesian diagram:

S/LS

b

c 5 cC.
The surjection 8 : E — O¢ in (3.1) induces a section Cy of p. We set C| := ¥*C
which is a section of p’. We have another section C), of p’ corresponding to the
surjection:

¢*E ~ Oc' @ Oc/(¢*D) — Oci(¢* D),

where the latter homomorphism is the natural projection. We set C; to be the re-
duced closed subscheme of § that is set-theoretically equal to ¥/ (C).

Lemma 3.2. We use Notation 3.1. Then C» is an integral scheme and the induced
morphism pc, : Co — C is a finite universal homeomorphism of degree p.
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Proof. Since ¥ is a universal homeomorphism, we have that C, is an integral
scheme. Since the induced composite morphism

b’ c

is a finite universal homeomorphism of degree p, the degree of the latter morphism
pc, : Co — C is equal to either 1 or p. It suffices to show that the latter case
actually happens.

Assuming that pc, : C — C is of degree one, i.e., birational, let us derive
a contradiction. Since pc, : C2 — C is a finite birational morphism and C is
normal, it follows that pc, is an isomorphism. Thus C; is a section of p, hence it is
corresponding to a surjective O¢-module homomorphism

y i E — Oc(D)

for some Cartier divisor D on C. Since Cé = (C, x5 §’, we have that the pull-
back ¢*(y o «) is an isomorphism. It follows from the faithfully flatness of ¢ that
y o« is an isomorphism. This implies that the sequence (3.1) splits, which is a
contradiction. O

Lemma 3.3. We use Notation 3.1. Then the following hold:

(1) Og(C)HIer = (0-)*Oci(—@*D), where p., : C; — C’ is the induced
/1€y C C 1
1 1
morphism;
(2) OS/(Cé)|C§ ~ (p’c,)*Oc/((p*D), where p’c, : Cy — C'is the induced mor-
2 2
phism.

Proof. We can apply the same argument as in [15, Chapter V, Proposition 2.6]. [

Lemma 3.4. We use Notation 3.1. Then the following Q-linear equivalence holds:
2 *
—Ks ~q ;Cz +p" (=D — K¢).

Proof. Since the induced morphism pc, : C; — C is of degree p by Lemma 3.2,
we have that

2
Ks/c + ;Cz ~q p*(L) (3.2)

for some Q-divisor L on C. Taking the pull-back ¥* of (3.2), we get
2
Kg o + ;W*Q ~q P *(L). (3.3)
Since Kg + C| + C5+ ~ p™* K¢, we have that

2
—C; —C5+ ;w*cg ~q p*p*(L). (3.4)
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It holds that
(0c)*¢*D ~q —Cilc; ~a (pe) ¢ (L),
where the first Q-linear equivalence follows from Lemma 3.3(1) and the second one
is obtained by restricting (3.4) to C}. Since p, : C{ — C’is an isomorphism and
1

the absolute Frobenius morphism F¢ : C — C factors through ¢ : C' — C, we
get the Q-linear equivalence pD = F3 (D) ~q F{(L) = pL, which implies

D ~qL. (3.5)

Substituting (3.5) in (3.2), we get
2 * 2 *
—Ks ~q ;Cz + p*(—=L — K¢) ~q ;Cz + p" (=D — Kc¢),

as desired. O

Proposition 3.5. We use Notation 3.1. If —D — K¢ is ample and (S, %Cg) is log

canonical, then there exists an effective Q-divisor A on S such that (S, A) is kit
and —(Kg + A) is ample.

Proof. Since —D — K¢ is ample, so is
2 *
—| Ks+ E—e Cy) ~9€eCo+p" (=D — Kc¢)

for some rational number € with 0 < € < %, where the Q-linear equivalence

follows from Lemma 3.4. Set A := (% — €)C5. Since § is regular and (S, %Cz) is
log canonical, we have that (§, A) is klt. ]

3.2. Non-smooth K -trivial curves

We summarise the properties of K -trivial curves that we will need later.

Proposition 3.6. Let k be an imperfect field whose characteristic p is two or three.
Then there exists a projective regular curve C over k that satisfies the following
properties:

(1) Kc ~0;

(2) the number of the k-rational points of C is at least three;

(3) there is a purely inseparable field extension k C k' of degree p such that
C x k' is an integral scheme which has a unique non-regular point Q;

(4) the normalisation C' of C xy k' is k'-isomorphic to ]P’,l(,, and

(5) there is a Cartier divisor L on C such that L # 0 and pL ~ 0.
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Proof. Since k is not perfect, we can find an element ¢ € k with ¢ ¢ kP.
First we treat the case where p = 2. Consider the following equation, which
is taken from [16, Table 1 in page 243]:

C = Projk[x, y, 21/ (¥’ 4+ x° + (> + 1)xz?).
We have that C is regular by Lemma 2.10(4). By the adjunction formula, (1) holds.
The property (2) holds since allof [0 : 1 :0],[0:0: 1]and [¢+1 : 1241 : 1] are k-
rational points on C. Let k&’ := k(+/t3 +t). The Jacobian criterion for smoothness

implies that C x k' is smooth over k" away from Q := [+/#3 +¢ : 0 : 1]. Thus (3)
holds. We can check that for the open set

Dy (z) = Speck'[x, y1/(y* +x* + (¢ + 1))
of C xy k', its normalisation is isomorphic to A!,. Indeed, the integral closure of
K'Tx, y1/(0? + x3 + (12 + 1)x) = K'[X, V] is equal to k'[y/(X + /13 +1)], where
X and y are the images of x and y, respectively. Thus (4) holds. The property (5)
holds by setting L := P; — P,, where P; and P, are k-rational points around which

C is smooth.
Second we assume that p = 3. Let

C :=Projk[x, y, z1/(—y*z + x> +£22%).

All of [0 : 1 :0],[0 : ¢ : 1] and [0 : —¢ : 1] are k-rational points on C. By
Lemma 2.10(5), C is regular. We omit the remaining proof since it is similar to but
easier than the one for the case where p = 2. O

3.3. Log del Pezzo surfaces

Notation 3.7. Let k£ be an imperfect field whose characteristic p is two or three.
Let C be a projective regular curve over k as in Proposition 3.6. By Proposi-
tion 3.6(3)(4), there is a purely inseparable field extension k C k' of degree p
such that C xy k' is integral and its normalisation C’ of C xy k' is k’-isomorphic
to IP’,i,:
p:C' = Cx k= C.

In particular, ¢ is a finite universal homeomorphism of degree p. By Proposi-
tion 3.6(2)(3)(4), we can find a k-rational point P around which C is smooth over
k. We set D := —P and let £ € H'(C, O¢ (D)) be a nonzero element whose exis-
tence is guaranteed by Serre duality. Since C’ ~ P,i, and P’ := ¢*P is a k’-rational
point, we have that H!(C’, O¢/(¢* D)) = 0 by Serre duality. Therefore, we can

apply the construction as in Subsection 3.1 (¢f. Notation 3.1). Then we obtain a
cartesian diagram of regular projective k-varieties:

S’LS

Iz L

c 2 c.
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Lemma 3.8. We use Notation 3.7. Then the following hold.

(1) If p = 2, then C; is k-isomorphic to a conic curve in IP),% or IP’,%, :

(2) If p = 3, then C5 is k'-isomorphic to P},
Proof. We have that

(Ksjc + C2) -k C2 = deg(wc,) — deg (p*wclc,) = deg; (wc,).
Moreover, it follows that
V¥ (Ksjc +C2) « Cy = (Kg ot + pC) 1 Cy
=(p—1DCy+ Cy=(p—1)deg (9" D) = —p(p — 1),

where the first equation holds by Lemma 3.2, the third one by Lemma 3.3 and the
last one by D = —P. Since Vley C, — C is birational, it follows that

deg,(wc,) = (Ksjc +C2) -« Co =¥ *(Ks/c +C2) « C5 = —p(p — 1).

Since C» is a projective curve such that a)g; is an ample invertible sheaf, it holds
that H'(C», Oc,) = 0. Then, it follows from [20, Lemma 10.6] that

e (, is K-isomorphic to PL  or
e (C; is K-isomorphic to a conic curve on P2,

where K = H(C», Oc,). In any case, it holds that deg (wc,) = —2. The natural
morphisms C’ ~ C}, — C, — C induce field extensions

k=H"(C,Oc) c H*(C2,Oc,) C H(C), O¢y) =K',

which implies that K = H 0(Cs, Oc,) is either k or k. Thus (1) holds.

We show (2). Since p = 3, we get deg, (wc,) = —6. Thus we have that
k' = HY(C, Oc,) and deg;, (wc,) = —2. Since '»/f|c§ : C} — C, is birational and
deg;/ (a)cé) = degp (wc,), ché is an isomorphism. Hence (2) holds. ]

Theorem 3.9. We use Notation 3.7. Then there exists an effective Q-divisor Ag on
S such that (S, Ag) is kit and —(Ks + Ag) is ample.

Proof. By Proposition 3.5, it suffices to show that —D — K¢ is ample and (S, %Cz)
is log canonical. The ampleness of —D — K¢ follows from D = —P and K¢ ~ 0.
If p = 3, then it follows from Lemma 3.8 that (S, %Cz) is log canonical. If p = 2,
then C3 is semi log canonical by Lemma 2.12 and Lemma 3.8. Therefore, (S, C3)
is log canonical by inversion of adjunction (cf. [28, Theorem 5.1]). O

Theorem 3.10. Let k be an imperfect field whose characteristic p is two or three.
Then there exists a projective Q-factorial kit surface T over k withk = H(T, Or)
that satisfies the following properties:
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(1) —K7 is ample;

2) p(T)=1;

(3) There is a Cartier divisor M such that M # 0 and pM ~ 0, and

(4) There exists a finite universal homeomorphism IP’,%, — T, wherek C k' isa
purely inseparable extension of degree p.

Proof. We use Notation 3.7. There is a P!-bundle structure p : § — C. Since
S" = Ppi (Op1 ®Opi (1)), we have the blow-down f' : §" — ]P’]%, =: T’ contracting
k/

C}. Thus, we get a commutative diagram

where 7 is a finite universal homeomorphism of degree p and f is the birational
morphism to a projective normal surface 7T satisfying Ex(f) = C,. Note that we

can find such a surface T as the Stein factorisation of S ¥, S’ EN T', where Vr

is obtained by the factorisation F§, : S’ LA S 5, S’ of the e-th iterated absolute
Frobenius morphism Fg, for some e. Thus (4) holds. Since f can be considered
as the contraction of a (Ks + Ag)-negative extremal ray, we have that (T, fyAg)
is kIt and T is Q-factorial (cf. [28, Theorem 4.4]). In particular, T is klt. By [28,
Theorem 4.4], the assertions (1) and (2) hold. We get (3) by Proposition 3.6(5)
and [28, Theorem 4 4]. L]

Remark 3.11. The surface T constructed in the proof of Theorem 3.10 has a unique
singular point . We proved that the singular point ¢ is klt in the proof of Theo-
rem 3.10. On the other hand, we see that ¢ is not a canonical singularity as follows.
Let a be the rational number defined by the following equation

Ks = f*Kr +aC,.
It suffices to prove that a < 0. The proof of Lemma 3.8 implies that
(Ks + C2) 'k Co = degy(wc,) = —p(p — 1).
On the other hand, it holds that
C2  C2 = degi(Os5(Ca)lc,) = degi (O (pCH)lcy)

= pdegy(Op (=1)) = —p*,

where the second equation holds by Lemma 3.2 and the third one follows from
Lemma 3.3 and Notation 3.7. To summarise, we obtain Kg -4 C, = p and
a = —1/p, as desired.
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4. Pathological Mori fibre spaces

4.1. Mori fibre spaces with non-trivial torsion divisors

Proof. (of Theorem 1.2) By Theorem 3.10, there exist a projective (Q-factorial kit
surface T over k(1) with HO(T, Or) = k(t) and a Cartier divisor M on T which
satisfy the properties (1)—(4) in Theorem 3.10. We can find a projective morphism
f 'V — W and a Cartier divisor D on V, where W is a non-empty open subset W
of Speck[t], V xw Speck(t) = T,and D|r = M. In particular, the property (2) in
the statement holds. After possibly shrinking W, we may assume that V' is normal,
f+xOv = Ow, pD ~ 0, and —Ky is an f-ample Q-Cartier Q-divisor. Since
D|r = M, the property (4) in the statement holds. After possibly shrinking again,
the property (1) (respectively (3)) in the statement holds by Lemma 2.2 (respectively
Lemma 2.5). L

4.2, Mori fibre spaces with non-kit bases

The main purpose of this subsection is to show Theorem 4.4, since it directly im-
plies one of our main results: Theorem 1.1. In Part 4.2.1, we summarise notation.
In Part 4.2.2 and Part 4.2.3, we run a suitable minimal model program that will
be needed in the proof of Theorem 4.4. In Part 4.2.4, we prove Theorem 4.4 and
Theorem 1.1.

4.2.1. Setup

We use Notation 3.7. Assume that [k : kP] < oo. Let Mc := Oc(P), where P
is a k-rational point on C around which C is smooth over k. Let Mg := p*Mc,
Mcr := ¢*Mc,and Mg = {¥*p*Mc. We set

X :=Ps(Os & My), R =Pc(Oc & M¢)
X' :=Pg(Oy & Mg), R :=Pc(Oc' & M)

and obtain a cartesian diagram:

XLR

bl

S——p——>C,

whose base change by (—) x¢ C’ can be written as

/
X/L) R’

[

/

s 25 .
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Let C* be the sections of g corresponding to the direct sum decomposition O¢ &
M such that OR(Ci)|Ci = +M¢ if we identify C with C*. We set ST, C'* and
S'* to be the pull-backs of C* to X, R’ and X', respectively.

Since R’ ~ IP’P}(, (Op1 @ Opi (1)), we have that C'~ isa (—1)-curve on R’ i.e.,

KR/ % C/7 = Cli K Cli = —1. Let
0':R — P, =0

be the blow-down contracting C'~.

Corresponding to ', we can find a birational morphism 6 : R — Q to a pro-
jective surface Q such that 0,Or = Op and Ex(f) = C~. Indeed, for a positive
integer e such that the e-th iterated absolute Frobenius morphism F¢ : R — R’ =:
R'P°] factors through the induced morphism R” — R, we define Q as the normal-
isation of Q7] in K (R), where /171 . R'P°1 . /Pl i5 defined as the same
morphism as 6.

Let g := 6(Ex(0)) and g’ := 6’(Ex(0")). In the proof of Theorem 4.4, we will
run an S~ -MMP over Q

X = Xo % x1 & xo,
consisting of two steps: fp is a flip and f; is a divisorial contraction. To this end,
we construct the corresponding S’~-MMP in Part 4.2.2 and Part 4.2.3.

4.2.2. The first step: flip

We use the same notation as in Part 4.2.1. Let Hx’ be an ample Cartier divisor on
X’ and we define A" as A" := sup{A € R>o | Hx’ + AS’~ is nef}. Set

L :=Hy +)S".
Since S'~ is a smooth projective surface such that —K ¢ is ample,

e any nef Cartier divisor N on '~ is semi-ample (cf. [26, Theorem 1.3]) and
e there are finitely many curves yj,- - -, ¥, on §" such that NE(S") =>"7_; R>o[y;]
(cf. [28, Theorem 2.14]).

Hence, 1’ is a positive rational number and L'|g- is semi-ample. It follows from
Keel’s theorem ( [18, Proposition 1.6]) that L’ is semi-ample. Let

g X -7

be the birational contraction with g, Oy = O induced by L’. Since L'|g- is
semi-ample and (L'|g-) - (x*p"™*(c")|g-) > O for a closed point of ¢’ € C’, we
have that Ex(g’) is equal to the (—1)-curve I'" on §'~. In particular, g’ is a small
birational morphism.

We construct a flip of g’. Let

WY - X
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be the blowup along I'". We have that E” := Ex(h’) is isomorphic to Pr/(Nr//x/),
where N/ x is the normal bundle, which is an extension of Ng—,x/|r and N /g-.
Since
ST IlM=-1, @inS7)p T ins7)=-1,

the locally free sheaf Np/,x/ is corresponding to an extension class a €
Ext];l(@(—l), O(=1)) = 0. Therefore, we get Nr/x» ~ Op/(=1) @ Or/(—1).
It follows that E" >~ IP’,L X ! IP’,L. Let T’ be the proper transform of S’~ on Y’.
Lemma 4.1. The following hold:

(1) Ky -T"=0;

(2) Oy/(E)g = Opipi (=1, —1) if we identify E' with P}, xp P}, ;

(3) Oy/(T)|gr = Opip1(0, 1) if we identify E' and E' — T with P}, x; P},

and its first projection, respectively.

Proof. The assertion (1) follows from §'~ -y IV = —1 and

(Kx +8 ) pwI'=Kg- p T"=—1,

where the latter equation follows from the fact that I'" is a (—1)-curve.
We show (2). Since Ky: = h'*Kx + E’, we have that

Opip1 (=2, =2) = Oy (Ky' + EN|pr = Oy/(W*Kx + 2E")|pr =~ Oy QE") |,

where the last isomorphism holds because (1) implies Kx/|rr ~ 0. Thus (2) holds.
The assertion (3) follows from A*S'~ = T’ + E’, (2) and Ox(S") | =~
Opl (— 1) . D

Lemma 4.2. Let k| be a field. Let ¢ : Y1 — Z1 be a birational ki-morphism
of projective normal ki-varieties. For any Q-Cartier Q-divisor N on Y1 and an
ample Q-Cartier Q-divisor H on Zi, there exists a positive integer m such that
(N 4+ m¢*H)|s is big for any integral closed subscheme S on Y| such that S ¢
Ex(¢). In particular, if N is ¢-nef and ¢ (Ex(¢)) is one point, then N + m¢* H is
nef.

Proof. Let
I := {§]§ is an integral closed subscheme of Y] such that S ¢ Ex(¢)}.

If § € I, the induced morphism S — ¢(S) is birational. Therefore, for any S € 1,
there is ng € Z-¢ such that (N + ng¢*H)|s is big. Let n1 := ny,. By Ko-
daira’s lemma, we may write N +n1{*H = A+ D where A is an ample Q-Cartier
Q-divisor and D is an effective Q-divisor on Y;. Let D = ) e;D; be the decom-
position into the irreducible components and we set ny := max Dje {ni,n D; }. For
any D; € I, let Dj.v be its normalisation and we again apply Kodaira’s lemma to
(N + n2¢g*H)| pn . Repeating the same procedure finitely many times, we can find
J

n € Z-g such that (N + n¢*H)|g is big forevery S € I. O
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For an ample Cartier divisor Hz on Z’ and a sufficiently large integer m, we set
M =T +mh™*g"Hy.

We have that M’ is nef and big by Lemma 4.1(3) and Lemma 4.2. It follows from
Lemma 4.2 that E(M’) = E’, where we refer to [18, Definition 0.1] for the defini-
tion of E(M’). By [18, Theorem 0.2], we get the birational morphism

hy Y — X

with (h))«Oy = Ox; induced by M’. By our construction, we have that X/ is
Q-factorial, p(X1) = p(Xy) =3 .(cf. [4, Lemma 2.1]), Y/ 4 factprs through
h', the fibre of the induced morphism X| — Q' over ¢’ is set-theoretically equal
toS;” U}, and T} ¢ S|, where I'} := h(E’) and S| is the proper transform of
'~ . In particular, S|~ is ample over Z', hence X} — Z'is aflipof X' — Z'.

4.2.3. The second step: divisorial contraction
We use the same notation as in Part 4.2.1 and Part 4.2.2.
Lemma 4.3. The following hold:

(1) The normalisation of S;_ is a universal homeomorphism;
) _S;7|Si_ is ample.

Proof. We show (1). Let S;,_, be the proper transform of §’~ on Y’. Note that
W Sy = §'~ and the exceptional locus of }71 : Sy, — S| isequal to I'},, where
ry = (}7/)_1(F’). Since I'!,, >~ I’ ~ IP)JI;/’ we have that hN’I(F;,,) is a k’-rational
point and the induced morphism I'},, — h/(I"},) is the same as the structure mor-
phism P!, — Speck’. In particular, any fibre of h~’1 : Sy, — S| is geometrically
connected. Since h/1 factors through the normalisation vg- : (S;_)N — S;_ of S;_,
any fibre of v s is geometrically connected. Hence, (1) holds.

We show (2). Take a curve B’ on Q' passing through ¢’ such that | B’| is base
point free. Then the inverse image D’ to X can be written as

D' =aS” + F'
where a > 0 and F’ is a nonzero effective Q-divisor with S;_ ¢ SuppF’. Take
a general curve G’ on Si*. Since D' - G’ = 0 and F' - G’ > 0, we have that
S;” -G’ < 0. Thus (2) holds by p(S77) = 1. O

Let Hy: be an ample Cartier divisor on X/ and we define v’ by v’ := sup{v €
Rso|H x|+ VS| is nef}. We have that v’ is a positive rational number and let

N":= Hy, + V'S
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Since we can find a positive integer m such that OX/l (mN")| s = Osr by
Lemma 4.3, we have that N’ is semi-ample by Keel’s theorem [18, Proposition
1.6]. Let

fl:X]— X5
be the birational morphism induced by N’ with (f] )*(’)X/1 = OX/Z. We also get a
morphism o’ : X, — Q.
4.2.4. Proof of Theorem 1.1

Theorem 4.4. Let k be an imperfect field whose characteristic p is two or three. If
[k : kP] < oo, then there exists a k-morphism o : X, — Q of projective normal
k-varieties, with ,Ox, = Op and HY (0, Og) = k, that satisfies the following
properties:

(1) X5 is a Q-factorial threefold of Fano type;

(2) Q is a projective Q-factorial log canonical surface which is not klt;

(3) Any fibre of « is geometrically irreducible of dimension one, a general fibre of
ais P, and

4 p(X2/0) = 1.

Proof. We use the same notation as in Part 4.2.1, Part 4.2.2 and Part 4.2.3. We get
the rational maps

X::Xo—{o-)XILXzE)Q

corresponding to
X =x, Ooxy Loxy % g,

where X —jiod' X1 £> X5 is an ST-MMP over Q. Indeed, for a positive integer e
such that the e-th iterated absolute Frobenius morphism F¢ : X' — X' =: X'IF‘]
factors through the induced morphism X’ — X, we define X; as the normalisation
of X;[pe] in K (X), where X'1P°1 ——» Xl/.[pe] is the same birational map as X" --» X/.

Since X(’) is of Fano type, fy is small and f is birational, we have that also X»
is of Fano type by Lemma 2.8. Thus (1) holds. Since Q" ~ }P’i, is Q-factorial, so is
0 (¢f. [29, Lemma 2.5]). We can write Kg + bC~ = 0*K¢ for some b € Q. By
0*Kg -« C~ =0,(C7)* <0and

(Kr +C7) « C~ = degy(wc-) =0,

we have that b = 1. It follows from [20, Corollary 2.13] that Q is not kit but
log canonical. Thus (2) holds. The assertion (3) follows from the construction,
because the fibre of X’ — Q' over ¢’ is an image of Ex(h') ~ IP’]i, X ! IP’}C, and
hence geometrically irreducible. Thanks to (3), we have that p(X ; /Q") = 1. The
assertion (4) holds by p(X}/Q’) = 1 and Lemma 2 4. O
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Proof of Theorem 1.1. We apply Theorem 4.4 for a field k(¢). Then there exists a
k(t)-morphism & : X, — Q of projective normal k(¢)-varieties, with . Ox, = Op
and H°(Q, Op) = k(t), satisfying the properties (1)—(4) in Theorem 4.4. We can
find projective k-morphisms

viwsr

of normal k-varieties such that T is a non-empty open subset of Spec k[¢] and f X7
Spec k(t) = «. After possibly shrinking 7', we may assume that

e V and W are Q-factorial by Lemma 2.2,
e Viskltby Lemma?2.2,

e W isnot klt by Lemma 2.2, and

e Oy =O0yw.

We set W; to be the subset of W consisting of the points w € W such that V,, is
geometrically irreducible and of dimension one. By [13,9.5.5 and 9.7.7], Wj is a
constructible subset of W.

Claim 4.5. There exists an open subset W» of W such that W, C W, C Wy, where
n is the generic point of 7.

Proof of Claim 4.5. For a subset B of aset A, let B := A\ B. By Theorem 4.4(3),
we have that W, C W. This inclusion implies that n ¢ g(W7), hence the con-
structible subset g(Wy) of a curve T is a proper closed subset of 7. Thus the

inclusions W, C W» C W hold for W, := gil(g(Wf)C). ]

After replacing W by W, we may assume that the fibre V,, over any point w €
W is geometrically irreducible and of dimension one. In particular, p(V/W) = 1.
This completes the proof of Theorem 1.1. O
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