Compact hypersurfaces in Randers space

JINTANG LI

Abstract. Let $(\overline{M}^{n+1}, \overline{F})$ be a Randers space and (M^n, F) a compact hypersurface of $(\overline{M}^{n+1}, \overline{F})$. In this paper, we prove that if the second mean curvature H_2 is constant and the norm square S of the second fundamental form of M satisfies a certain inequality, then either M is a Randers space with constant flag curvature $1 + H_2$ or the equality holds.

Mathematics Subject Classification (2010): 53C60 (primary); 53C40 (secondary).

1. Introduction

Let M be an n-dimensional smooth manifold and $\pi:TM\to M$ be the natural projection from the tangent bundle. Let (x,Y) be a point of TM with $x\in M,Y\in T_xM$ and let (x^i,Y^i) be the local coordinates on TM with $Y=Y^i\frac{\partial}{\partial x^i}$. A Finsler metric on M is a function $F:TM\to [0,+\infty)$ satisfying the following properties:

- (i) Regularity: F(x, Y) is smooth in $TM \setminus 0$;
- (ii) Positive homogeneity: $F(x, \lambda Y) = \lambda F(x, Y)$ for $\lambda > 0$;
- (iii) Strong convexity: The fundamental quadratic form $g_Y = g_{ij}(x, Y)dx^i \otimes dx^j$ is positively definite, where $g_{ij} = \frac{1}{2}\partial^2(F^2)/\partial Y^i \partial Y^j$.

A Finsler metric is just a Riemannian metric without the quadratic restriction. The pair (M, F) is called a Finsler manifold.

Riemannian submanifolds are important in modern differential geometry. For a compact Riemannian hyprsurface M of the Euclidean unit sphere $S^{(n+1)}(1)$, the second fundamental form $B=h_{ij}^{n+1}\omega^i\otimes\omega^j\otimes e_{n+1}$, where $\{\omega^i\}$ is the orthonormal coframe of M. The second mean curvature H_2 of M is defined by $H_2=\frac{2}{n(n-1)}\sum_{1\leq i< j\leq n}\lambda_i\lambda_j$, where λ_i are the eigenvalues of the second fundamental

This research was supported by the National Natural Science Foundation of China (No. 11871405).

Received November 14, 2017; accepted in revised form October 06, 2018. Published online September 2020.

tensor h_{ij}^{n+1} of M. For a compact hypersurface M of the Euclidean unit sphere, the Gauss equations is $R = \sum_{i,j} R_{ijij} = n(n-1) + n(n-1)H_2$, which implies that the scalar curvature R is constant if and only if the second mean curvature H_2 is constant.

As well kown, by using Cheng-Yau's self-adjoint operator \square , Li [2] proved the following:

Theorem A. Let M^n be a compact hypersurface with constant second mean curvature H_2 in the Euclidean unit sphere. If $H_2 \ge 0$ and the norm square S of the second fundamental form of M satisfies

$$S \le \frac{n}{(n-2)(nH_2+2)} \Big(n(n-1)H_2^2 + 4(n-1)H_2 + n \Big),$$

then either $S = nH_2$ and M is a totally umbilical hypersurface; or

$$S = \frac{n}{(n-2)(nH_2+2)} \Big(n(n-1)H_2^2 + 4(n-1)H_2 + n \Big)$$

and
$$M = S^1(\sqrt{1-r^2}) \times S^{n-1}(r)$$
, where $r = \sqrt{\frac{n-2}{n(H_2+1)}}$.

As far as we know, there are very few global rigidity results on Finsler submanifolds. In this paper, by the Gauss formula of Chern connection and defining a similar self-adjoint operator \square on Finsler manifolds, we study the hypersurfaces of Randers space with constant flag curvature and obtain the following:

Main Theorem. Let $(\overline{M}, \overline{F})$ be a Randers space with constant flag curvature $\overline{K} = 1$ and (M^n, F) a compact hypersurface of $(\overline{M}, \overline{F})$ with constant second mean curvature H_2 . If $H_2 \ge 0$ and the norm square S of the second fundamental form of M satisfies

$$S \le \frac{n}{(n-2)(nH_2+2)} \Big(n(n-1)H_2^2 + 4(n-1)H_2 + n \Big), \tag{1.1}$$

then either $S = nH_2$ and M is a Randers space with constant flag curvature $K = 1 + H_2$; or

$$S = \frac{n}{(n-2)(nH_2+2)} \Big(n(n-1)H_2^2 + 4(n-1)H_2 + n \Big)$$

and
$$M = S^1(\sqrt{1-r^2}) \times S^{n-1}(r)$$
, where $r = \sqrt{\frac{n-2}{n(H_2+1)}}$.

Remark. This theorem generalizes theorem A from the Riemannian case to the Randers space.

2. Preliminaries

Let (M^n, F) be an *n*-dimensional Finsler manifold. F inherits the *Hilbert* form, the fundamental tensor and the *Cartan* tensor as follows:

$$\omega = \frac{\partial F}{\partial Y^i} dx^i, \quad g_Y = g_{ij}(x, Y) dx^i \otimes dx^j, \quad A_Y = A_{ijk} dx^i \otimes dx^j \otimes dx^k, \quad A_{ijk} := \frac{F \partial g_{ij}}{2 \partial Y^k}.$$

It is well known that there exists uniquely the Chern connection ∇ on π^*TM with $\nabla \frac{\partial}{\partial x^i} = \omega_i^j \frac{\partial}{\partial x^j}$ and $\omega_i^j = \Gamma_{ik}^j dx^k$ satisfying that

$$\begin{cases} d(dx^i) - dx^j \wedge \omega^i_j = -dx^j \wedge \omega^i_j = 0 \\ dg_{ij} - g_{ik}\omega^k_i - g_{jk}\omega^k_i = 2A_{ijk}\frac{\delta Y^k}{F}, \end{cases}$$

where $\delta Y^i = dY^i + N^i_j dx^j$, $N^i_j = \gamma^i_{jk} Y^k - \frac{1}{F} A^i_{jk} \gamma^k_{st} Y^s Y^t$ and γ^i_{jk} are the formal Christoffel symbols of the second kind for g_{ij} .

The curvature 2-forms of the Chern connection ∇ are

$$d\omega_j^i - \omega_j^k \wedge \omega_k^i = \Omega_j^i = \frac{1}{2} R_{jkl}^i dx^k \wedge dx^l + \frac{1}{F} P_{jkl}^i dx^k \wedge \delta Y^l,$$

where R^i_{jkl} and P^i_{jkl} are the components of the hh-curvature tensor and hv-curvature tensor of the Chern connection, respectively.

Given a non-zero vector $U \in T_x M$, the flag curvature K(Y, U) on $(x, Y) \in TM \setminus 0$ defined by

$$K(Y, U) = \frac{Y^{i}U^{j}Y^{k}U^{l}R_{jikl}}{g_{Y}(Y, Y)g_{Y}(U, U) - [g_{Y}(Y, U)]^{2}},$$

where $R_{jikl} = g_{is}R_{jkl}^{s}$.

 $\varphi: (M^n, F) \to (\overline{M}^{n+p}, \overline{F})$ is called an isometric immersion from a Finsler manifold to a Finsler manifold if $F(Y) = \overline{F}(\varphi_*(Y))$. We have that [8]

$$g_{Y}(U, V) = \overline{g}_{\varphi_{*}(Y)}(\varphi_{*}(U), \varphi_{*}(V)), A_{Y}(U, V, W)$$

$$= \overline{A}_{\varphi_{*}(Y)}(\varphi_{*}(U), \varphi_{*}(V), \varphi_{*}(W)),$$
(2.1)

where $Y, U, V, W \in TM$, \overline{g} and \overline{A} are the fundamental tensor and the *Cartan* tensor of \overline{M} , respectively.

In the following we simplify A_Y and g_Y to A and g, respectively. Any vector field $U \in \Gamma(TM)$ will be identified with the corresponding vector field $d\varphi(U) \in \Gamma(T\overline{M})$. We will use the following convention:

$$1 \le i, j, \dots \le n;$$
 $n+1 \le \alpha, \beta, \dots \le n+p;$
 $1 < \lambda, \mu, \dots < n-1;$ $1 < A, B, \dots < n+p.$

Let $\varphi:(M^n,F)\to (\overline{M}^{n+p},\overline{F})$ be an isometric immersion. Take a \overline{g} -orthonormal frame form $\{e_A\}$ for each fibre of $\pi^*T\overline{M}$ and $\{\omega^A\}$ is its local dual coframe, such that $\{e_i\}$ is a frame field for each fibre of π^*TM and ω^n is the *Hilbert* form, where $\pi:TM\to M$ denotes the natural projection. Let θ^A_B and ω^i_j denote the Chern connection 1-form of \overline{F} and F, respectively, *i.e.*, $\overline{\nabla}e_A=\theta^B_Ae_B$ and $\nabla e_i=\omega^j_ie_j$, where $\overline{\nabla}$ and ∇ are the Chern connection of \overline{M} and M, respectively. We obtain that $A(e_i,e_j,e_n)=\overline{A}(e_A,e_B,e_n)=0$, where $e_n=\ell=\frac{Y^i}{F}\frac{\partial}{\partial x^i}$ is the natural dual of the Hilbert form ω^n . The structure equations of \overline{M} are given by

$$\begin{cases} d\theta^{A} = -\theta_{B}^{A} \wedge \theta^{B} \\ d\theta_{B}^{A} = -\theta_{C}^{A} \wedge \theta_{B}^{C} + \frac{1}{2} \overline{R}_{BCD}^{A} \omega^{C} \wedge \omega^{D} + \overline{P}_{BCD}^{A} \omega^{C} \wedge \theta_{n}^{D} \\ \theta_{B}^{A} + \theta_{A}^{B} = -2 \overline{A}_{ABC} \theta_{n}^{C} \\ \theta_{n}^{A} + \theta_{A}^{n} = 0, \quad \theta_{n}^{n} = 0. \end{cases}$$

$$(2.2)$$

The collection $\{e_i^H, \widehat{e}_{n+\lambda}\}$ forms an orthonormal basis on the projectivized tangent bundle PTM and $\{\omega^i, \omega_n^\lambda\}$ is its local dual coframe, where $e_i^H = u_i^j \frac{\delta}{\delta x^j} = u_i^j (\frac{\partial}{\partial x^j} - N_j^k \frac{\partial}{\partial Y^k})$ denotes the horizontal part of e_i , $\widehat{e}_{n+\lambda} = u_\lambda^j \frac{\delta}{\delta Y^j} = u_\lambda^j \frac{F\partial}{\partial Y^j}$, $\omega^i = v_j^i dx^j$ and $\omega_n^\lambda = v_\lambda^\lambda \delta Y^j$.

We obtain that [3] $\theta_i^{\alpha} = h_{ij}^{\alpha} \omega^i$, $h_{ij}^{\alpha} = h_{ji}^{\alpha}$ and

$$\omega_i^j = \theta_i^j - \Psi_{jik}\omega^k, \tag{2.3}$$

where

$$\Psi_{jik} = h_{jn}^{\alpha} \overline{A}_{ki\alpha} - h_{kn}^{\alpha} \overline{A}_{ji\alpha} - h_{in}^{\alpha} \overline{A}_{kj\alpha} - h_{nn}^{\alpha} \overline{A}_{iks} \overline{A}_{sj\alpha} + h_{nn}^{\alpha} \overline{A}_{ijs} \overline{A}_{sk\alpha} + h_{nn}^{\alpha} \overline{A}_{jks} \overline{A}_{si\alpha}.$$

$$(2.4)$$

In particular,

$$\omega_i^n = \theta_i^n - h_{nn}^{\alpha} \overline{A}_{ki\alpha} \omega^k, \tag{2.5}$$

Using the almost \overline{g} -compatibility, we have

$$\theta_{\alpha}^{j} = (-h_{ij}^{\alpha} - 2h_{ni}^{\beta} \overline{A}_{j\alpha\beta} + 2h_{nn}^{\beta} \overline{A}_{j\lambda\alpha} \overline{A}_{i\lambda\beta})\omega^{i} - 2\overline{A}_{j\alpha\lambda}\omega_{n}^{\lambda}. \tag{2.6}$$

In particular, $\theta_{\alpha}^{n} = -h_{ni}^{\alpha} \omega^{i}$.

We quote the following propositions

Proposition 2.1 (Gauss equations, [3]). Let $\varphi:(M^n,F)\to(\overline{M}^{n+p},\overline{F})$ be an isometric immersion from a Finsler manifold to a Finsler manifold, then we have that

$$\begin{cases} P_{ik\lambda}^{j} = \overline{P}_{ik\lambda}^{j} + \Psi_{jik;\lambda} - 2\Psi_{sik}A_{js\lambda} - 2h_{ik}^{\alpha}\overline{A}_{j\lambda\alpha} \\ R_{ikl}^{j} = \overline{R}_{ikl}^{j} - h_{ik}^{\alpha}h_{jl}^{\alpha} + h_{il}^{\alpha}h_{jk}^{\alpha} + \Psi_{jik|l} - \Psi_{jil|k} \\ + \Psi_{sik}\Psi_{jsl} - \Psi_{sil}\Psi_{jsk} - 2h_{ik}^{\alpha}h_{nl}^{\beta}\overline{A}_{j\alpha\beta} + 2h_{il}^{\alpha}h_{nk}^{\beta}\overline{A}_{j\alpha\beta} \\ + 2h_{ik}^{\alpha}h_{nn}^{\beta}\overline{A}_{js\alpha}\overline{A}_{ls\beta} - 2h_{il}^{\alpha}h_{nn}^{\beta}\overline{A}_{js\alpha}\overline{A}_{ks\beta} - h_{nn}^{\alpha}\overline{A}_{sl\alpha}\overline{P}_{iks}^{j} \\ + h_{nn}^{\alpha}\overline{A}_{sk\alpha}\overline{P}_{ils}^{j} + h_{nl}^{\alpha}\overline{P}_{ik\alpha}^{j} - h_{nk}^{\alpha}\overline{P}_{il\alpha}^{j}, \end{cases}$$

where ";" and "|" denote the vertical and the horizontal covariant differentials with respect to the Chern connection ∇ respectively.

Proposition 2.2 (Codazzi equations, [3]). Let $\varphi:(M^n,F)\to(\overline{M}^{n+p},\overline{F})$ be an isometric immersion from a Finsler manifold to a Finsler manifold, then we have that

$$\begin{cases} h_{ij;\lambda}^{\alpha} = -\overline{P}_{ij\lambda}^{\alpha} \\ h_{ij|k}^{\alpha} - h_{ik|j}^{\alpha} = -\overline{R}_{ijk}^{\alpha} + h_{nj}^{\beta} \overline{P}_{ik\beta}^{\alpha} - h_{nk}^{\beta} \overline{P}_{ij\beta}^{\alpha} \\ -h_{lk}^{\alpha} \Psi_{lij} + h_{lj}^{\alpha} \Psi_{lik} - h_{nn}^{\beta} \overline{A}_{lj\beta} \overline{P}_{ikl}^{\alpha} + h_{nn}^{\beta} \overline{A}_{lk\beta} \overline{P}_{ijl}^{\alpha}. \end{cases}$$

Proposition 2.3 ([6]). For $X = \sum_i x_i \omega^i \in \Gamma(\pi^* T^* M)$,

$$\operatorname{div}_{\widehat{g}} X = \sum_{i} x_{i|i} + \sum_{\mu,\lambda} x_{\mu} P_{\lambda\lambda\mu}^{n}.$$

Proposition 2.4 ([1]). Let (M, F) be a Finsler manifold. The following statements are mutually equivalent:

- (1) (M, F) has constant flag curvature $K = \lambda$;
- (2) $R_{nin}^i = (\delta_{ij} \delta_{in}\delta_{jn})\lambda, \forall i, j;$
- (3) The hh-curvature tensor R_{ikl}^i of the Chern connection has the formula

$$R_{jkl}^{i} = (\delta_{ik}\delta_{jl} - \delta_{il}\delta_{jk})\lambda - (A_{ijk}\delta_{ln} - A_{ijl}\delta_{kn})\lambda - \sum_{s} (A_{iks|n}A_{sjl|n} - A_{ils|n}A_{sjk|n})\lambda.$$

And, we have

$$A_{ijk|n|l} - A_{ijl|n|k} = (A_{ijl}\delta_{kn} - A_{ijk}\delta_{ln})\lambda. \tag{2.7}$$

Lemma 2.5 ([7]). Let B be a real symmetric matrix with tr B = 0, then

$$|tr B^3| \le \frac{n-2}{\sqrt{n(n-1)}} (tr B^2)^{\frac{3}{2}}.$$

Let $\phi = \sum_{i,j} \phi_{ij} \omega^i \otimes \omega^j$ be a symmetric tensor defined on the sphere bundle SM and $\psi = \sum_i \psi_i \omega^i \in \Gamma(\pi^*T^*M)$. Now we can define an operator associated to ϕ by

$$\Box f = \sum_{i,j} \phi_{ij} f_{|i|j} + \sum_{i,\lambda,\mu} \phi_{i\lambda} f_{|i} P_{\mu\mu\lambda}^n + \sum_i \psi_i f_{|i}, \quad \forall f \in C^{\infty}(SM).$$
 (2.8)

Proposition 2.6 ([4]). Let (M, F) be a compact Finsler manifold. Then the operator \square is self-adjoint if and only if $\sum_{j} \phi_{ij|j} - \psi_i = 0$.

1152 JINTANG LI

3. Hypersurfaces of Randers spaces

Proposition 3.1. Let (M, F) be a Randers space. Then

$$\begin{cases} A_{ijk} = 0 & \text{for } i, j, k \text{ distinct from each other} \\ A_{\lambda\lambda i} = A_{\mu\mu i} & \text{for } i, \lambda, \mu \text{ distinct from each other} \\ A_{\lambda\lambda\lambda} = 3A_{\mu\mu\lambda} & \text{for } \lambda \neq \mu. \end{cases}$$

Proof. For the Randers space (M, F) with $F = \alpha + \beta$, where $\alpha = \sqrt{a_{ij}Y^iY^j}$ is a Riemannian metric and $\beta = b_iY^i$ is a 1-form, we have that [1]

$$A\left(\frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial x^{j}}, \frac{\partial}{\partial x^{k}}\right)$$

$$= \frac{1}{2} \left[\eta_{ij} \left(b_{k} - \frac{\beta}{\alpha} \widetilde{\ell}_{k} \right) + \eta_{jk} \left(b_{i} - \frac{\beta}{\alpha} \widetilde{\ell}_{i} \right) + \eta_{ki} \left(b_{j} - \frac{\beta}{\alpha} \widetilde{\ell}_{j} \right) \right], \tag{3.1}$$

where $\ell_i = g_{ij} \frac{Y^j}{F}$, $\eta_{ij} = g_{ij} - \ell_i \ell_j$ and $\widetilde{\ell}_i = \ell_i - b_i$.

Since $u_k^i u_l^j \eta_{ij} = \delta_{kl} - \delta_{kn} \delta_{ln}$, where $e_i = u_i^j \frac{\partial}{\partial x^j}$ and $u_n^j = \frac{Y^j}{F}$, we obtain by (3.1)

$$A_{ijk} = u_i^s u_j^t u_k^r A \left(\frac{\partial}{\partial x^s}, \frac{\partial}{\partial x^t}, \frac{\partial}{\partial x^r} \right)$$

$$= \frac{1}{2} \left[u_k^r \left(b_r - \frac{\beta}{\alpha} \widetilde{\ell}_r \right) (\delta_{ij} - \delta_{in} \delta_{jn}) + u_i^s \left(b_s - \frac{\beta}{\alpha} \widetilde{\ell}_s \right) (\delta_{jk} - \delta_{kn} \delta_{jn} \right) + u_j^t \left(b_t - \frac{\beta}{\alpha} \widetilde{\ell}_t \right) (\delta_{ik} - \delta_{kn} \delta_{in}) \right].$$
(3.2)

We obtain Proposition 3.1 immediately from (3.2).

Proposition 3.2. Let (M, F) be a Randers space. Then

$$\begin{cases} A_{ijk|l} = 0 & \text{for } i, j, k \text{ distinct from each other} \\ A_{\mu\nu\sigma;\lambda} = 0 & \text{for } \mu, \nu, \sigma, \lambda \text{ distinct from each other} \\ A_{\nu\nu\mu;\lambda} = 4A_{\nu\nu\mu}A_{\nu\nu\lambda} & \text{for } \nu, \mu, \lambda \text{ distinct from each other}. \end{cases}$$

Proof. By Proposition 3.1, we have for λ , μ , ν distinct from each other

$$dA_{\lambda\mu\nu} = A_{\lambda\mu\nu|l}\omega^{l} + A_{\lambda\mu\nu;\tau}\omega_{n}^{\tau} + A_{\sigma\mu\nu}\omega_{\lambda}^{\sigma} + A_{\lambda\sigma\nu}\omega_{\mu}^{\sigma} + A_{\lambda\mu\sigma}\omega_{\nu}^{\sigma}$$

$$= A_{\lambda\mu\nu|l}\omega^{l} + A_{\lambda\mu\nu;\tau}\omega_{n}^{\tau} + A_{\mu\mu\nu}\omega_{\lambda}^{\mu} + A_{\nu\mu\nu}\omega_{\lambda}^{\nu}$$

$$+ A_{\lambda\lambda\nu}\omega_{\mu}^{\lambda} + A_{\lambda\nu\nu}\omega_{\nu}^{\nu} + A_{\lambda\mu\lambda}\omega_{\nu}^{\nu} + A_{\lambda\mu\mu}\omega_{\nu}^{\mu}$$

$$= A_{\lambda\mu\nu|l}\omega^{l} + A_{\lambda\mu\nu;\tau}\omega_{n}^{\tau} - 2A_{\mu\mu\nu}A_{\mu\lambda\tau}\omega_{n}^{\tau} - 2A_{\nu\nu\mu}A_{\nu\lambda\tau}\omega_{n}^{\tau}$$

$$- 2A_{\lambda\nu\nu}A_{\mu\nu\tau}\omega_{n}^{\tau}.$$
(3.3)

It can be seen from (3.3) and Proposition 2.1 that

$$\begin{cases}
A_{ijk|l} = 0 \\
A_{\lambda\mu\nu;\tau} = 2A_{\mu\mu\nu}A_{\mu\lambda\tau} + 2A_{\nu\nu\mu}A_{\nu\lambda\tau} + 2A_{\lambda\nu\nu}A_{\mu\nu\tau}.
\end{cases} (3.4)$$

We obtain Proposition 3.2 immediately from (3.4) and Proposition 3.1.

Proposition 3.3. Let (M, F) be a Randers space. Then

$$\begin{cases} A_{\nu\nu\lambda;\lambda} = A_{\nu\nu\mu;\mu} + 4A_{\nu\nu\lambda}^2 - 4A_{\nu\nu\mu}^2 & \text{for } \lambda, \mu \text{ ν distinct from each other} \\ A_{\nu\nu\mu|l} = A_{\lambda\lambda\mu|l} & \text{for } \lambda, \mu, \nu \text{ distinct from each other}. \end{cases}$$

Proof. For $\nu \neq \mu$, we have by Proposition 3.1 that

$$\begin{split} dA_{\nu\nu\mu} &= A_{\nu\nu\mu|l}\omega^l + A_{\nu\nu\mu;\lambda}\omega_n^{\lambda} + 2A_{s\nu\mu}\omega_{\nu}^s + A_{\nu\nus}\omega_{\mu}^s \\ &= A_{\nu\nu\mu|l}\omega^l + A_{\nu\nu\mu;\lambda}\omega_n^{\lambda} + 2A_{\nu\nu\mu}\omega_{\nu}^{\nu} + 2A_{\mu\nu\mu}\omega_{\nu}^{\mu} \\ &+ A_{\nu\nu\nu}\omega_{\mu}^{\nu} + A_{\nu\nu\tau}\omega_{\mu}^{\tau} + \sum_{s \neq \nu, \tau} A_{\nu\nus}\omega_{\mu}^s \\ &= A_{\nu\nu\mu|l}\omega^l + A_{\nu\nu\mu;\lambda}\omega_n^{\lambda} - 2A_{\nu\nu\mu}A_{\nu\nu\lambda}\omega_n^{\lambda} - 4A_{\mu\nu\mu}A_{\mu\nu\lambda}\omega_n^{\lambda} \\ &+ A_{\mu\mu\nu}\omega_{\mu}^{\nu} + A_{\nu\nu\tau}\omega_{\mu}^{\tau} + \sum_{s \neq \nu, \tau} A_{\nu\nus}\omega_{\mu}^s. \end{split}$$
(3.5)

And for $\tau \neq \mu$, we have

$$dA_{\tau\tau\mu} = A_{\tau\tau\mu|l}\omega^{l} + A_{\tau\tau\mu;\lambda}\omega_{n}^{\lambda} + 2A_{s\tau\mu}\omega_{\tau}^{s} + A_{\tau\tau s}\omega_{\mu}^{s}$$

$$= A_{\tau\tau\mu|l}\omega^{l} + A_{\tau\tau\mu;\lambda}\omega_{n}^{\lambda} - 2A_{\tau\tau\mu}A_{\tau\tau\lambda}\omega_{n}^{\lambda} - 4A_{\mu\tau\mu}A_{\mu\tau\lambda}\omega_{n}^{\lambda}$$

$$+ A_{\mu\mu\tau}\omega_{\mu}^{\tau} + A_{\tau\tau\nu}\omega_{\mu}^{\nu} + \sum_{s \neq \tau,\nu} A_{\tau\tau s}\omega_{\mu}^{s}.$$
(3.6)

It follows from (3.5), (3.6) and Proposition 3.1 that

$$\begin{cases}
A_{\nu\nu\mu|l} = A_{\tau\tau\mu|l} \\
A_{\nu\nu\mu;\lambda} = A_{\tau\tau\mu;\lambda} + 2A_{\nu\nu\mu}A_{\nu\nu\lambda} + 4A_{\mu\nu\mu}A_{\mu\nu\lambda} \\
-2A_{\tau\tau\mu}A_{\tau\tau\lambda} - 4A_{\mu\tau\mu}A_{\mu\tau\lambda}.
\end{cases} (3.7)$$

We obtain Proposition 3.3 immediately from (3.7) and Proposition 3.1.

Proposition 3.4. Let (M, F) be a Randers space. Then

$$\begin{cases} A_{ii\nu;\mu|l} = 4A_{ii\nu|l}A_{ii\mu} + 4A_{ii\nu}A_{ii\mu|l} & \textit{for } i, \mu, \nu \textit{ distinct from each other} \\ A_{ii\nu;\mu;\lambda} = 4A_{ii\nu;\lambda}A_{ii\mu} + 4A_{ii\nu}A_{ii\mu;\lambda} & \\ -8A_{ii\nu}A_{ii\mu}A_{ii\lambda} & \\ +2A_{ii\nu;\nu}A_{\nu\mu\lambda} - 8A_{ii\nu}^2A_{\nu\mu\lambda} & \textit{for } i, \mu, \nu \textit{ distinct from each other}. \end{cases}$$

1154 JINTANG LI

Proof. Exterior differentiate the third formula of Proposition 3.2, we obtain

$$A_{ii\nu;\mu|l}\omega^{l} + A_{ii\nu;\mu;\lambda}\omega_{n}^{\lambda} + 2A_{si\nu;\mu}\omega_{i}^{s} + A_{iis;\mu}\omega_{\nu}^{s} + A_{ii\nu;s}\omega_{\mu}^{s}$$

$$= 4(A_{ii\nu|l}\omega^{l} + A_{ii\nu;\lambda}\omega_{n}^{\lambda} + 2A_{si\nu}\omega_{i}^{s} + A_{iis}\omega_{j}^{s})A_{ii\mu}$$

$$+ 4A_{ii\nu}(A_{ii\mu|l}\omega^{l} + A_{ii\mu;\lambda}\omega_{n}^{\lambda} + 2A_{si\mu}\omega_{i}^{s} + A_{iis}\omega_{\mu}^{s}).$$
(3.8)

On the other hand, we have

$$2A_{si\nu;\mu}\omega_{i}^{s} - 8A_{si\nu}A_{ii\mu}\omega_{i}^{s} - 8A_{ii\nu}A_{si\mu}\omega_{i}^{s}$$

$$= 2A_{ii\nu;\mu}\omega_{i}^{i} + 2A_{\nu i\nu;\mu}\omega_{i}^{\nu} + 2A_{\mu i\nu;\mu}\omega_{i}^{\mu} + 2\sum_{s \neq i,\nu,\mu} A_{si\nu;\mu}\omega_{i}^{s}$$

$$- 8A_{ii\nu}A_{ii\mu}\omega_{i}^{i} - 8A_{\nu i\nu}A_{ii\mu}\omega_{i}^{\nu}$$

$$- 8A_{ii\nu}A_{ii\mu}\omega_{i}^{i} - 8A_{ii\nu}A_{\mu i\mu}\omega_{i}^{\mu}$$

$$= -8A_{ii\nu}A_{ii\mu}\omega_{i}^{i} = 8A_{ii\nu}A_{ii\mu}A_{ii\mu}\omega_{i}^{\mu},$$
(3.9)

and

$$A_{iis};_{\mu}\omega_{\nu}^{s} + A_{ii\nu;s}\omega_{\mu}^{s} - 4A_{iis}A_{ii\mu}\omega_{\nu}^{s} - 4A_{ii\nu}A_{iis}\omega_{\mu}^{s}$$

$$= A_{iii};_{\mu}\omega_{\nu}^{i} + A_{ii\nu;\mu}\omega_{\nu}^{\nu} + A_{ii\mu;\mu}\omega_{\nu}^{\mu} + \sum_{s \neq i,\nu,\mu} A_{iis;\mu}\omega_{\nu}^{s}$$

$$+ A_{ii\nu;i}\omega_{k}^{i} + A_{ii\nu;\nu}\omega_{\mu}^{\nu} + A_{ii\nu;\mu}\omega_{\mu}^{\mu} + \sum_{s \neq i,j,\mu} A_{ii\nu;s}\omega_{\mu}^{s}$$

$$- 4A_{iii}A_{ii\mu}\omega_{\nu}^{i} - 4A_{ii\nu}A_{ii\mu}\omega_{\nu}^{\nu} - 4A_{ii\mu}A_{ii\mu}\omega_{\nu}^{\mu}$$

$$- 4\sum_{s \neq i,\nu,\mu} A_{iis}A_{ii\mu}\omega_{\nu}^{s} - 4A_{ii\nu}A_{iii}\omega_{\mu}^{i} - 4A_{ii\nu}A_{ii\nu}\omega_{\nu}^{\nu}$$

$$- 4A_{ii\nu}A_{ii\mu}\omega_{\mu}^{\mu} - 4\sum_{s \neq i,\nu,\mu} A_{ii\nu}A_{iis}\omega_{\mu}^{s}$$

$$= A_{ii\mu;\mu}\omega_{\nu}^{\mu} + A_{ii\nu;\nu}\omega_{\mu}^{\nu} - 4A_{ii\mu}A_{ii\mu}\omega_{\nu}^{\mu} - 4A_{ii\nu}A_{ii\nu}\omega_{\mu}^{\nu}$$

$$= (A_{ii\nu;\nu} + 4A_{ii\mu}^{2} - 4A_{ii\nu}^{2})\omega_{\nu}^{\mu} + A_{ii\nu;\nu}\omega_{\mu}^{\nu} - 4A_{ii\mu}A_{ii\mu}\omega_{\nu}^{\mu}$$

$$- 4A_{ii\nu}A_{ii\nu}\omega_{\mu}^{\nu}$$

$$= -2A_{ii\nu;\nu}A_{\nu\mu\lambda}\omega_{\mu}^{\lambda} + 8A_{ii\nu}^{2}A_{\nu\mu\lambda}\omega_{\mu}^{\lambda}.$$
(3.10)

Substituting (3.9) and (3.10) into (3.8), we obtain

$$A_{ii\nu;\mu|l}\omega^{l} + A_{ii\nu;\mu;\lambda}\omega_{n}^{\lambda} + 8A_{ii\nu}A_{ii\mu}A_{ii\lambda}\omega_{n}^{\lambda}$$

$$-2A_{ii\nu;\nu}A_{\nu\mu\lambda}\omega_{n}^{\lambda} + 8A_{ii\nu}^{2}A_{\nu\mu\lambda}\omega_{n}^{\lambda}$$

$$= 4A_{ii\nu|l}A_{ii\mu}\omega^{l} + 4A_{ii\nu;\lambda}A_{ii\mu}\omega_{n}^{\lambda} + 4A_{ii\nu}A_{ii\mu|l}\omega^{l} + 4A_{ii\nu}A_{ii\mu;\lambda}\omega_{n}^{\lambda}.$$
(3.11)

We obtain Proposition 3.4 immediately from (3.11).

Let (M, F) be a hypersurface of Randers space $(\overline{M}^{n+1}, \overline{F})$. Then we have that [1] (M, F) is a Randers manifold. We have:

Proposition 3.5 ([5]). Let (M,F) be a hypersurface of a Randers space $(\overline{M}^{n+1}, \overline{F})$. Then

$$\overline{A}_{n+1n+1n+1} = \overline{A}_{\lambda\lambda n+1} = 0$$
, $\forall \lambda$ and $\Psi_{ijk} = 0, \forall i, j, k$.

Proposition 3.6. Let (M, F) be a hypersurface of a Randers space $(\overline{M}^{n+1}, \overline{F})$. Then

$$h_{ni}^{n+1}\overline{A}_{n+1n+1\lambda}=0.$$

Proof. Taking the exterior differentiation of $\overline{A}_{\lambda\lambda n+1}=0$, we obtain that

$$0 = \overline{A}_{\lambda\lambda n+1|l}\omega^{l} + \overline{A}_{\lambda\lambda n+1;\mu}\theta_{n}^{\mu} + \overline{A}_{\lambda\lambda n+1;n+1}\theta_{n}^{n+1} + 2\overline{A}_{n+1\lambda n+1}\theta_{\lambda}^{n+1} + \overline{A}_{\lambda\lambda\tau}\theta_{n+1}^{\tau}$$

$$+ \overline{A}_{\lambda\lambda\tau}\theta_{n+1}^{\tau}$$

$$= \left\{ \overline{A}_{\lambda\lambda n+1|l}\omega^{l} + h_{nl}^{n+1}\overline{A}_{\lambda\lambda n+1;n+1}\omega^{l} + 2h_{\lambda l}^{n+1}\overline{A}_{n+1n+1\lambda}\omega^{l} - \sum_{\tau} h_{\tau l}^{n+1}\overline{A}_{\lambda\lambda\tau}\omega^{l} - \sum_{\tau} 2h_{nl}^{n+1}\overline{A}_{\lambda\lambda\tau}\overline{A}_{n+1n+1\tau}\omega^{l} \right\} (\text{mod}(\omega_{n}^{\nu})).$$

$$(3.12)$$

This implies that

$$\overline{A}_{\lambda\lambda n+1|l} + h_{nl}^{n+1} \overline{A}_{\lambda\lambda n+1;n+1} - \sum_{\tau} h_{\tau l}^{n+1} \overline{A}_{n+1n+1\tau} - \sum_{\tau} 2h_{nl}^{n+1} \overline{A}_{\lambda\lambda\tau} \overline{A}_{n+1n+1\tau} = 0.$$
(3.13)

Setting l = n in (3.13) and then taking the exterior differentiation of this formula, we obtain

$$\begin{split} 0 &= \Big\{ (\overline{A}_{\lambda\lambda n+1|n}; \mu \omega_n^{\mu} + 2\overline{A}_{\lambda\lambda n+1|n}\theta_{\lambda}^{\lambda} + \overline{A}_{\lambda\lambda n+1|n}\theta_{n+1}^{n+1} + \overline{A}_{\lambda\lambda n+1|\mu}\omega_n^{\mu}) \\ &+ \Big[(h_{nn;\mu}^{n+1}\omega_n^{\mu} + 2h_{n\mu}^{n+1}\omega_n^{\mu} - h_{nn}^{n+1}\theta_{n+1}^{n+1}) \overline{A}_{\lambda\lambda n+1;n+1} \\ &+ h_{nn}^{n+1} (\overline{A}_{\lambda\lambda n+1;n+1}; \mu \omega_n^{\mu} + 2\overline{A}_{\sigma\lambda n+1;n+1}\theta_{\lambda}^{\sigma} + 2\overline{A}_{\lambda\lambda n+1;n+1}\theta_{n+1}^{n+1}) \Big] \\ &- \Big[\sum_{\tau} (h_{\tau n;\mu}^{n+1}\omega_n^{\mu} + h_{nn}^{n+1}\omega_{\tau}^{n} + h_{\sigma n}^{n+1}\omega_{\tau}^{\sigma} + h_{\tau\mu}^{n+1}\omega_n^{\mu} - h_{\tau n}^{n+1}\theta_{n+1}^{n+1}) \overline{A}_{n+1n+1\tau} \\ &+ \sum_{\tau} h_{\tau n}^{n+1} (\overline{A}_{n+1n+1\tau}; \mu \omega_n^{\mu} + 2\overline{A}_{n+1n+1\tau}\theta_{n+1}^{n+1} + \overline{A}_{n+1n+1\sigma}\theta_{\tau}^{\sigma}) \Big] \\ &- \Big[\sum_{\tau} 2(h_{nn;\mu}^{n+1}\omega_n^{\mu} + 2h_{n\mu}^{n+1}\omega_n^{\mu} - h_{nn}^{n+1}\theta_{n+1}^{n+1}) \overline{A}_{\lambda\lambda\tau} \overline{A}_{n+1n+1\tau} \\ &+ \sum_{\tau} 2h_{nn}^{n+1} (\overline{A}_{\lambda\lambda\tau}; \mu \omega_n^{\mu} + 2\overline{A}_{\sigma\lambda\tau}\theta_{\lambda}^{\sigma} + \overline{A}_{\lambda\lambda\sigma}\theta_{\tau}^{\sigma}) \overline{A}_{n+1n+1\tau} \\ &+ \sum_{\tau} 2h_{nn}^{n+1} \overline{A}_{\lambda\lambda\tau} (\overline{A}_{n+1n+1\tau}; \mu \omega_n^{\mu} + 2\overline{A}_{n+1n+1\tau}\theta_{n+1}^{n+1} + \overline{A}_{n+1n+1\sigma}\theta_{\tau}^{\sigma}) \Big] \Big\} (\text{mod}(\omega^l)) \end{split}$$

$$\begin{split} &= \left\{ \left(\overline{A}_{\lambda\lambda n+1|n;\mu} + \overline{A}_{\lambda\lambda n+1|\mu} + 2h_{n\mu}^{n+1} \overline{A}_{\lambda\lambda n+1;n+1} + h_{nn}^{n+1} \overline{A}_{\lambda\lambda n+1;n+1;\mu} \right. \right. \\ &- \sum_{\tau} h_{\tau n;\mu}^{n+1} \overline{A}_{n+1n+1\tau} + h_{nn}^{n+1} \overline{A}_{n+1n+1\mu} - \sum_{\tau} h_{\tau \mu}^{n+1} \overline{A}_{n+1n+1\tau} \right. \\ &- \sum_{\tau} h_{\tau n}^{n+1} \overline{A}_{n+1n+1\tau;\mu} - \sum_{\tau} 4h_{n\mu}^{n+1} \overline{A}_{\lambda\lambda\tau} \overline{A}_{n+1n+1\tau} \\ &- \sum_{\tau} 2h_{nn}^{n+1} \overline{A}_{\lambda\lambda\tau;\mu} \overline{A}_{n+1n+1\tau} - \sum_{\tau} 2h_{nn}^{n+1} \overline{A}_{\lambda\lambda\tau} \overline{A}_{n+1n+1\tau;\mu} \right) \omega_{n}^{\mu} \\ &+ 2\overline{A}_{\lambda\lambda n+1|n} \omega_{\lambda}^{\lambda} + \left(2h_{nn}^{n+1} \overline{A}_{\alpha\lambda n+1;n+1} - \sum_{\tau} 4h_{nn}^{n+1} \overline{A}_{\alpha\lambda\tau} \overline{A}_{n+1n+1\tau} \right) \omega_{\lambda}^{\sigma} \\ &- \left(\sum_{\tau} h_{\sigma n}^{n+1} \overline{A}_{n+1n+1\tau} + \sum_{\tau} h_{\tau n}^{n+1} \overline{A}_{n+1n+1\sigma} + \sum_{\tau} 2h_{nn}^{n+1} \overline{A}_{\lambda\lambda\sigma} \overline{A}_{n+1n+1\tau} \right) \\ &+ \sum_{\tau} 2h_{nn}^{n+1} \overline{A}_{\lambda\lambda\tau} \overline{A}_{n+1n+1\sigma} \right) \omega_{\tau}^{\sigma} \right\} (\text{mod}(\omega^{l})) \\ &= \left\{ \left(\overline{A}_{\lambda\lambda n+1|n} + h_{n\mu}^{n+1} \overline{A}_{\lambda\lambda\tau} \overline{A}_{n+1n+1\tau} + h_{nn}^{n+1} \overline{A}_{\lambda\lambda n+1;n+1;\mu} + h_{nn}^{n+1} \overline{A}_{\lambda\lambda\tau} \overline{A}_{n+1n+1\tau} \right. \\ &+ \sum_{\tau} \overline{P}_{\tau n\mu}^{n+1} \overline{A}_{n+1n+1\tau} \\ &+ \sum_{\tau} \overline{P}_{\tau n\mu}^{n+1} \overline{A}_{n+1n+1\tau} - \sum_{\tau} h_{\tau}^{n+1} \overline{A}_{n+1n+1\tau;\mu} - \sum_{\tau} 2h_{nn}^{n+1} \overline{A}_{\lambda\lambda\tau} \overline{A}_{n+1n+1\tau} \\ &- \sum_{\tau} 2h_{nn}^{n+1} \overline{A}_{\lambda\lambda\tau;\mu} \overline{A}_{n+1n+1\tau} - \sum_{\tau} 2h_{nn}^{n+1} \overline{A}_{\lambda\lambda\tau} \overline{A}_{n+1n+1\tau} \right) \omega_{n}^{\mu} \\ &+ 2\overline{A}_{\lambda\lambda n+1|n} \omega_{\lambda}^{\lambda} + \left(2h_{nn}^{n+1} \overline{A}_{\lambda\lambda n+1;n+1} - \sum_{\tau} 4h_{nn}^{n+1} \overline{A}_{\lambda\lambda\tau} \overline{A}_{n+1n+1\tau} \right) \omega_{n}^{\lambda} \\ &- \sum_{\tau,\sigma} \left(h_{\tau n}^{n+1} \overline{A}_{n+1n+1\sigma} + 2h_{nn}^{n+1} \overline{A}_{\lambda\lambda\tau} \overline{A}_{n+1n+1\sigma} \right) \left(\omega_{\tau}^{\sigma} + \omega_{\sigma}^{\sigma} \right) \right\} (\text{mod}(\omega^{l})) \\ &= \left\{ \left(\overline{A}_{\lambda\lambda n+1|n} + h_{n\mu}^{n+1} \overline{A}_{\lambda\lambda n+1;n+1} + h_{nn}^{n+1} \overline{A}_{\lambda\lambda n} \overline{A}_{n+1n+1\tau} \right) \omega_{n}^{\lambda} \right. \\ &+ \sum_{\tau} 2h_{nn}^{n+1} \overline{A}_{n+1n+1\tau} \omega_{\lambda}^{\lambda} \\ &+ \sum_{\tau} 2h_{nn}^{n+1} \overline{A}_{n+1n+1\sigma} + 2h_{nn}^{n+1} \overline{A}_{\lambda\lambda\tau} \overline{A}_{n+1n+1\sigma} \right) \left. \overline{A}_{\sigma\tau} \omega_{n}^{\mu} \right\} (\text{mod}(\omega^{l})) \end{aligned}$$

$$= \left\{ \overline{A}_{\lambda\lambda n+1|n;\mu} + h_{n\mu}^{n+1} \overline{A}_{\lambda\lambda n+1;n+1} + h_{nn}^{n+1} \overline{A}_{\lambda\lambda n+1;n+1;\mu} \right.$$

$$+ \overline{P}_{\mu n\mu}^{n+1} \overline{A}_{n+1n+1\mu}$$

$$+ h_{nn}^{n+1} \overline{A}_{n+1n+1\mu} - \sum_{\tau} h_{\tau n}^{n+1} \overline{A}_{n+1n+1\tau;\mu} - \sum_{\tau} 2h_{n\mu}^{n+1} \overline{A}_{\lambda\lambda\tau} \overline{A}_{n+1n+1\tau}$$

$$- \sum_{\tau} 2h_{nn}^{n+1} \overline{A}_{\lambda\lambda\tau;\mu} \overline{A}_{n+1n+1\tau} - \sum_{\tau} 2h_{nn}^{n+1} \overline{A}_{\lambda\lambda\tau} \overline{A}_{n+1n+1\tau;\mu}$$

$$- \sum_{\tau} 2h_{\tau n}^{n+1} \overline{A}_{n+1n+1\tau} A_{\lambda\lambda\mu}$$

$$+ \sum_{\tau,\sigma} 2\left(h_{\tau n}^{n+1} \overline{A}_{n+1n+1\sigma} + 2h_{nn}^{n+1} \overline{A}_{\lambda\lambda\tau} \overline{A}_{n+1n+1\sigma}\right) \overline{A}_{\sigma\tau\mu} \right\} \omega_{n}^{\mu} (\text{mod}(\omega^{l})).$$
(3.14)

This implies that

$$\overline{A}_{\lambda\lambda n+1|n;\mu} + h_{n\mu}^{n+1} \overline{A}_{\lambda\lambda n+1;n+1} + h_{nn}^{n+1} \overline{A}_{\lambda\lambda n+1;n+1;\mu} + \overline{P}_{\mu n\mu}^{n+1} \overline{A}_{n+1n+1\mu}
+ h_{nn}^{n+1} \overline{A}_{n+1n+1\mu} - \sum_{\tau} h_{\tau n}^{n+1} \overline{A}_{n+1n+1\tau;\mu} - \sum_{\tau} 2h_{n\mu}^{n+1} \overline{A}_{\lambda\lambda\tau} \overline{A}_{n+1n+1\tau}
- \sum_{\tau} 2h_{nn}^{n+1} \overline{A}_{\lambda\lambda\tau;\mu} \overline{A}_{n+1n+1\tau} - \sum_{\tau} 2h_{nn}^{n+1} \overline{A}_{\lambda\lambda\tau} \overline{A}_{n+1n+1\tau;\mu}
- \sum_{\tau} 2h_{\tau n}^{n+1} \overline{A}_{n+1n+1\tau} \overline{A}_{\lambda\lambda\mu}
+ \sum_{\tau,\sigma} 2\left(h_{\tau n}^{n+1} \overline{A}_{n+1n+1\sigma} + 2h_{nn}^{n+1} \overline{A}_{\lambda\lambda\tau} \overline{A}_{n+1n+1\sigma}\right) \overline{A}_{\sigma\tau\mu} = 0.$$
(3.15)

It follows from Proposition 3.1 and Proposition 3.2 that for $\lambda \neq \mu$

$$\begin{split} &\sum_{\tau,\sigma} 2 \Big(h_{\tau n}^{n+1} \overline{A}_{n+1n+1\sigma} + 2 h_{nn}^{n+1} \overline{A}_{\lambda \lambda \tau} \overline{A}_{n+1n+1\sigma} \Big) \overline{A}_{\sigma \tau \mu} \\ &= \sum_{\tau} 2 \Big(h_{\tau n}^{n+1} \overline{A}_{n+1n+1\mu} + 2 h_{nn}^{n+1} \overline{A}_{\lambda \lambda \tau} \overline{A}_{n+1n+1\mu} \Big) \overline{A}_{\mu \tau \mu} \\ &\quad + \sum_{\tau} \sum_{\sigma \neq \mu} 2 \Big(h_{\tau n}^{n+1} \overline{A}_{n+1n+1\sigma} + 2 h_{nn}^{n+1} \overline{A}_{\lambda \lambda \tau} \overline{A}_{n+1n+1\sigma} \Big) \overline{A}_{\sigma \tau \mu} \\ &= \Big[\sum_{\tau \neq \lambda, \mu} 2 \Big(h_{\tau n}^{n+1} \overline{A}_{n+1n+1\mu} + 2 h_{nn}^{n+1} \overline{A}_{\lambda \lambda \tau} \overline{A}_{n+1n+1\mu} \Big) \overline{A}_{\mu \tau \mu} \\ &\quad + 2 \Big(h_{\lambda n}^{n+1} \overline{A}_{n+1n+1\mu} + 2 h_{nn}^{n+1} \overline{A}_{\lambda \lambda \lambda} \overline{A}_{n+1n+1\mu} \Big) \overline{A}_{\mu \lambda \mu} \\ &\quad + 2 \Big(h_{\mu n}^{n+1} \overline{A}_{n+1n+1\mu} + 2 h_{nn}^{n+1} \overline{A}_{\lambda \lambda \mu} \overline{A}_{n+1n+1\mu} \Big) \overline{A}_{\mu \mu \mu} \Big] \\ &\quad + \sum_{\sigma \neq \mu} 2 \Big(h_{\mu n}^{n+1} \overline{A}_{n+1n+1\sigma} + 2 h_{nn}^{n+1} \overline{A}_{\lambda \lambda \mu} \overline{A}_{n+1n+1\sigma} \Big) \overline{A}_{\sigma \mu \mu} \end{split}$$

$$\begin{split} &+\sum_{\sigma\neq\mu}2\left(h_{\sigma n}^{n+1}\overline{A}_{n+1n+1\sigma}+2h_{nn}^{n+1}\overline{A}_{\lambda\lambda\sigma}\overline{A}_{n+1n+1\sigma}\right)\overline{A}_{\sigma\sigma\mu} \\ &=\sum_{\tau\neq\lambda,\mu}2\left(h_{\tau n}^{n+1}\overline{A}_{n+1n+1\mu}+2h_{nn}^{n+1}\overline{A}_{\lambda\lambda\tau}\overline{A}_{n+1n+1\mu}\right)\overline{A}_{\mu\mu\tau} \\ &+2h_{\lambda n}^{n+1}\overline{A}_{n+1n+1\mu}\overline{A}_{\mu\mu\lambda}+12h_{nn}^{n+1}\overline{A}_{\lambda\mu}^{2}\overline{A}_{n+1n+1\mu} \\ &+6h_{\mu n}^{n+1}\overline{A}_{n+1n+1\mu}^{2}+12h_{nn}^{n+1}\overline{A}_{\lambda\lambda\mu}^{3} \\ &+\left[\sum_{\sigma\neq\lambda,\mu}2\left(h_{\mu n}^{n+1}\overline{A}_{n+1n+1\sigma}+2h_{nn}^{n+1}\overline{A}_{\lambda\lambda\mu}\overline{A}_{n+1n+1\sigma}\right)\overline{A}_{\sigma\mu\mu} \right. \\ &+2\left(h_{\mu n}^{n+1}\overline{A}_{n+1n+1\lambda}+2h_{nn}^{n+1}\overline{A}_{\lambda\lambda\mu}\overline{A}_{n+1n+1\lambda}\right)\overline{A}_{\lambda\mu\mu}\right] \\ &+\left[\sum_{\sigma\neq\lambda,\mu}2\left(h_{\sigma n}^{n+1}\overline{A}_{n+1n+1\sigma}+2h_{nn}^{n+1}\overline{A}_{\lambda\lambda\mu}\overline{A}_{n+1n+1\lambda}\right)\overline{A}_{\lambda\mu\mu}\right] \\ &+2\left(h_{\lambda n}^{n+1}\overline{A}_{n+1n+1\lambda}+2h_{nn}^{n+1}\overline{A}_{\lambda\lambda\lambda}\overline{A}_{n+1n+1\lambda}\right)\overline{A}_{\lambda\lambda\mu}\right] \\ &=4h_{\lambda n}^{n+1}\overline{A}_{n+1n+1\mu}\overline{A}_{\mu\mu\lambda}+28h_{nn}^{n+1}\overline{A}_{\mu\mu\lambda}^{2}\overline{A}_{n+1n+1\mu} \\ &+2h_{\mu n}^{n+1}\overline{A}_{n+1n+1\lambda}^{2}+6h_{\mu n}^{n+1}\overline{A}_{n+1n+1\mu}^{2}+12h_{nn}^{n+1}\overline{A}_{\lambda\lambda\mu}^{3} \\ &+\sum_{\tau\neq\lambda,\mu}\left(4h_{\tau n}^{n+1}\overline{A}_{\lambda\lambda\mu}\overline{A}_{\mu\mu\tau}+2h_{\mu n}^{n+1}\overline{A}_{\lambda\lambda\tau}^{2}+12h_{nn}^{n+1}\overline{A}_{\lambda\lambda\tau}^{2}\overline{A}_{\lambda\lambda\mu}\right). \end{split}$$

Similarly, we have also

$$-\sum_{\tau} h_{\tau n}^{n+1} \overline{A}_{n+1n+1\tau;\mu} - \sum_{\tau} 2h_{n\mu}^{n+1} \overline{A}_{\lambda\lambda\tau} \overline{A}_{n+1n+1\tau} - \sum_{\tau} 2h_{\tau n}^{n+1} \overline{A}_{n+1n+1\tau} \overline{A}_{\lambda\lambda\mu} = -6h_{\lambda n}^{n+1} \overline{A}_{n+1n+1\mu} \overline{A}_{\mu\mu\lambda} - 6h_{\mu n}^{n+1} \overline{A}_{n+1n+1\lambda}^{2} - 4h_{\mu n}^{n+1} \overline{A}_{n+1n+1\mu}^{2} - h_{n\mu}^{n+1} \overline{A}_{n+1n+1\mu;\mu} + \sum_{\tau \neq \lambda, \mu} \left(-6h_{\tau n}^{n+1} \overline{A}_{\lambda\lambda\mu} \overline{A}_{\mu\mu\tau} - 2h_{\mu n}^{n+1} \overline{A}_{\lambda\lambda\tau}^{2} \right).$$
(3.17)

And

$$-\sum_{\tau} 2h_{nn}^{n+1} \overline{A}_{\lambda\lambda\tau;\mu} \overline{A}_{n+1n+1\tau} - \sum_{\tau} 2h_{nn}^{n+1} \overline{A}_{\lambda\lambda\tau} \overline{A}_{n+1n+1\tau;\mu}$$

$$= -48h_{nn}^{n+1} \overline{A}_{\mu\mu\lambda}^{2} \overline{A}_{n+1n+1\mu} - 2h_{nn}^{n+1} \overline{A}_{\lambda\lambda\mu;\mu} \overline{A}_{n+1n+1\mu}$$

$$-2h_{nn}^{n+1} \overline{A}_{\lambda\lambda\mu} \overline{A}_{n+1n+1\mu;\mu} - \sum_{\tau \neq \lambda,\mu} 16h_{nn}^{n+1} \overline{A}_{\lambda\lambda\tau}^{2} \overline{A}_{\lambda\lambda\mu}.$$
(3.18)

Substituting (3.16), (3.17) and (3.18) into (3.15) yields

$$\overline{A}_{\lambda\lambda n+1|n;\mu} + h_{nn}^{n+1} \overline{A}_{\lambda\lambda n+1;n+1;\mu} + \overline{P}_{\mu n\mu}^{n+1} \overline{A}_{n+1n+1\mu} + h_{nn}^{n+1} \overline{A}_{n+1n+1\mu}
- 2h_{\lambda n}^{n+1} \overline{A}_{n+1n+1\mu} \overline{A}_{\mu\mu\lambda} - 4h_{\mu n}^{n+1} \overline{A}_{n+1n+1\lambda}^{2} + 2h_{\mu n}^{n+1} \overline{A}_{n+1n+1\mu}^{2}
- 20h_{nn}^{n+1} \overline{A}_{\mu\mu\lambda}^{2} \overline{A}_{n+1n+1\mu} + 12h_{nn}^{n+1} \overline{A}_{\lambda\lambda\mu}^{3}
+ h_{n\mu}^{n+1} \overline{A}_{\lambda\lambda n+1;n+1} - h_{n\mu}^{n+1} \overline{A}_{n+1n+1\mu;\mu}
- 2h_{nn}^{n+1} \overline{A}_{\lambda\lambda\mu;\mu} \overline{A}_{n+1n+1\mu} - 2h_{nn}^{n+1} \overline{A}_{\lambda\lambda\mu} \overline{A}_{n+1n+1\mu;\mu}
+ \sum_{\tau \neq \lambda, \mu} \left(-2h_{\tau n}^{n+1} \overline{A}_{\lambda\lambda\mu} \overline{A}_{\mu\mu\tau} - 4h_{nn}^{n+1} \overline{A}_{\lambda\lambda\tau}^{2} \overline{A}_{\lambda\lambda\tau} \right)
= 0.$$
(3.19)

It can be seen from the second formula of Proposition 3.4 that

$$h_{nn}^{n+1}\overline{A}_{\lambda\lambda n+1;n+1;\mu} = h_{nn}^{n+1}\overline{A}_{\lambda\lambda n+1;\mu;n+1}$$

$$= 6h_{nn}^{n+1}\overline{A}_{\lambda\lambda n+1;n+1}\overline{A}_{\lambda\lambda\mu}.$$
(3.20)

It follows from the first formula of Proposition 3.3 that

$$h_{n\mu}^{n+1} \overline{A}_{\lambda\lambda n+1;n+1} - h_{n\mu}^{n+1} \overline{A}_{n+1n+1\mu;\mu} - 2h_{nn}^{n+1} \overline{A}_{\lambda\lambda\mu} \overline{A}_{n+1n+1\mu;\mu}$$

$$- 2h_{nn}^{n+1} \overline{A}_{\lambda\lambda\mu;\mu} \overline{A}_{n+1n+1\mu} - 2h_{nn}^{n+1} \overline{A}_{\lambda\lambda\mu} \overline{A}_{n+1n+1\mu;\mu}$$

$$= h_{n\mu}^{n+1} \overline{A}_{\lambda\lambda n+1;n+1} - h_{n\mu}^{n+1} (\overline{A}_{n+1n+1\lambda;\lambda} + 4\overline{A}_{n+1n+1\mu}^2 - 4\overline{A}_{n+1n+1\lambda}^2)$$

$$- 2h_{nn}^{n+1} (\overline{A}_{\lambda\lambda n+1;n+1} + 4\overline{A}_{\lambda\lambda\mu}^2 - 4\overline{A}_{\lambda\lambda n+1}^2) \overline{A}_{n+1n+1\mu}$$

$$- 2h_{nn}^{n+1} \overline{A}_{\lambda\lambda\mu} (\overline{A}_{n+1n+1\lambda;\lambda} + 4\overline{A}_{n+1n+1\mu}^2 - 4\overline{A}_{n+1n+1\lambda}^2)$$

$$= -4h_{n\mu}^{n+1} \overline{A}_{\lambda\lambda\mu}^2 (\overline{A}_{n+1n+1\mu} + 4h_{n\mu}^{n+1} \overline{A}_{n+1n+1\lambda}^2)$$

$$- 16h_{nn}^{n+1} \overline{A}_{\lambda\lambda\mu}^3 + 8h_{nn}^{n+1} \overline{A}_{n+1n+1\lambda}^2 \overline{A}_{\lambda\lambda\mu} - 4h_{nn}^{n+1} \overline{A}_{\lambda\lambda\mu} \overline{A}_{n+1n+1\lambda;\lambda}.$$
(3.21)

Substituting (3.20) and (3.21) into (3.19), we obtain

$$\overline{A}_{\lambda\lambda n+1|n;\mu} + \overline{P}_{\mu n\mu}^{n+1} \overline{A}_{n+1n+1\mu} + h_{nn}^{n+1} \overline{A}_{n+1n+1\mu}
- 2h_{\lambda n}^{n+1} \overline{A}_{n+1n+1\mu} \overline{A}_{\mu\mu\lambda} - 2h_{\mu n}^{n+1} \overline{A}_{n+1n+1\mu}^{2}
- 12h_{nn}^{n+1} \overline{A}_{\mu\mu\lambda}^{2} \overline{A}_{n+1n+1\mu} - 4h_{nn}^{n+1} \overline{A}_{\lambda\lambda\mu}^{3} + 2h_{nn}^{n+1} \overline{A}_{\lambda\lambda\mu} \overline{A}_{n+1n+1\lambda;\lambda}
+ \sum_{\tau \neq \lambda, \mu} \left(-2h_{\tau n}^{n+1} \overline{A}_{\lambda\lambda\mu} \overline{A}_{\mu\mu\tau} - 4h_{nn}^{n+1} \overline{A}_{\lambda\lambda\tau}^{2} \overline{A}_{\lambda\lambda\tau} \right)
= 0.$$
(3.22)

On the other hand, by $\overline{A}_{\lambda\lambda n+1}=0$, (3.13) and Proposition 3.4, using the Ricci identity, we have

$$\overline{A}_{\lambda\lambda n+1|n;\mu} + \overline{P}_{\mu n\mu}^{n+1} \overline{A}_{n+1n+1\mu}$$

$$= \overline{A}_{\lambda\lambda n+1;\mu|n} + \overline{A}_{\lambda\lambda\mu} \overline{P}_{n+1n\mu}^{\mu} + \overline{P}_{\mu n\mu}^{n+1} \overline{A}_{n+1n+1\mu}$$

$$= 2\overline{A}_{\lambda\lambda\mu} \overline{A}_{\lambda\lambda n+1|n}$$

$$= -2h_{nn}^{n+1} \overline{A}_{\lambda\lambda n+1;n+1} + 2\sum_{\tau} h_{\tau l}^{n+1} \overline{A}_{n+1n+1\tau}$$

$$+ \sum_{\tau} 4h_{nn}^{n+1} \overline{A}_{\lambda\lambda\tau} \overline{A}_{n+1n+1\tau}$$

$$= -2h_{nn}^{n+1} \overline{A}_{\lambda\lambda n+1;n+1} + 2h_{\lambda n}^{n+1} \overline{A}_{n+1n+1\mu} \overline{A}_{\mu\mu\lambda} + 2h_{\mu n}^{n+1} \overline{A}_{n+1n+1\mu}^{2}$$

$$+ 12h_{nn}^{n+1} \overline{A}_{\mu\mu\lambda}^{2} \overline{A}_{n+1n+1\mu} + 4h_{nn}^{n+1} \overline{A}_{\lambda\lambda\mu}^{3}$$

$$+ \sum_{\tau \neq \lambda, \mu} \left(2h_{\tau n}^{n+1} \overline{A}_{\lambda\lambda\mu} \overline{A}_{\mu\mu\tau} + 4h_{nn}^{n+1} \overline{A}_{\lambda\lambda\tau}^{2} \overline{A}_{\lambda\lambda\tau} \right).$$
(3.23)

Combining (3.22) and (3.23), we get

$$h_{nn}^{n+1}\overline{A}_{n+1n+1\mu} = 0. (3.24)$$

Taking the exterior differentiation of (3.24), we have that $h_{ni}^{n+1}\overline{A}_{n+1n+1\mu} = 0$. This completes the proof of Proposition 4.2.

Proposition 3.7. Let $(\overline{M}^{n+1}, \overline{F})$ be a Randers space with constant flag curvature $\overline{K} = 1$. If (M, F) is a hypersurface of $(\overline{M}^{n+1}, \overline{F})$. Then $h_{ni}^{n+1} \overline{P}_{jkn+1}^{n+1} = h_{ni}^{n+1} \overline{P}_{jkn+1}^{l} = h_{ni}^{n+1} \overline{P}_{jkn+1}^{l} = 0$.

Proof. In the following, the computation is pointwisely estimated.

In case $h_{ni}^{n+1}=0$, $\forall i$. Obviously Proposition 3.7 is true. In case $h_{ni}^{n+1}\neq 0$. This is a neighborhood U such that $h_{ni}^{n+1}\neq 0$ on U. Then we have that $\overline{A}_{n+1n+1\lambda}=0$ on U by Proposition 3.6. Exterior differentiate $\overline{A}_{n+1n+1n+1}=0$, we obtain that $\overline{A}_{n+1n+1n+1;\lambda}=0$, i.e., $\overline{A}_{n+1n+1\lambda;n+1}=0$. Now exterior differentiate $\overline{A}_{n+1n+1\lambda}=0$, we get that

$$\overline{A}_{n+1n+1\lambda|l} = \overline{A}_{n+1n+1\lambda;\mu} = 0. \tag{3.25}$$

It can be seen from (3.25) and Proposition 3.5 that

$$\overline{A}_{\lambda\lambda n+1|l} = \overline{A}_{\lambda\lambda n+1;\mu} = 0. \tag{3.26}$$

By (3.25), (3.26), Proposition 2.4, Proposition 3.4 and Proposition 3.5, using the Ricci identity, we have that for $\forall \lambda \neq \mu$

$$\overline{A}_{\lambda\lambda n+1|n|\mu} = \overline{A}_{\lambda\mu n+1|n|\lambda} = h_{n\lambda}^{n+1} \overline{A}_{\lambda\mu n+1|n;n+1}
= h_{n\lambda}^{n+1} \overline{A}_{\lambda\mu n+1;n+1|n}
= 0,$$
(3.27)

and

$$\overline{A}_{\lambda n+1n+1|n|\mu} = 0. \tag{3.28}$$

Exterior differentiate (3.25) and (3.26), combining (3.27) and (3.28), we obtain that

$$\overline{A}_{\lambda\lambda n+1|n+1}\theta_n^{n+1} = \overline{A}_{\lambda n+1n+1|n+1}\theta_n^{n+1} = 0. \tag{3.29}$$

This implies that
$$h_{ni}^{n+1}\overline{P}_{jkn+1}^{n+1}=h_{ni}^{n+1}\overline{P}_{jkl}^{n+1}=h_{ni}^{n+1}\overline{P}_{jkn+1}^{l}=0.$$

Proposition 3.8. Let $(\overline{M}^{n+1}, \overline{F})$ be a Randers space with constant flag curvature $\overline{K} = 1$. If (M, F) is a hypersurface of $(\overline{M}^{n+1}, \overline{F})$. Then $\overline{A}_{ijn+1|n} = 0$.

Proof. In the following, the computation is pointwisely estimated. It follows from Proposition 3.6 that

$$h_{nl}^{n+1} = 0$$
 or $\overline{A}_{n+1n+1\lambda} = 0$. (3.30)

- (1) In case $\overline{A}_{n+1n+1\lambda} = 0$. It can be seen from (3.26) and the first formula of Proposition 3.2 that $\overline{A}_{ijn+1|n} = 0$;
- (2) In case $h_{ni}^{n+1} = 0$.

It follows from (3.13) that

$$\overline{A}_{\lambda\lambda n+1|l} - \sum_{\tau} h_{\tau l}^{n+1} \overline{A}_{n+1n+1\tau} = 0.$$
(3.31)

Setting l = n in (3.31), we get that $\overline{A}_{ijn+1|n} = 0$.

4. Proof of the main theorem

Let

$$\Box f = \sum_{i,j} (nH_1\delta_{ij} - h_{ij}^{n+1}) f_{|i|j} + \sum_{i,\lambda,\mu} (nH_1\delta_{i\lambda} - h_{i\lambda}^{n+1}) f_{|i} P_{\mu\mu\lambda}^n, \tag{4.1}$$

where $nH_1 = \sum_i h_{ii}^{n+1}$.

For Randers space $(\overline{M}, \overline{F})$ with constant flag curvature $\overline{K} = 1$, using (2.7) and the first formula of Proposition 3.2, we get

$$\overline{R}_{jij}^{n+1} = -\sum_{s} (\overline{A}_{n+1is|n} \overline{A}_{sjj|n} - \overline{A}_{n+1js|n} \overline{A}_{sji|n})
= -(\overline{A}_{n+1ii|n} \overline{A}_{ijj|n} - \overline{A}_{n+1jj|n} \overline{A}_{jji|n})
= 0.$$
(4.2)

It can be seen from the second formula of Proposition 2.2, Proposition 3.5, Proposition 3.7 and (4.2) that $h_{ji|j}^{n+1} = h_{jj|i}^{n+1}$. So we can obtain

$$\sum_{j} (nH_1\delta_{ij} - h_{ij}^{n+1})_{|j|} = 0,$$

which together with Proposition 2.6 implies that the operator \square is self-adjoint.

It follows from Proposition 2.2, Proposition 2.4, Proposition 3.5, Proposition 3.7 and Proposition 3.8 that

$$h_{ij|k}^{n+1} - h_{ik|j}^{n+1} = -\overline{R}_{ijk}^{n+1} = 0, (4.3)$$

and

$$\sum_{i,j,k} h_{ij}^{n+1} h_{ki;s}^{n+1} R_{njk}^{s} = -\sum_{i,j,k} h_{ij}^{n+1} \overline{P}_{kis}^{n+1} (\delta_{sj} \delta_{nk} - \delta_{sk} \delta_{nj})$$

$$= -\sum_{i,j} h_{ij}^{n+1} \overline{P}_{nij}^{n+1} + \sum_{i,k} h_{in}^{n+1} \overline{P}_{kik}^{n+1} = 0.$$
(4.4)

It follows from (4.3) and (4.4) that

$$\sum_{i,j,k} h_{ij}^{n+1} h_{ij|k|k}^{n+1}
= \sum_{i,j,k} h_{ij}^{n+1} h_{ik|j|k}^{n+1}
= \sum_{i,j,k} h_{ij}^{n+1} (h_{ki|k|j}^{n+1} + h_{ki;s}^{n+1} R_{njk}^{s} + h_{si}^{n+1} R_{kjk}^{s} + h_{ks}^{n+1} R_{ijk}^{s} - h_{ki}^{n+1} \overline{R}_{n+1jk}^{n+1})
= \sum_{i,j,k} h_{ij}^{n+1} (h_{kk|i|j}^{n+1} + h_{si}^{n+1} R_{kjk}^{s} + h_{ks}^{n+1} R_{ijk}^{s}).$$
(4.5)

It follows from Proposition 2.4, Proposition 3.7 and (4.5) that

$$\frac{1}{2} \operatorname{div}_{\widehat{g}}(S_{|i}\omega^{i})$$

$$= \sum_{k} \frac{1}{2} S_{|k|k} + \frac{1}{2} \sum_{\lambda,\mu} S_{|\mu} P_{\lambda\lambda\mu}^{n}$$

$$= \sum_{i,j,k} (h_{ij|k}^{n+1})^{2} + \sum_{i,j,k} h_{ij}^{n+1} h_{ij|k|k}^{n+1} + \sum_{i,j,\lambda,\mu} h_{ij}^{n+1} h_{ij|\mu}^{n+1} P_{\lambda\lambda\mu}^{n}$$

$$= \sum_{i,j,k} (h_{ij|k}^{n+1})^{2} + \sum_{i,j,k} h_{ij}^{n+1} h_{kk|i|j}^{n+1}$$

$$+ \sum_{i,j,k} h_{ij}^{n+1} (h_{si}^{n+1} R_{kjk}^{s} + h_{ks}^{n+1} R_{ijk}^{s})$$

$$+ \sum_{i,j,\lambda,\mu} h_{ij}^{n+1} h_{ij|\mu}^{n+1} P_{\lambda\lambda\mu}^{n}.$$
(4.6)

Since the second mean curvature $H_2 = \frac{1}{n(n+1)}[(nH_1)^2 - S]$ is constant, we have that $(nH_1)_{li}^2 = S_{li}$. It follows from (4.6) that

$$\frac{1}{2}\operatorname{div}_{\widehat{g}}((nH_{1})_{|i}^{2}\omega^{i})$$

$$= \sum_{i,j,k} (h_{ij|k}^{n+1})^{2} + \sum_{i,j,k} h_{ij}^{n+1} h_{kk|i|j}^{n+1}$$

$$+ \sum_{i,j,k} h_{ij}^{n+1} (h_{si}^{n+1} R_{kjk}^{s} + h_{ks}^{n+1} R_{ijk}^{s}) + \sum_{i,j,\lambda,\mu} h_{ij}^{n+1} h_{ij|\mu}^{n+1} P_{\lambda\lambda\mu}^{n}.$$
(4.7)

It follows from (4.1) and (4.7) that

$$\Box(nH_{1}) = \sum_{i} nH_{1}(nH_{1})_{|i|i} - \sum_{i,j} h_{ij}^{n+1}(nH_{1})_{|i|j}
+ \sum_{i,\lambda,\mu} (nH_{1}\delta_{i\lambda} - h_{i\lambda}^{n+1})(nH_{1})_{|i} P_{\mu\mu\lambda}^{n}
= \frac{1}{2} \operatorname{div}_{\widehat{g}}[(nH_{1})_{|i}^{2}\omega^{i}] - \sum_{i} (nH_{1|i})^{2}
- \sum_{i,\lambda,\mu} nH_{1}(nH_{1})_{|\mu} P_{\lambda\lambda\mu}^{n} - \sum_{i,j} h_{ij}^{n+1}(nH_{1})_{|i|j}
+ \sum_{i,\lambda,\mu} (nH_{1}\delta_{i\lambda} - h_{i\lambda}^{n+1})(nH_{1})_{|i} P_{\mu\mu\lambda}^{n}
= \sum_{i,j,k} (h_{ij|k}^{n+1})^{2} - \sum_{i} (nH_{1|i})^{2}
+ \sum_{i,j,k} h_{ij}^{n+1}(h_{si}^{n+1} R_{kjk}^{s} + h_{ks}^{n+1} R_{ijk}^{s})
+ \sum_{i,j,k} h_{ij}^{n+1}h_{ij|\mu}^{n+1} P_{\lambda\lambda\mu}^{n} - \sum_{i,\lambda,\mu} h_{i\lambda}^{n+1}(nH_{1})_{|i|} P_{\mu\mu\lambda}^{n}.$$
(4.8)

Lemma 4.1. Let $(\overline{M}, \overline{F})$ be a Randers space with constant flag curvature $\overline{K} = 1$ and (M^n, F) a compact hypersurface of $(\overline{M}, \overline{F})$ with constant second mean curvature $H_2 \geq 0$. Then $\sum_{i,j,k} (h_{ij|k}^{n+1})^2 - \sum_i (nH_{1|i})^2 \geq 0$.

Proof. Since H_2 is constant, exterior differentiate $H_2 = \frac{1}{n(n+1)}[(nH_1)^2 - S]$, we have that

$$n^2 H_1 H_{1|k} = \sum_{ij} h_{ij}^{n+1} h_{ij|k}^{n+1},$$

which implies that

$$n^{4}H_{1}^{2}(H_{1|k})^{2} = \left(\sum_{ij} h_{ij}^{n+1} h_{ij|k}^{n+1}\right)^{2} \le \sum_{ij} (h_{ij}^{n+1})^{2} \sum_{ij} (h_{ij|k}^{n+1})^{2}.$$
(4.9)

On the other hand, it follows from $H_2 \ge 0$ that $(nH_1)^2 \ge S^2$. Then it is easy to see from (4.9) that $\sum_{i,j,k} (h_{ij|k}^{n+1})^2 - \sum_i (nH_{1|i})^2 \ge 0$.

Lemma 4.2. Let $(\overline{M}^{n+1}, \overline{F})$ be a Randers space with constant flag curvature $\overline{K} = 1$. If (M, F) is a hypersurface of $(\overline{M}^{n+1}, \overline{F})$. Then $h_{ii|j}^{n+1} \overline{P}_{\lambda\lambda\mu}^n = 0$.

Proof. In the following, the computation is pointwisely estimated.

(1) In case $\overline{A}_{n+1n+1\lambda} = 0$. By (3.25) and Proposition 3.3, we have

$$\overline{P}_{\lambda\lambda\mu}^{n} = \overline{A}_{n+1n+1\mu|n} = 0; \tag{4.10}$$

(2) In case $h_{ni}^{n+1} = 0$. Exterior differentiate $h_{n\lambda}^{n+1} = 0$, we obtain

$$\begin{cases} h_{\lambda\mu}^{n+1} = 0 & \forall \lambda \neq \mu \\ h_{\lambda\lambda}^{n+1} = -h_{n\lambda;\lambda}^{n+1} = -\overline{A}_{\lambda\lambda n+1|n}. \end{cases}$$
 (4.11)

For a Randers space $\left(\overline{M}^{n+1},\overline{F}\right)$ with constant flag curvature $\overline{K}=1,(2.8)$ implies that

$$\overline{A}_{ijk|n|l} - \overline{A}_{ijl|n|k} = -\overline{A}_{ijk}\delta_{nl} + \overline{A}_{ijl}\delta_{nk}. \tag{4.12}$$

It follows from (4.12) and Proposition 3.2 that

$$\overline{A}_{\mu\mu n+1|n|\lambda} = \overline{A}_{\lambda\mu n+1|n|\mu} = 0, \quad \forall \lambda \neq \mu. \tag{4.13}$$

By the second formula of (4.11) and (4.13), we get

$$\begin{cases} h_{\lambda\lambda|\mu}^{n+1} = -A_{\lambda\lambda n+1|n|\nu} = 0 & \forall \lambda \neq \mu \\ h_{\lambda\lambda|\lambda}^{n+1} = -A_{\mu\mu n+1|n|\lambda} = 0 & \forall \lambda \neq \mu. \end{cases}$$
(4.14)

This completes the proof of Lemma 4.2.

Lemma 4.3. Let $(\overline{M}^{n+1}, \overline{F})$ be a Randers space with constant flag curvature $\overline{K} = 1$. If (M, F) is a hypersurface of $(\overline{M}^{n+1}, \overline{F})$. Then

$$\begin{split} &\sum_{i,j,k,s,t} h_{ij}^{n+1} h_{si}^{n+1} (\overline{A}_{sjt|n} \overline{A}_{tkk|n} - \overline{A}_{skt|n} \overline{A}_{tkj|n}) \\ &+ \sum_{i,j,k,s,t} h_{ij}^{n+1} h_{ks}^{n+1} (\overline{A}_{sjt|n} \overline{A}_{tik|n} - \overline{A}_{skt|n} \overline{A}_{tij|n}) = 0. \end{split}$$

Proof. It follows from (4.11) that

$$\sum_{i,j,k,s,t} h_{ij}^{n+1} h_{si}^{n+1} (\overline{A}_{sjt|n} \overline{A}_{tkk|n} - \overline{A}_{skt|n} \overline{A}_{tkj|n})
+ \sum_{i,j,k,s,t} h_{ij}^{n+1} h_{ks}^{n+1} (\overline{A}_{sjt|n} \overline{A}_{tik|n} - \overline{A}_{skt|n} \overline{A}_{tij|n})
= \sum_{i,k,t} h_{ii}^{n+1} h_{ii}^{n+1} (\overline{A}_{iit|n} \overline{A}_{tkk|n} - \overline{A}_{ikt|n} \overline{A}_{tki|n})
+ \sum_{i,k,t} h_{ii}^{n+1} h_{kk}^{n+1} (\overline{A}_{kit|n} \overline{A}_{tik|n} - \overline{A}_{kkt|n} \overline{A}_{tii|n})
= 0.$$
(4.15)

Now we can prove the following:

Main Theorem. Let $(\overline{M}, \overline{F})$ be a Randers space with constant flag curvature $\overline{K} = 1$ and (M^n, F) a compact hypersurface of $(\overline{M}, \overline{F})$ with constant second mean curvature H_2 . If $H_2 \ge 0$ and the norm square S of the second fundamental form of M satisfies

$$S \le \frac{n}{(n-2)(nH_2+2)} \Big(n(n-1)H_2^2 + 4(n-1)H_2 + n \Big), \tag{4.16}$$

then either $S = nH_2$ and M is a Randers space with constant flag curvature $K = 1 + H_2$; or

$$S = \frac{n}{(n-2)(nH_2+2)} \Big(n(n-1)H_2^2 + 4(n-1)H_2 + n \Big)$$
 and $M = S^1(\sqrt{1-r^2}) \times S^{n-1}(r)$, where $r = \sqrt{\frac{n-2}{n(H_2+1)}}$.

Proof. It can be seen from Proposition 2.2, Proposition 2.4, Proposition 3.5 \sim Proposition 3.8 that

$$\sum_{i,j,k} h_{ij}^{n+1} h_{si}^{n+1} R_{kjk}^{s}
= \sum_{i,j,k} h_{ij}^{n+1} h_{si}^{n+1} [\overline{R}_{kjk}^{s} + h_{sj}^{n+1} h_{kk}^{n+1} - h_{sk}^{n+1} h_{kj}^{n+1}]
= \sum_{i,j,k,s} h_{ij}^{n+1} h_{si}^{n+1} [(\delta_{sj} \delta_{kk} - \delta_{sk} \delta_{kj}) - (\overline{A}_{skj} \delta_{kn} - \overline{A}_{skk} \delta_{jn})
- \sum_{i} (\overline{A}_{sjt|n} \overline{A}_{tkk|n} - \overline{A}_{skt|n} \overline{A}_{tkj|n}) + h_{sj}^{n+1} h_{kk}^{n+1} - h_{sk}^{n+1} h_{kj}^{n+1}]
\geq (n-1)S + 3nH_{1}^{2}S - 2(nH_{1}^{2})^{2} - \frac{n(n-2)}{\sqrt{n(n-1)}} |H_{1}|[S - nH_{1}^{2}]^{\frac{3}{2}}
- \sum_{i,j,k,s} h_{ij}^{n+1} h_{si}^{n+1} h_{sk}^{n+1} h_{kj}^{n+1}
- \sum_{i,j,k,s,t} h_{ij}^{n+1} h_{si}^{n+1} (\overline{A}_{sjt|n} \overline{A}_{tkk|n} - \overline{A}_{skt|n} \overline{A}_{tkj|n}).$$
(4.17)

And

$$\sum_{i,j,k} h_{ij}^{n+1} h_{ks}^{n+1} R_{ijk}^{s}$$

$$= S - (nH_1)^2 - S^2 + \sum_{i,j,k,s} h_{ij}^{n+1} h_{si}^{n+1} h_{sk}^{n+1} h_{kj}^{n+1}$$

$$- \sum_{i,j,k,s,t} h_{ij}^{n+1} h_{ks}^{n+1} (\overline{A}_{sjt|n} \overline{A}_{tik|n} - \overline{A}_{skt|n} \overline{A}_{tij|n}).$$
(4.18)

It follows from (4.17), (4.18) and Lemma 4.3 that

$$\sum_{i,j,k} h_{ij}^{n+1} h_{si}^{n+1} R_{kjk}^{s} + \sum_{i,j,k} h_{ij}^{n+1} h_{ks}^{n+1} R_{ijk}^{s}$$

$$\geq nS - (nH_1)^2 - S^2 + 3nH_1^2 S - 2(nH_1^2)^2 - \frac{n(n-2)}{\sqrt{n(n-1)}} |H_1| [S - nH_1^2]^{\frac{3}{2}}.$$
(4.19)

Substituting (4.19), Lemma 4.1 and Lemma 4.2 into (4.8), we obtain

$$\square(nH_1)$$

$$\geq nS - (nH_1)^2 - S^2 + 3nH_1^2S - 2(nH_1^2)^2 - \frac{n(n-2)}{\sqrt{n(n-1)}}|H_1|[S - nH_1^2]^{\frac{3}{2}}$$

$$\geq (S - nH_1^2) \left\{ n + nH_1^2 - S - \frac{n(n-2)}{\sqrt{n(n-1)}}|H_1|\sqrt{S - nH_1^2} \right\}.$$

$$(4.20)$$

It is a direct check that our assumption condition (4.16), i.e.,

$$S \le \frac{n}{(n-2)(nH_2+2)} \Big(n(n-1)H_2^2 + 4(n-1)H_2 + n \Big)$$

is equivalent to

$$n + nH_1^2 - S \ge \frac{n(n-2)}{\sqrt{n(n-1)}} |H_1| \sqrt{S - nH_1^2}.$$
 (4.21)

Therefore the right hand side of (4.20) is non-negative. Since M is compact and the operator \square is self-adjoint, we have that either $S - nH_1^2 = 0$ or

$$S = \frac{n}{(n-2)(nH_2+2)} \Big(n(n-1)H_2^2 + 4(n-1)H_2 + n \Big). \tag{4.22}$$

(1) In case $S - nH_1^2 = 0$. We have that $h_{ii}^{n+1} = |H_1| = \sqrt{H_2}$ is constant and $h_{ij}^{n+1} = 0, \forall i \neq j$.

It follows from Proposition 2.2 and Proposition 2.4 that

$$R_{njn}^{i} = \delta_{ij}\delta_{nn} - \delta_{in}\delta_{jn} + h_{ij}^{n+1}h_{nn}^{n+1} - h_{in}^{n+1}h_{jn}^{n+1}$$

$$= \delta_{ij} - \delta_{in}\delta_{jn} + \delta_{ij}\sqrt{H_{2}}h_{nn}^{n+1} - \delta_{in}h_{nn}^{n+1}\delta_{jn}h_{nn}^{n+1}$$

$$= (\delta_{ij} - \delta_{in}\delta_{jn})(1 + H_{2}).$$
(4.23)

This together with Proposition 2.4 yields that M is a Randers space with constant flag curvature $K = 1 + H_2$;

(2) In the latter case.

We first prove that M is a Riemannian. Suppose M is not a Riemannian. Then $\overline{A}_{\lambda\lambda\mu} \neq 0$ at a point x. It can be seen from (4.11) and Proposition 3.6 that $h_{ni}^{n+1} = h_{\lambda\mu}^{n+1} = 0$, $\forall \lambda \neq \mu$ and $h_{\mu\mu}^{n+1} = \lambda$, $\forall \mu$. Then we obtain

$$H_1 = \frac{n-1}{n}\lambda$$
, $S = (n-1)\lambda^2$ and $H_2 = \frac{n-2}{n}\lambda^2$. (4.24)

It is easy to see from (4.24) that

$$S < \frac{n}{(n-2)(nH_2+2)} \Big(n(n-1)H_2^2 + 4(n-1)H_2 + n \Big), \tag{4.25}$$

which is in contradiction (4.22). So M is a Riemannian. Then $M = S^1(\sqrt{1-r^2}) \times S^{n-1}(r)$, where $r = \sqrt{\frac{n-2}{n(H_2+1)}}$. We complete the proof of Main theorem.

References

- [1] D. BAO, S. S. CHERN and Z. SHEN, "An Introduction to Riemann-Finsler Geometry", Springer-Verlag, 2000.
- [2] H. Li, Hypersurfaces with constant scalar curvature in space forms, Math. Ann. 305 (1996), 665–672.
- [3] J. LI, The variation formulas of Finsler submanifolds, J. Geom. Phys. 61 (2011), 890–898.
- [4] J. LI, A classification theorem for hypersurface with constant mean curvature in Randers spaces, Ann. Sc. Norm. Super. Pisa Cl. Sci. 14 (2015), 221–231.
- [5] J. LI, Hypersurfaces of Randers spaces with constant mean curvature, Taiwanese J. Math. 21 (2015), 979–996.
- [6] X. Mo, Harmonic maps from Finsler manifolds, Illinois J. Math. 45 (2001), 1331–1345.
- [7] W. SANTOS, Submanifolds with parallel mean curvature vector in spheres, Tohoku Math. J. 46 (1994), 403–415.
- [8] Z. Shen, On Finsler geometry of submanifolds, Math. Ann. 311 (1998), 549–576.

Department of Mathematics Xiamen University 361005 Xiamen, Fujian, China dli66@xmu.edu.cn