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A remark on the Hochschild-Kostant-Rosenberg theorem
in characteristic p

BENJAMIN ANTIEAU AND GABRIELE VEZZOSI

Abstract. We prove a Hochschild-Kostant-Rosenberg decomposition theorem
for smoothly compactifiable smooth schemes X in characteristic p when dim X <
p. The best known previous result of this kind, due to Yekutieli, required dim X <
p. Yekutieli’s result follows from the observation that the denominators appearing
in the classical proof of HKR do not divide p when dim X < p. Our extension to
dim X = p requires a homological fact: the Hochschild homology of a smooth
proper scheme is self-dual.
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1. Introduction

The classical Hochschild-Kostant-Rosenberg theorem of [9] states that if k is a com-
mutative ring and R is a smooth commutative k-algebra, then there is a natural iso-
morphism Q7% /k = HH,(R/k) of graded-commutative R-algebras. In fact, when
k is a Q-algebra, this isomorphism lifts to the level of complexes, giving a natural
quasi-isomorphism HH(R/ k) ~ P, Q’R / «[7]. Here, HH(R/ k) denotes Hochschild
chains, any one of the natural complexes computing Hochschild homology, and
b, QtR / «[t]1s viewed as a complex with zero differential. In particular, we see that
the Hochschild chains are naturally formal for smooth affine schemes over charac-
teristic O fields.
Swan extends the HKR decomposition in [18, Corollary 2.6] to smooth quasi-

projective schemes in characteristic 0 using related work of Gerstenhaber-Schack [8].!

I Often these authors are more concerned with Hochschild cohomology, or Hochschild cochains.
The results typically dualize without trouble.
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Swan’s work implies in particular that there are canonical decompositions

HH,(X/k) = @ H (X, Q%)

t—s=n

for all n. Using the fact that Hochschild homology for all commutative k-algebras
is determined by its values on smooth k-algebras, the HKR decomposition was ex-
tended to all commutative k-algebras (still in characteristic 0) in work of Buchweitz
and Flenner [3], Schuhmacher [16], and Toén and Vezzosi [20]. One obtains a
natural decomposition

HH(R/k) ~ @LA’ (LR/k) [7], (1.1)
t>0
where Lg/i is the cotangent complex and LA’ is the derived functor of the tth
exterior power. Note that Hochschild homology is not typically formal in the non-
smooth case but that the differentials are all supported in the cotangent complex
direction and not in the exterior algebra direction. Of course, there is a global
version of this decomposition for schemes as well.

Much less is known in characteristic p. The main result to date is due to Yeku-
tieli who proves in [22, Theorem 4.8] that there is a natural HKR quasi-isomorphism
in characteristic p for smooth schemes of dimension less than p. To make this pre-
cise, we let HHy denote the complex of quasi-coherent sheaves on Ox computing
Hochschild homology. In other words, if U € X is an affine open subscheme,
then HH, (U) >~ HH(U/k). One model for this complex is A}((’)AX), where
Ax : X — X xj X is the diagonal morphism, A% is the derived pullback functor,>
and O, is the structure sheaf of the diagonal inside X x; X.

Yekutieli proved that if k is a commutative ring and if X — Spec & is a smooth
morphism of relative dimension d, then

d

HHy =~ (P QY 1]
t=0

as complexes of sheaves on X under the assumption that d! is invertible in k. Again,
&b Q} / (1] 1s viewed as a complex of sheaves with zero differential. This implies

that there are natural isomorphisms HH,, (X/k) = @,_,_, H (X, @ si) forall n
under the assumption that d! is invertible in k.

Question 1.1. Is there an HKR theorem for smooth schemes in characteristic p?
There are multiple ways that this question might be answered. The explicit

isomorphism constructed in [9] does not extend in general to smooth schemes X in

2 Here and elsewhere we mean derived functors unless specified otherwise.
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characteristic p (unless dim X < p). However, if R is any smooth k-algebra, no
matter what the dimension, then there is an HKR-like quasi-isomorphism.’

Proposition 1.2. Let k be a commutative ring and let R be a smooth commutative
k-algebra. Then, there is a quasi-isomorphism @, SZtR/k[t] ~ HH(R/k).

Proof. This is a special case of a more general fact: any complex with projective
homology is formal. A quasi-isomorphism is obtained by choosing maps from the
homology into the complex, which can always be done thanks to projectivity. [J

The crucial point in the proof above is that we must choose a lift to get our map
Q}e / «[11 = HH(R/k). Without characteristic or dimension assumptions, it is not
known how to make this choice natural in R, which would be necessary to extend
the result to schemes.*

Given the Hochschild-Kostant-Rosenberg theorem, it is not hard to prove that
the Hochschild homology sheaves HH, are canonically isomorphic to €, for
smooth schemes X . In particular, there is a natural local-global spectral sequence

By’ = H'(X, Q) = HH,_(X).

We say that the weak HKR theorem holds for X over k if this spectral sequence
degenerates at the Ep-page. We say that the strong HKR theorem holds for X over
k if HHy is formal as a complex of sheaves; i.e., if there is a quasi-isomorphism

@Q’X/k[t] ~ HH,.
t

Evidently, the strong HKR theorem for X implies the weak HKR theorem for X.

Summarizing the past work in this language, we know by [9] and Proposi-
tion 1.2 that the strong HKR theorem holds for X — Speck smooth affine. By
Yekutieli [22, Theorem 4.8], we also know that the strong HKR theorem holds for
X over k when X — Spec k is smooth of relative dimension d and d! is invertible
in k. When £ is a field of characteristic p, this condition is the same as asking for
dim X < p.

Suppose that U is a smooth d-dimensional scheme over a field of character-
istic p. Say that U is smoothly compactifiable if there exists a smooth proper d-
dimensional scheme X over p and an open embedding U < X. Resolution of
singularities would imply that every smooth separated scheme is smoothly com-
pactifiable. Our main results establish the strong HKR theorem for compactifiable

3 Using simplicial commutative rings, one may show that the quasi-isomorphism in the propo-
sition can be chosen to respect multiplicative structures by showing that HH(R/k) is weakly
equivalent to the free simplicial commutative R-algebra on Q}e / ([1]. This is a way of saying that
HH(R/k) is formal as a simplicial commutative ring.

4 The issue is the same as in the gap in the proof of the main theorem of [12]. In the proof of
Theorem 6.1, they argue that their HKR theorem is true étale locally and hence it is true globally.
However, for this argument to work, they must give a globally defined map.
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smooth schemes X with dim X < p over characteristic p fields. But, to prove this,
we first establish the weak HKR theorem in the smooth proper case.

Theorem 1.3. Suppose that k is a field of characteristic positive p and that X is
a smooth proper k-scheme of dimension at most p. Then, the weak HKR theorem
holds for X. Specifically, if dim X = p, then for each n there is a canonical short
exact sequence

p—1
0 — HP™"(X, Q% ) — HHy(X/K) — DH (X, Q) > 0,
t=0

which is split (but possibly not canonically split).

The main idea in the proof of this theorem is the use of self-duality for HH(X/ k) in
the local-global spectral sequence H® (X, Q’X / ) = HH;—(X/k). A similar move
occurs in [7], where the authors use the compatibility of Serre duality with the
Cartier isomorphism and a trace argument to boost their result on degeneration of
the Hodge-de Rham spectral sequence for smooth X/k with dim X < p to smooth
X /k with dim X < p. See [7, Corollaire 2.3].

Example 1.4. The theorem in particular implies the HKR decomposition for
smooth projective surfaces in characteristic 2. This answers the explicit form of
Question 1.1 asked by Daniel Pomerleano on mathoverflow in [15].

Using the theorem weak HKR theorem above for smooth proper k-schemes of
dimension at most p, we deduce the following strong HKR result.

Theorem 1.5. Suppose that k is a field of positive characteristic p and that U is a
smoothly compactifiable smooth k-scheme of dimension at most p. Then, the strong
HKR theorem holds for U .

We briefly review Hochschild homology in Section 2 and we give the proofs of the
theorems as well as some more examples in Section 3.

Remark 1.6. It is interesting to wonder at the connection between the weak HKR
theorem and degeneration of the Hodge-de Rham spectral sequence. Given that
there is no liftability hypothesis in Theorem 1.3, it is not at all clear if or when
there should be a relation. We can however make the following weak statement. If
X is a smooth scheme over a characteristic p field k that lifts to a smooth proper
map X — Spec R where R is any discrete valuation ring with characteristic zero
fraction field and residue field &, and if the cohomology groups H* (X, Q’X / r) are
p-torsion-free for all s, ¢, then the weak HKR theorem holds for X over 7. Indeed,
the differentials must all be p-torsion by the HKR theorem in characteristic O, but
the groups are p-torsion-free. Hence, the differentials all vanish for the spectral
sequence of X over R. But, the hypotheses also imply that the spectral sequence of
X over k is the mod p reduction of that for X’ over R.
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Example 1.7. By lifting to characteristic O and [6, Exposé XI, Théoréme 1.5], the
remark implies that the weak HKR theorem holds for smooth complete intersections
in projective space. Despite the sparsity of the local-global spectral sequence in
that case, this statement is not entirely trivial. For example, for such a 5-fold X in
characteristic 2, the differential d» : H2(X, Qi / 0 = H*(X, Q‘)‘( / ) could, for all
we would know otherwise, be non-zero. In fact, we can also see that this differential
must be zero by using the duality arguments used in the proof of Theorem 1.3 the
pullback map from the local-global spectral sequence for P” to X.

Finally, let us say a word about multiplicative structures. In [20], Toén and
Vezzosi prove the strong HKR theorem in characteristic zero and show that the
equivalence of (1.1) is naturally S'-equivariant and multiplicative. The proof of
Theorem 1.5 does in particular induce an equivalence between the sheaf of simpli-
cial commutative rings HHy and the sheaf of free simplicial commutative rings on
Q}( Jk and there is a corresponding formality result upon taking global sections. We

emphasize again that we do not know how to make this S'-equivariant or functorial
in X, or even if that is possible.

ACKNOWLEDGEMENTS. Many people have wondered about the existence of HKR-
type results in characteristic p and we have talked to many people about the subject,
including Damien Calaque, David Gepner, Ezra Getzler, Michael Grochenig, Mdr-
ton Hablicsek, Akhil Mathew, and Boris Tsygan. We would like to thank them as
well for the people who kindly gave us comments on an early version of the paper,
namely Yanki Lekili, Akhil Mathew, and especially Amnon Yekutieli, who pointed
out that we could extend our result to non-proper smoothly compactifiable smooth
schemes. BA was first asked this question by Yanki Lekili in the fall of 2014 and
thanks him for many conversations about this and many other topics. Special thanks
also go to Bhargav Bhatt who suggested to BA the idea of bringing duality into play,
which had already been considered by GV. The resulting conversations led directly
to the present note.

2. Hochschild homology

Let k£ be a commutative ring and let Cat; denote the oo-category of small idempotent
complete pretriangulated k-linear dg categories up to derived Morita invariance.
The oo-category Caty is equivalent to the Dwyer-Kan localization of the category
of small k-linear dg categories (or even small flat k-linear dg categories) at the class
of k-linear derived Morita equivalences. Objects of Cat; will be called k-linear
categories for short.>

5 Equivalently, Cat; is the oo-category of small idempotent complete k-linear stable oo-
categories.
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Let D(k) denote the derived oo-category of k. The homotopy category of
D(k) is a triangulated category equivalent to D(k), the derived category of k. We
let HH(—/k) : Caty — D(k) be the Hochschild homology functor as studied
in [10].5 The following proposition is well-known (see [5, Example 8.9] or [2,
Corollary 6.9]); we give a sketch of the proof for the reader’s convenience.

Proposition 2.1. The functor HH(—/ k) : Caty, — D(k) is symmetric monoidal.

Proof. We will indicate how the functor from small flat k-linear dg categories to
chain complexes over k given by taking the mixed complex as in [10, Section 1.3]
is symmetric monoidal. Indeed, given a small flat k-linear dg category C, the mixed
complex C(C) of [10] is the total complex of the bicomplex associated to the sim-
plicial chain complex C,(C) with n™ term

P Crm x0) @k C X1, X0) ®kC (-2, Xn—1) ®s - - @k C(x1, x2) @k C (x0, X1),

(Xn,+++,X0)

where the sum is over all (n + 1)-tuples of objects of C. The differentials are as
usual for the cyclic bar complex. (See [10, Section 1.3].) Given a second small
flat k-linear dg category, we see that there is a natural map of simplicial chain
complexes Co(C) Rk Co(D) — Co(C®i D) obtained using the symmetric monoidal
structure on chain complexes. This map is a level-wise quasi-isomorphism. Taking
the associated total complexes (and using the shuffle product), we obtain a natural
quasi-isomorphism C(C) ®; C(D) — C(C Qi D) giving a symmetric monoidal
structure. Compare with the statement of the Hochschild homological Eilenberg-
Zilber theorem (see [11, Theorem 4.2.5]). Since Cat, is the localization of small k-
linear dg categories at the k-linear derived Morita equivalences, and since the mixed
complex functor C inverts k-linear derived Morita equivalences by [10, Section
1.5], the proposition follows. O

Let C be a k-linear category. In this case, Ind(C) is dualizable in Modp ) (PrL).
Let D(k) e, Ind(C) ® Ind(C°P) be the coevaluation map and let Ind(C°P) ®

Ind(C) =5 D(k) be the evaluation map. We say that C is smooth if the coevaluation

map preserves compact objects. We say that C is proper if the evaluation map
preserves compact objects. Note that C is smooth and proper if and only if it is
dualizable in Caty. See [19, Definition 2.4] or [1, Lemma 3.7]. If C is dualizable,
then the dual is equivalent to the opposite dg category C°P.

Corollary 2.2. If C is a smooth and proper k-linear category, then HH(C/k) is
perfect as a complex over k.

Proof. In this case, C is dualizable in Catz. Since symmetric monoidal functors
preserve dualizable objects, the corollary follows at once from the fact that the
dualizable objects of D(k) are precisely the perfect complexes. O

6 Tobe precise, HH(—/ k) is the derived functor of Keller’s mixed complex construction (obtained
by taking flat resolutions of dg categories). Since the mixed complex construction inverts derived
Morita equivalences (by [10, Section 1.5]) it descends to a map Caty; — D(k) of co-categories.



HKR IN CHAR p 1141

Remark 2.3. It is important to use Cat; as opposed to the more familiar co-cate-
gory dgAlg, of dg k-algebras in the corollary because smooth and proper k-linear
categories are typically not dualizable in dgAlg, .

3. Proofs

We give the proofs of Theorem 1.3 and Theorem 1.5 in this section after a couple
more preliminaries. The next statement is well-known over fields (see for exam-
ple [13]). The proof over a general commutative ring k is the same, so we omit it.

Proposition 3.1. Let k be a commutative ring. If X — Speck is a smooth and
proper morphism of schemes, then Perfy is dualizable as a k-linear category.

Corollary 3.2. In the situation above, HH(X/ k) is dualizable as a complex over
k with dual the Hochschild homology of the smooth and proper k-linear category
(Perfy)°P.

Proof. This follows from Corollary 2.2 taking into account that the dualizable ob-
jects of D(k) are precisely the perfect complexes. O

The k-linear categories of the form Perfy are very special: they are equivalent
to their own opposites. Below, if £ and F are complexes of quasi-coherent sheaves
on X, we write Mapy (€, F) for the mapping spectrum, a spectrum whose ho-
motopy groups ;Mapy (£, F) are given by Ext,' (£, F). Similarly, Mapy (£, F)
is the complex of quasi-coherent sheaves on X whose homotopy sheaves are
miMapy (€, F) = Exty' (€, F).

Lemma 3.3. Let X be a k-scheme and let L be a line bundle on X . Then, there is an
equivalence Perfy ~ Perl‘(;(p of k-linear categories obtained by F +— Mapy (F, L).

Proof. The claim can be checked Zariski locally on X, hence for affine schemes,
where it is obvious. ]

Corollary 34. If X is a smooth and proper k-scheme, then the complex of k-
modules HH(X / k) is self-dual. That is, the evaluation map is a non-degenerate
pairing HH(X / k) @ HH(X /k) — k.

Proof. This is an immediate consequence of Corollary 3.2 and Lemma 3.3. O

The existence of such a pairing has been observed in the literature before. For
example, it appears implicitly in Shklyarov [17, Theorem 1.4] and is studied by
Caldararu and Willerton in [4], who call it the Mukai pairing, and by Petit in [14].
It also occurs in the preprint [21] of Toén and Vezzosi.

Remark 3.5. In fact, Akhil Mathew pointed out to us that HH(A/ k) >~ HH(A®P/k)
for any dg algebra A over k (see for example [17, Proposition 4.5]). Thus, Corol-
lary 3.4 applies to any smooth proper dg algebra over k.
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Our point of departure is to pair the pairing of Corollary 3.4 with the convergent
local-global spectral sequence

B’ = H'(X, Q) = HH,_(X/k). 3.1)

We will see that this quickly leads to a proof of the main theorem. We need one
more lemma, which is also implied by [22, Theorem 4.8].

Lemma 3.6. Let k be a ring in which p acts nilpotently and let X — Speck be a
smooth proper morphism. Let 1<, 1HHy denote the (p — 1)st truncation of HH .
Then, there is a natural quasi-isomorphism

p—1
T<p—1HHy =~ @ QY lt].
t=0

Proof. In general, for any smooth scheme, there is a natural map of complexes
of sheaves HHy — Q’X / 7] constructed in [11, Section 1.3]. On smooth affine
schemes X = Spec R, this map can be described as taking a Hochschild chain
ro®r1 ® --- ®r; to the differential ¢-form rodry - - - dr;. This map is not the map
arising in the Hochschild-Kostant-Rosenberg theorem. Rather, there is an isomor-
phism Q% , — MM, of sheaves. The induced composition Qy,, — Qf , is
multiplication by ¢! by [11, Proposition 1.3.16]. But, this implies that the induced
map 7<,1HHx — @f:ol QY sk[t] is a quasi-isomorphism under the present hy-
potheses. O

We are now ready to give the proof of the main theorem.

Proof of Theorem 1.3. If dim X < p, then the theorem follows from Lemma 3.6
or [22, Theorem 4.8]. So, assume that dim X = p. It follows from Lemma 3.6 that
the only possibly non-zero differentials in the local-global spectral sequence (3.1)
are those hitting E;'” = H* (X, Qf( / «)- These groups are only possibly non-zero for
0 < s < p, and they contribute to Hochschild homology in degrees p, p—1, ..., 0.
The differential d, has bidegree (r,r — 1), which lowers the total degree by 1. In
particular, the only terms that support a non-zero differential out must in particular
have total degree 1, ..., p. By Serre duality, H* (X, Q’X/k) = HPS(X, Qf&,ﬁ)v,

the k-linear dual of HP~5 (X, Qf&,ﬁ). In particular, at the E;-page, the sum of the
dimensions of total degree a > 1 is equal to the sum of the dimensions of total
degree —a. If some term of degree a > 1 supports a differential to E;”, then
dimy HH, (X /k) < dimy HH_,(X/k), which contradicts Corollary 3.4. It follows
that there are no non-zero differentials, so that X satisfies the weak HKR theorem
over k. The last statement follows from the fact that

p—1
QF ([p] > HH(X/k) — €D QY 4[]
t=0
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is a cofiber sequence and the lack of differentials in (3.1) implies we get short exact
sequences in global sections, as desired. O

Now, we prove Theorem 1.5.

Proof of Theorem 1.5. We reduce immediately to the case of a smooth proper k-
scheme X of dimension p. By Lemma 3.6, it is enough to construct a map HHy, —
wx/k[p] such that the composition wx,/«[p] — HHy — wx/i[p] is the identity.
In other words, we are interested in the restriction map

Mapy (HHy, wx/k[p]) = Mapy (wx/k[pl, ox/k[p)).
This is the map on global sections of the map of (sheaves of) mapping complexes

Mapy(HHy, wx/k[p]) — Mapy(wx/i[p], ox k[P,

and there is a corresponding map of local-global spectral sequences which is a sur-
jection on the E-pages since HH ), = wx/x. We will be done if we show that the
local-global spectral sequence

E}' = H (X, m; Mapy (HHy, ox/k[p])) = m—sMapy (HHy, ox,/[p])

collapses at the Ep-page. However, m; Mapy(HHy, wx/k[p]) = Q’X/k using the
natural isomorphisms
—t ~
Tf/k ® wx/k = Q’X/k,

where 7, ; /;t denotes the (p — ¢)th exterior power of the tangent bundle of X over
k; By Grothendieck duality, Mapy (HHy, wx,k[p]) >~ HH(X/k)", the k-dual of
HH(X/k). But, by Corollary 3.4, HH(X/k)" >~ HH(X/k). By a dimension count
and using Theorem 1.3, we see that the local-global spectral sequence computing
m«Mapy (HHy, wx/«[p]) does indeed collapse. O

Given the proof above, we ask the following question.

Question 3.7. Is HHy ~ Mapyx(HHy, wx/i[d]) when U is a smooth k-scheme
of dimension d?

Lemma 3.8. Let X be a smooth proper d-dimensional scheme over a field k of
characteristic p > 0. If the weak HKR theorem holds for X, then HHy =
Mapy (HHy, ox/k[d]).

Proof. The proof above of Theorem 1.5 applies equally well here to show that there
isamap HHy — wx/[d] such that the composition wx,[d] — HHy — wx/[d]
is the identity. Now, consider the composition HHy ® o, HHy — HHy, —
wx/kld] induced by the multiplicative structure on HHy. The reader can check
that the adjoint map HHy — Mapy (HHy, wx/«[d]) is an equivalence using that
the multiplication on the homotopy sheaves of HHy agrees with the exterior power
multiplication on 7% Ik O
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It follows that if U is a smoothly compactifiable smooth d-dimensional scheme
with compactification U € X where X is smooth and proper and if the weak HKR
theorem holds for X, then the conclusion of the lemma holds for U .

We end the paper with a brief connection to algebraic K -theory.

Proposition 3.9. Let X be a smooth projective 3-fold over a field k of characteristic
2. If the image of the first Chern class map ¢ : Ko(X) — H' (X, Q;(/k) generates

H!(X, 82%( / ) as a k-vector space, then the weak HKR theorem holds for X .

Proof. 1t is not hard using that we can make HHy into an Ox-algebra to see that
there are no non-zero differentials leaving the terms H*(X, Ox). The only other
possible differential that hits a class of negative degree is do : H! (X, Q}( / 0

H3(X, 82%( /1) This differential vanishes as all of the classes must be permanent

thanks to the hypothesis and the trace map Ko(X) — HHy(X/k). Now, all remain-
ing classes involve terms of total degrees —2, —1, or 0. In any case, if one of these
differentials is non-zero, then the self-duality of HH(X/ k) is violated, just as in the
proof of Theorem 1.3. O]

This hypothesis is satisfied for smooth hypersurfaces in P* by Deligne’s the-
orem that these have the same Hodge numbers as their characteristic O counter-
parts [6, Exposé XI]. In this case the result also follows as a special case of Exam-
ple 1.7.
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