
Ann. Sc. Norm. Super. Pisa Cl. Sci. (5)
Vol. XX (2020), 1147-1167

Compact hypersurfaces in Randers space

JINTANG LI

Abstract. Let
⇣
Mn+1

, F
⌘
be a Randers space and (Mn, F) a compact hypersur-

face of
⇣
Mn+1

, F
⌘
. In this paper, we prove that if the second mean curvature H2

is constant and the norm square S of the second fundamental form of M satisfies
a certain inequality, then either M is a Randers space with constant flag curvature
1+ H2 or the equality holds.

Mathematics Subject Classification (2010): 53C60 (primary); 53C40 (sec-
ondary).

1. Introduction

Let M be an n-dimensional smooth manifold and ⇡ : T M ! M be the natural
projection from the tangent bundle. Let (x,Y ) be a point of T M with x 2 M,Y 2
TxM and let (xi ,Y i ) be the local coordinates on T M with Y = Y i @

@xi . A Finsler
metric on M is a function F : T M ! [0,+1) satisfying the following properties:

(i) Regularity: F(x,Y ) is smooth in T M\0;
(ii) Positive homogeneity: F(x, �Y ) = �F(x,Y ) for � > 0;
(iii) Strong convexity: The fundamental quadratic form gY = gi j (x,Y )dxi ⌦ dx j

is positively definite, where gi j = 1
2@
2(F2)/@Y i@Y j .

A Finsler metric is just a Riemannian metric without the quadratic restriction. The
pair (M, F) is called a Finsler manifold.

Riemannian submanifolds are important in modern differential geometry. For
a compact Riemannian hyprsurface M of the Euclidean unit sphere S(n+1)(1), the
second fundamental form B = hn+1i j !i ⌦ ! j ⌦ en+1, where {!i } is the orthonor-
mal coframe of M . The second mean curvature H2 of M is defined by H2 =

2
n(n�1)

P
1i< jn �i� j , where �i are the eigenvalues of the second fundamental
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tensor hn+1i j of M . For a compact hypersurface M of the Euclidean unit sphere, the
Gauss equations is R =

P
i, j Ri ji j = n(n � 1) + n(n � 1)H2, which implies that

the scalar curvature R is constant if and only if the second mean curvature H2 is
constant.

As well kown, by using Cheng-Yau’s self-adjoint operator⇤, Li [2] proved the
following:

Theorem A. Let Mn be a compact hypersurface with constant second mean cur-
vature H2 in the Euclidean unit sphere. If H2 � 0 and the norm square S of the
second fundamental form of M satisfies

S 
n

(n � 2)(nH2 + 2)

⇣
n(n � 1)H22 + 4(n � 1)H2 + n

⌘
,

then either S = nH2 and M is a totally umbilical hypersurface; or

S =
n

(n � 2)(nH2 + 2)

⇣
n(n � 1)H22 + 4(n � 1)H2 + n

⌘

and M = S1(
p
1� r2) ⇥ Sn�1(r), where r =

q
n�2

n(H2+1) .

As far as we know, there are very few global rigidity results on Finsler subman-
ifolds. In this paper, by the Gauss formula of Chern connection and defining a
similar self-adjoint operator ⇤ on Finsler manifolds, we study the hypersurfaces of
Randers space with constant flag curvature and obtain the following:

Main Theorem. Let (M, F) be a Randers space with constant flag curvature
K = 1 and (Mn, F) a compact hypersurface of (M, F) with constant second mean
curvature H2. If H2 � 0 and the norm square S of the second fundamental form of
M satisfies

S 
n

(n � 2)(nH2 + 2)

⇣
n(n � 1)H22 + 4(n � 1)H2 + n

⌘
, (1.1)

then either S = nH2 and M is a Randers space with constant flag curvature K =
1+ H2; or

S =
n

(n � 2)(nH2 + 2)

⇣
n(n � 1)H22 + 4(n � 1)H2 + n

⌘

and M = S1(
p
1� r2) ⇥ Sn�1(r), where r =

q
n�2

n(H2+1) .

Remark. This theorem generalizes theorem A from the Riemannian case to the
Randers space.
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2. Preliminaries

Let (Mn, F) be an n-dimensional Finsler manifold. F inherits the Hilbert form, the
fundamental tensor and the Cartan tensor as follows:

!=
@F
@Y i

dxi, gY =gi j (x,Y )dxi⌦dx j, AY = Ai jkdxi⌦dx j⌦dxk, Ai jk :=
F@gi j
2@Y k

.

It is well known that there exists uniquely the Chern connection r on ⇡⇤T M with
r @
@xi = !

j
i
@
@x j and !

j
i = 0

j
ikdx

k satisfying that
(
d(dxi ) � dx j ^ !ij = �dx j ^ !ij = 0
dgi j � gik!kj � g jk!ki = 2Ai jk �Y

k

F ,

where �Y i = dY i + Ni
jdx

j , Ni
j = � ijkY

k � 1
F A

i
jk�

k
stY sY t and � ijk are the formal

Christoffel symbols of the second kind for gi j .
The curvature 2-forms of the Chern connection r are

d!ij � !kj ^ !ik = �i
j =

1
2
Rijkldx

k ^ dxl +
1
F
Pijkldx

k ^ �Y l ,

where Rijkl and P
i
jkl are the components of the hh-curvature tensor and hv-curva-

ture tensor of the Chern connection, respectively.
Given a non-zero vector U 2 TxM , the flag curvature K (Y,U) on (x,Y ) 2

T M\0 defined by

K (Y,U) =
Y iU jY kUl R jikl

gY (Y,Y )gY (U,U) � [gY (Y,U)]2
,

where R jikl = gis Rsjkl .
' : (Mn, F) ! (Mn+p

, F) is called an isometric immersion from a Finsler
manifold to a Finsler manifold if F(Y ) = F('⇤(Y )). We have that [8]

gY (U, V ) = g'⇤(Y )('⇤(U),'⇤(V )), AY (U, V,W )

= A'⇤(Y )('⇤(U),'⇤(V ),'⇤(W )),
(2.1)

where Y,U, V,W 2 T M, g and A are the fundamental tensor and theCartan tensor
of M , respectively.

In the following we simplify AY and gY to A and g, respectively. Any vector
field U 2 0(T M) will be identified with the corresponding vector field d'(U) 2
0(T M). We will use the following convention:

1  i, j, · · ·  n; n + 1  ↵,�, · · ·  n + p;
1  �, µ, · · ·  n � 1; 1  A, B, · · · n + p.
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Let ' : (Mn, F) ! (Mn+p
, F) be an isometric immersion. Take a g-orthonormal

frame form {eA} for each fibre of ⇡⇤T M and {!A} is its local dual coframe, such
that {ei } is a frame field for each fibre of ⇡⇤T M and !n is the Hilbert form, where
⇡ : T M ! M denotes the natural projection. Let ✓ AB and !

i
j denote the Chern

connection 1-form of F and F , respectively, i.e., reA = ✓ BA eB and rei = !
j
i e j ,

where r and r are the Chern connection of M and M , respectively. We obtain that
A(ei , e j , en) = A(eA, eB, en) = 0, where en = ` = Y i

F
@
@xi is the natural dual of the

Hilbert form !n . The structure equations of M are given by
8
>>><

>>>:

d✓ A = �✓ AB ^ ✓ B

d✓ AB = �✓ AC ^ ✓CB + 1
2 R

A
BCD!

C ^ !D + PA
BCD!

C ^ ✓Dn
✓ AB + ✓ BA = �2AABC✓Cn
✓ An + ✓nA = 0, ✓nn = 0.

(2.2)

The collection {eHi ,ben+�} forms an orthonormal basis on the projectivized tangent
bundle PT M and {!i ,!�n} is its local dual coframe, where eHi = u ji

�
�x j = u ji (

@
@x j �

Nk
j
@
@Y k ) denotes the horizontal part of ei ,ben+� = u j�

�
�Y j = u j�

F@
@Y j ,!

i = vij dx
j and

!�n = v�j �Y
j .

We obtain that [3] ✓↵j = h↵i j!
i , h↵i j = h↵j i and

!
j
i = ✓

j
i �9 j ik!

k, (2.3)

where
9 j ik = h↵jn Aki↵ � h↵kn A ji↵ � h↵in Ak j↵

� h↵nn Aiks As j↵ + h↵nn Ai js Ask↵ + h↵nn A jks Asi↵.
(2.4)

In particular,
!ni = ✓ni � h↵nn Aki↵!

k, (2.5)
Using the almost g-compatibility, we have

✓ j↵ = (�h↵i j � 2h�ni A j↵� + 2h�nn A j�↵Ai��)!i � 2A j↵�!
�
n . (2.6)

In particular, ✓n↵ = �h↵ni!
i .

We quote the following propositions

Proposition 2.1 (Gauss equations, [3]). Let ' : (Mn, F) ! (Mn+p
, F) be an

isometric immersion from a Finsler manifold to a Finsler manifold, then we have
that

8
>>>>>><

>>>>>>:

P j
ik� = P j

ik� +9 j ik;� � 29sik A js� � 2h↵ik A j�↵

R j
ikl = R j

ikl � h↵ikh
↵
jl + h↵ilh

↵
jk +9 j ik|l �9 j il|k

+9sik9 jsl �9sil9 jsk � 2h↵ikh
�
nl A j↵� + 2h↵ilh

�
nk A j↵�

+2h↵ikh
�
nn A js↵Als� � 2h↵ilh

�
nn A js↵Aks� � h↵nn Asl↵P

j
iks

+h↵nn Ask↵P
j
ils + h↵nl P

j
ik↵ � h↵nk P

j
il↵,
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where “ ; ” and “|” denote the vertical and the horizontal covariant differentials
with respect to the Chern connection r respectively.

Proposition 2.2 (Codazzi equations, [3]). Let ' : (Mn, F) ! (Mn+p
, F) be an

isometric immersion from a Finsler manifold to a Finsler manifold, then we have
that

8
><

>:

h↵i j;� = �P↵i j�
h↵i j |k � h↵ik| j = �R↵i jk + h�nj P

↵
ik� � h�nk P

↵
i j�

�h↵lk9li j + h↵l j9lik � h�nn Al j� P
↵
ikl + h�nn Alk� P

↵
i jl .

Proposition 2.3 ([6]). For X =
P

i xi!i 2 0(⇡⇤T ⇤M),

divbg X =
X

i
xi |i +

X

µ,�

xµPn��µ.

Proposition 2.4 ([1]). Let (M, F) be a Finsler manifold. The following statements
are mutually equivalent:

(1) (M, F) has constant flag curvature K = �;
(2) Rinjn = (�i j � �in� jn)�,8i, j;
(3) The hh-curvature tensor Rijkl of the Chern connection has the formula

Rijkl = (�ik� jl � �il� jk)�� (Ai jk�ln � Ai jl�kn)�
�

X

s
(Aiks|n As jl|n � Ails|n As jk|n)�.

And, we have
Ai jk|n|l � Ai jl|n|k = (Ai jl�kn � Ai jk�ln)�. (2.7)

Lemma 2.5 ([7]). Let B be a real symmetric matrix with tr B = 0, then

|tr B3| 
n � 2

p
n(n � 1)

(tr B2)
3
2 .

Let � =
P

i, j �i j!
i ⌦ ! j be a symmetric tensor defined on the sphere bundle SM

and  =
P

i  i!
i 2 0(⇡⇤T ⇤M). Now we can define an operator associated to �

by

⇤ f =
X

i, j
�i j f|i | j +

X

i,�,µ
�i� f|i Pnµµ� +

X

i
 i f|i , 8 f 2 C1(SM). (2.8)

Proposition 2.6 ([4]). Let (M, F) be a compact Finsler manifold. Then the opera-
tor ⇤ is self-adjoint if and only if

P
j �i j | j �  i = 0.
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3. Hypersurfaces of Randers spaces

Proposition 3.1. Let (M, F) be a Randers space. Then
8
><

>:

Ai jk = 0 for i, j, k distinct from each other
A��i = Aµµi for i, �, µ distinct from each other
A��� = 3Aµµ� for � 6= µ.

Proof. For the Randers space (M, F) with F = ↵ + �, where ↵ =
q
ai jY iY j is a

Riemannian metric and � = biY i is a 1-form, we have that [1]

A
✓
@

@xi
,
@

@x j
,
@

@xk

◆

=
1
2


⌘i j

✓
bk �

�

↵
èk

◆
+ ⌘ jk

✓
bi �

�

↵
èi

◆
+ ⌘ki

✓
b j �

�

↵
èj

◆�
,

(3.1)

where `i = gi j Y
j

F , ⌘i j = gi j � `i` j and èi = `i � bi .
Since uiku

j
l ⌘i j = �kl � �kn�ln , where ei = u ji

@
@x j and u

j
n = Y j

F , we obtain
by (3.1)

Ai jk = usi u
t
j u
r
k A

✓
@

@xs
,
@

@xt
,
@

@xr

◆

=
1
2


urk

✓
br �

�

↵
èr

◆
(�i j � �in� jn) + usi

✓
bs �

�

↵
ès)(� jk � �kn� jn

◆

+utj

✓
bt �

�

↵
èt

◆
(�ik � �kn�in)

�
.

(3.2)

We obtain Proposition 3.1 immediately from (3.2).

Proposition 3.2. Let (M, F) be a Randers space. Then
8
><

>:

Ai jk|l = 0 for i, j, k distinct from each other
Aµ⌫� ;� = 0 for µ, ⌫, �, � distinct from each other
A⌫⌫µ;� = 4A⌫⌫µA⌫⌫� for ⌫, µ, � distinct from each other.

Proof. By Proposition 3.1, we have for �, µ, ⌫ distinct from each other

d A�µ⌫ =A�µ⌫|l!l + A�µ⌫;⌧!⌧n + A�µ⌫!
�
� + A��⌫!�µ + A�µ�!�⌫

=A�µ⌫|l!l + A�µ⌫;⌧!⌧n + Aµµ⌫!
µ
� + A⌫µ⌫!⌫�

+ A��⌫!�µ + A�⌫⌫!⌫µ + A�µ�!�⌫ + A�µµ!
µ
⌫

=A�µ⌫|l!l + A�µ⌫;⌧!⌧n � 2Aµµ⌫ Aµ�⌧!
⌧
n � 2A⌫⌫µA⌫�⌧!⌧n

� 2A�⌫⌫ Aµ⌫⌧!
⌧
n .

(3.3)
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It can be seen from (3.3) and Proposition 2.1 that
(
Ai jk|l = 0
A�µ⌫;⌧ = 2Aµµ⌫ Aµ�⌧ + 2A⌫⌫µA⌫�⌧ + 2A�⌫⌫ Aµ⌫⌧ .

(3.4)

We obtain Proposition 3.2 immediately from (3.4) and Proposition 3.1.

Proposition 3.3. Let (M, F) be a Randers space. Then
(
A⌫⌫�;� = A⌫⌫µ;µ + 4A2⌫⌫� � 4A2⌫⌫µ for �, µ ⌫ distinct from each other
A⌫⌫µ|l = A��µ|l for �, µ, ⌫ distinct from each other.

Proof. For ⌫ 6= µ, we have by Proposition 3.1 that

d A⌫⌫µ =A⌫⌫µ|l!
l + A⌫⌫µ;�!

�
n + 2As⌫µ!s⌫ + A⌫⌫s!sµ

=A⌫⌫µ|l!
l + A⌫⌫µ;�!

�
n + 2A⌫⌫µ!⌫⌫ + 2Aµ⌫µ!

µ
⌫

+ A⌫⌫⌫!⌫µ + A⌫⌫⌧!⌧µ +
X

s 6=⌫,⌧
A⌫⌫s!sµ

=A⌫⌫µ|l!
l + A⌫⌫µ;�!

�
n � 2A⌫⌫µA⌫⌫�!�n � 4Aµ⌫µAµ⌫�!

�
n

+ Aµµ⌫!
⌫
µ + A⌫⌫⌧!⌧µ +

X

s 6=⌫,⌧
A⌫⌫s!sµ.

(3.5)

And for ⌧ 6= µ, we have

d A⌧⌧µ =A⌧⌧µ|l!
l + A⌧⌧µ;�!

�
n + 2As⌧µ!s⌧ + A⌧⌧ s!sµ

=A⌧⌧µ|l!
l + A⌧⌧µ;�!

�
n � 2A⌧⌧µA⌧⌧�!�n � 4Aµ⌧µAµ⌧�!

�
n

+ Aµµ⌧!
⌧
µ + A⌧⌧⌫!⌫µ +

X

s 6=⌧,⌫
A⌧⌧ s!sµ.

(3.6)

It follows from (3.5), (3.6) and Proposition 3.1 that
8
><

>:

A⌫⌫µ|l = A⌧⌧µ|l
A⌫⌫µ;� = A⌧⌧µ;� + 2A⌫⌫µA⌫⌫� + 4Aµ⌫µAµ⌫�

�2A⌧⌧µA⌧⌧� � 4Aµ⌧µAµ⌧�.

(3.7)

We obtain Proposition 3.3 immediately from (3.7) and Proposition 3.1.

Proposition 3.4. Let (M, F) be a Randers space. Then
8
>>><

>>>:

Aii⌫;µ|l = 4Aii⌫|l Aiiµ + 4Aii⌫ Aiiµ|l for i, µ, ⌫ distinct from each other
Aii⌫;µ;� = 4Aii⌫;�Aiiµ + 4Aii⌫ Aiiµ;�

�8Aii⌫ AiiµAii�
+2Aii⌫;⌫ A⌫µ� � 8A2i i⌫ A⌫µ� for i, µ, ⌫ distinct from each other.
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Proof. Exterior differentiate the third formula of Proposition 3.2, we obtain

Aii⌫;µ|l!
l + Aii⌫;µ;�!

�
n + 2Asi⌫;µ!si + Aiis;µ!s⌫ + Aii⌫;s!sµ

= 4(Aii⌫|l!l + Aii⌫;�!�n + 2Asi⌫!si + Aiis!sj )Aiiµ
+ 4Aii⌫(Aiiµ|l!

l + Aiiµ;�!
�
n + 2Asiµ!si + Aiis!sµ).

(3.8)

On the other hand, we have

2Asi⌫;µ!si � 8Asi⌫ Aiiµ!si � 8Aii⌫ Asiµ!si
= 2Aii⌫;µ!ii + 2A⌫i⌫;µ!⌫i + 2Aµi⌫;µ!

µ
i + 2

X

s 6=i,⌫,µ
Asi⌫;µ!si

� 8Aii⌫ Aiiµ!ii � 8A⌫i⌫ Aiiµ!⌫i
� 8Aii⌫ Aiiµ!ii � 8Aii⌫ Aµiµ!

µ
i

= � 8Aii⌫ Aiiµ!ii = 8Aii⌫ AiiµAii�!�n ,

(3.9)

and

Aiis;µ!s⌫ + Aii⌫;s!sµ � 4Aiis Aiiµ!s⌫ � 4Aii⌫ Aiis!sµ
= Aiii;µ!i⌫ + Aii⌫;µ!⌫⌫ + Aiiµ;µ!

µ
⌫ +

X

s 6=i,⌫,µ
Aiis;µ!s⌫

+ Aii⌫;i!ik + Aii⌫;⌫!⌫µ + Aii⌫;µ!µ
µ +

X

s 6=i, j,µ
Aii⌫;s!sµ

� 4Aiii Aiiµ!i⌫ � 4Aii⌫ Aiiµ!⌫⌫ � 4AiiµAiiµ!µ
⌫

� 4
X

s 6=i,⌫,µ
Aiis Aiiµ!s⌫ � 4Aii⌫ Aiii!iµ � 4Aii⌫ Aii⌫!⌫µ

� 4Aii⌫ Aiiµ!µ
µ � 4

X

s 6=i,⌫,µ
Aii⌫ Aiis!sµ

= Aiiµ;µ!
µ
⌫ + Aii⌫;⌫!⌫µ � 4AiiµAiiµ!µ

⌫ � 4Aii⌫ Aii⌫!⌫µ
= (Aii⌫;⌫ + 4A2i iµ � 4A2i i⌫)!

µ
⌫ + Aii⌫;⌫!⌫µ � 4AiiµAiiµ!µ

⌫

� 4Aii⌫ Aii⌫!⌫µ
= �2Aii⌫;⌫ A⌫µ�!�n + 8A2i i⌫ A⌫µ�!

�
n .

(3.10)

Substituting (3.9) and (3.10) into (3.8), we obtain

Aii⌫;µ|l!
l + Aii⌫;µ;�!

�
n + 8Aii⌫ AiiµAii�!�n

� 2Aii⌫;⌫ A⌫µ�!�n + 8A2i i⌫ A⌫µ�!
�
n

= 4Aii⌫|l Aiiµ!l + 4Aii⌫;�Aiiµ!�n + 4Aii⌫ Aiiµ|l!
l + 4Aii⌫ Aiiµ;�!

�
n .

(3.11)

We obtain Proposition 3.4 immediately from (3.11).
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Let (M, F) be a hypersurface of Randers space
⇣
Mn+1

, F
⌘
. Then we have

that [1] (M, F) is a Randers manifold. We have:

Proposition 3.5 ([5]). Let (M,F) be a hypersurface of a Randers space (Mn+1
, F).

Then
An+1n+1n+1 = A��n+1 = 0, 8� and 9i jk = 0,8i, j, k.

Proposition 3.6. Let (M, F) be a hypersurface of a Randers space
⇣
Mn+1

, F
⌘
.

Then
hn+1ni An+1n+1� = 0.

Proof. Taking the exterior differentiation of A��n+1 = 0, we obtain that

0 = A��n+1|l!l + A��n+1;µ✓µ
n + A��n+1;n+1✓n+1n + 2An+1�n+1✓n+1�

+ A��⌧ ✓⌧n+1
=

n
A��n+1|l!l + hn+1nl A��n+1;n+1!l + 2hn+1�l An+1n+1�!l

�
X

⌧

hn+1⌧ l A��⌧!l �
X

⌧

2hn+1nl A��⌧ An+1n+1⌧!l
o
(mod(!⌫n)).

(3.12)

This implies that

A��n+1|l + hn+1nl A��n+1;n+1 �
X

⌧

hn+1⌧ l An+1n+1⌧

�
X

⌧

2hn+1nl A��⌧ An+1n+1⌧ = 0.
(3.13)

Setting l = n in (3.13) and then taking the exterior differentiation of this formula,
we obtain

0=
n
(A��n+1|n;µ!µ

n + 2A��n+1|n✓�� + A��n+1|n✓n+1n+1 + A��n+1|µ!µ
n )

+
h
(hn+1nn;µ!

µ
n + 2hn+1nµ !µ

n � hn+1nn ✓n+1n+1 )A��n+1;n+1

+ hn+1nn (A��n+1;n+1;µ!µ
n + 2A��n+1;n+1✓�� + 2A��n+1;n+1✓n+1n+1 )

i

�
hX

⌧

(hn+1⌧n;µ!
µ
n + hn+1nn !n⌧ + hn+1�n !

�
⌧ + hn+1⌧µ !µ

n � hn+1⌧n ✓n+1n+1 )An+1n+1⌧

+
X

⌧

hn+1⌧n (An+1n+1⌧ ;µ!µ
n + 2An+1n+1⌧ ✓n+1n+1 + An+1n+1� ✓�⌧ )

i

�
hX

⌧

2(hn+1nn;µ!
µ
n + 2hn+1nµ !µ

n � hn+1nn ✓n+1n+1 )A��⌧ An+1n+1⌧

+
X

⌧

2hn+1nn (A��⌧ ;µ!µ
n + 2A��⌧ ✓�� + A��� ✓�⌧ )An+1n+1⌧

+
X

⌧

2hn+1nn A��⌧ (An+1n+1⌧ ;µ!µ
n +2An+1n+1⌧ ✓n+1n+1+An+1n+1� ✓�⌧ )

io
(mod(!l))
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=
n⇣
A��n+1|n;µ + A��n+1|µ + 2hn+1nµ A��n+1;n+1 + hn+1nn A��n+1;n+1;µ

�
X

⌧

hn+1⌧n;µAn+1n+1⌧ + hn+1nn An+1n+1µ �
X

⌧

hn+1⌧µ An+1n+1⌧

�
X

⌧

hn+1⌧n An+1n+1⌧ ;µ �
X

⌧

4hn+1nµ A��⌧ An+1n+1⌧

�
X

⌧

2hn+1nn A��⌧ ;µAn+1n+1⌧ �
X

⌧

2hn+1nn A��⌧ An+1n+1⌧ ;µ
⌘
!µ
n

+ 2A��n+1|n!�� +
⇣
2hn+1nn A��n+1;n+1 �

X

⌧

4hn+1nn A��⌧ An+1n+1⌧
⌘
!��

�
⇣X

⌧

hn+1�n An+1n+1⌧ +
X

⌧

hn+1⌧n An+1n+1� +
X

⌧

2hn+1nn A��� An+1n+1⌧

+
X

⌧

2hn+1nn A��⌧ An+1n+1�
⌘
!�⌧

o
(mod(!l))

=
n⇣
A��n+1|n;µ + hn+1nµ A��n+1;n+1 + hn+1nn A��n+1;n+1;µ

+
X

⌧

Pn+1⌧nµAn+1n+1⌧

+ hn+1nn An+1n+1µ �
X

⌧

hn+1⌧n An+1n+1⌧ ;µ �
X

⌧

2hn+1nµ A��⌧ An+1n+1⌧

�
X

⌧

2hn+1nn A��⌧ ;µAn+1n+1⌧ �
X

⌧

2hn+1nn A��⌧ An+1n+1⌧ ;µ
⌘
!µ
n

+ 2A��n+1|n!�� +
⇣
2hn+1nn A��n+1;n+1 �

X

⌧

4hn+1nn A��⌧ An+1n+1⌧
⌘
!��

�
X

⌧,�

⇣
hn+1⌧n An+1n+1� + 2hn+1nn A��⌧ An+1n+1�

⌘
(!�⌧ + !⌧� )

o
(mod(!l))

=
n⇣
A��n+1|n;µ + hn+1nµ A��n+1;n+1 + hn+1nn A��n+1;n+1;µ + Pn+1µnµAn+1n+1µ

+ hn+1nn An+1n+1µ �
X

⌧

hn+1⌧n An+1n+1⌧ ;µ �
X

⌧

2hn+1nµ A��⌧ An+1n+1⌧

�
X

⌧

2hn+1nn A��⌧ ;µAn+1n+1⌧ �
X

⌧

2hn+1nn A��⌧ An+1n+1⌧ ;µ
⌘
!µ
n

+
X

⌧

2hn+1⌧n An+1n+1⌧!��

+
X

⌧,�

2
⇣
hn+1⌧n An+1n+1� + 2hn+1nn A��⌧ An+1n+1�

⌘
A�⌧µ!µ

n

o
(mod(!l))
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=
n
A��n+1|n;µ + hn+1nµ A��n+1;n+1 + hn+1nn A��n+1;n+1;µ

+ Pn+1µnµAn+1n+1µ
+ hn+1nn An+1n+1µ �

X

⌧

hn+1⌧n An+1n+1⌧ ;µ �
X

⌧

2hn+1nµ A��⌧ An+1n+1⌧

�
X

⌧

2hn+1nn A��⌧ ;µAn+1n+1⌧ �
X

⌧

2hn+1nn A��⌧ An+1n+1⌧ ;µ

�
X

⌧

2hn+1⌧n An+1n+1⌧ A��µ

+
X

⌧,�

2
⇣
hn+1⌧n An+1n+1� + 2hn+1nn A��⌧ An+1n+1�

⌘
A�⌧µ

o
!µ
n (mod(!l)).

(3.14)

This implies that

A��n+1|n;µ + hn+1nµ A��n+1;n+1 + hn+1nn A��n+1;n+1;µ + Pn+1µnµAn+1n+1µ
+ hn+1nn An+1n+1µ �

X

⌧

hn+1⌧n An+1n+1⌧ ;µ �
X

⌧

2hn+1nµ A��⌧ An+1n+1⌧

�
X

⌧

2hn+1nn A��⌧ ;µAn+1n+1⌧ �
X

⌧

2hn+1nn A��⌧ An+1n+1⌧ ;µ

�
X

⌧

2hn+1⌧n An+1n+1⌧ A��µ

+
X

⌧,�

2
⇣
hn+1⌧n An+1n+1� + 2hn+1nn A��⌧ An+1n+1�

⌘
A�⌧µ = 0.

(3.15)

It follows from Proposition 3.1 and Proposition 3.2 that for � 6= µ

X

⌧,�

2
⇣
hn+1⌧n An+1n+1� + 2hn+1nn A��⌧ An+1n+1�

⌘
A�⌧µ

=
X

⌧

2
⇣
hn+1⌧n An+1n+1µ + 2hn+1nn A��⌧ An+1n+1µ

⌘
Aµ⌧µ

+
X

⌧

X

� 6=µ

2
⇣
hn+1⌧n An+1n+1� + 2hn+1nn A��⌧ An+1n+1�

⌘
A�⌧µ

=
h X

⌧ 6=�,µ

2
⇣
hn+1⌧n An+1n+1µ + 2hn+1nn A��⌧ An+1n+1µ

⌘
Aµ⌧µ

+ 2
⇣
hn+1�n An+1n+1µ + 2hn+1nn A���An+1n+1µ

⌘
Aµ�µ

+ 2
⇣
hn+1µn An+1n+1µ + 2hn+1nn A��µAn+1n+1µ

⌘
Aµµµ

i

+
X

� 6=µ

2
⇣
hn+1µn An+1n+1� + 2hn+1nn A��µAn+1n+1�

⌘
A�µµ
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+
X

� 6=µ

2
⇣
hn+1�n An+1n+1� + 2hn+1nn A��� An+1n+1�

⌘
A��µ

=
X

⌧ 6=�,µ

2
⇣
hn+1⌧n An+1n+1µ + 2hn+1nn A��⌧ An+1n+1µ

⌘
Aµµ⌧

+ 2hn+1�n An+1n+1µAµµ� + 12hn+1nn A2µµ�An+1n+1µ

+ 6hn+1µn A2n+1n+1µ + 12hn+1nn A3��µ

+
h X

� 6=�,µ

2
⇣
hn+1µn An+1n+1� + 2hn+1nn A��µAn+1n+1�

⌘
A�µµ

+ 2
⇣
hn+1µn An+1n+1� + 2hn+1nn A��µAn+1n+1�

⌘
A�µµ

i

+
h X

� 6=�,µ

2
⇣
hn+1�n An+1n+1� + 2hn+1nn A��� An+1n+1�

⌘
A��µ

+ 2
⇣
hn+1�n An+1n+1� + 2hn+1nn A���An+1n+1�

⌘
A��µ

i

= 4hn+1�n An+1n+1µAµµ� + 28hn+1nn A2µµ�An+1n+1µ

+ 2hn+1µn A2n+1n+1� + 6hn+1µn A2n+1n+1µ + 12hn+1nn A3��µ

+
X

⌧ 6=�,µ

⇣
4hn+1⌧n A��µAµµ⌧ + 2hn+1µn A2��⌧ + 12hn+1nn A2��⌧ A��µ

⌘
.

(3.16)

Similarly, we have also

�
X

⌧

hn+1⌧n An+1n+1⌧ ;µ �
X

⌧

2hn+1nµ A��⌧ An+1n+1⌧

�
X

⌧

2hn+1⌧n An+1n+1⌧ A��µ

= �6hn+1�n An+1n+1µAµµ� � 6hn+1µn A2n+1n+1� � 4hn+1µn A2n+1n+1µ
� hn+1nµ An+1n+1µ;µ

+
X

⌧ 6=�,µ

⇣
� 6hn+1⌧n A��µAµµ⌧ � 2hn+1µn A2��⌧

⌘
.

(3.17)

And

�
X

⌧

2hn+1nn A��⌧ ;µAn+1n+1⌧ �
X

⌧

2hn+1nn A��⌧ An+1n+1⌧ ;µ

= � 48hn+1nn A2µµ�An+1n+1µ � 2hn+1nn A��µ;µAn+1n+1µ

� 2hn+1nn A��µAn+1n+1µ;µ �
X

⌧ 6=�,µ

16hn+1nn A2��⌧ A��µ.

(3.18)
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Substituting (3.16), (3.17) and (3.18) into (3.15) yields

A��n+1|n;µ + hn+1nn A��n+1;n+1;µ + Pn+1µnµAn+1n+1µ + hn+1nn An+1n+1µ

� 2hn+1�n An+1n+1µAµµ� � 4hn+1µn A2n+1n+1� + 2hn+1µn A2n+1n+1µ

� 20hn+1nn A2µµ�An+1n+1µ + 12hn+1nn A3��µ

+ hn+1nµ A��n+1;n+1 � hn+1nµ An+1n+1µ;µ

� 2hn+1nn A��µ;µAn+1n+1µ � 2hn+1nn A��µAn+1n+1µ;µ

+
X

⌧ 6=�,µ

⇣
� 2hn+1⌧n A��µAµµ⌧ � 4hn+1nn A2��⌧ A��⌧

⌘

= 0.

(3.19)

It can be seen from the second formula of Proposition 3.4 that

hn+1nn A��n+1;n+1;µ = hn+1nn A��n+1;µ;n+1

= 6hn+1nn A��n+1;n+1A��µ.
(3.20)

It follows from the first formula of Proposition 3.3 that

hn+1nµ A��n+1;n+1 � hn+1nµ An+1n+1µ;µ

� 2hn+1nn A��µ;µAn+1n+1µ � 2hn+1nn A��µAn+1n+1µ;µ

= hn+1nµ A��n+1;n+1 � hn+1nµ (An+1n+1�;� + 4A2n+1n+1µ � 4A2n+1n+1�)

� 2hn+1nn (A��n+1;n+1 + 4A2��µ � 4A2��n+1)An+1n+1µ

� 2hn+1nn A��µ(An+1n+1�;� + 4A2n+1n+1µ � 4A2n+1n+1�)

= � 4hn+1nµ A2n+1n+1µ + 4hn+1nµ A2n+1n+1�

� 16hn+1nn A3��µ + 8hn+1nn A2n+1n+1�A��µ � 4hn+1nn A��µAn+1n+1�;�.

(3.21)

Substituting (3.20) and (3.21) into (3.19), we obtain

A��n+1|n;µ + Pn+1µnµAn+1n+1µ + hn+1nn An+1n+1µ

� 2hn+1�n An+1n+1µAµµ� � 2hn+1µn A2n+1n+1µ

� 12hn+1nn A2µµ�An+1n+1µ � 4hn+1nn A3��µ + 2hn+1nn A��µAn+1n+1�;�

+
X

⌧ 6=�,µ

⇣
� 2hn+1⌧n A��µAµµ⌧ � 4hn+1nn A2��⌧ A��⌧

⌘

= 0.

(3.22)
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On the other hand, by A��n+1 = 0, (3.13) and Proposition 3.4, using the Ricci
identity, we have

A��n+1|n;µ + Pn+1µnµAn+1n+1µ

= A��n+1;µ|n + A��µP
µ
n+1nµ + Pn+1µnµAn+1n+1µ

= 2A��µA��n+1|n
= �2hn+1nn A��n+1;n+1 + 2

X

⌧

hn+1⌧ l An+1n+1⌧

+
X

⌧

4hn+1nn A��⌧ An+1n+1⌧

= �2hn+1nn A��n+1;n+1 + 2hn+1�n An+1n+1µAµµ� + 2hn+1µn A2n+1n+1µ

+ 12hn+1nn A2µµ�An+1n+1µ + 4hn+1nn A3��µ

+
X

⌧ 6=�,µ

⇣
2hn+1⌧n A��µAµµ⌧ + 4hn+1nn A2��⌧ A��⌧

⌘
.

(3.23)

Combining (3.22) and (3.23), we get

hn+1nn An+1n+1µ = 0. (3.24)

Taking the exterior differentiation of (3.24), we have that hn+1ni An+1n+1µ = 0. This
completes the proof of Proposition 4.2.

Proposition 3.7. Let
⇣
Mn+1

, F
⌘
be a Randers space with constant flag curva-

ture K = 1. If (M, F) is a hypersurface of (Mn+1
, F). Then hn+1ni Pn+1jkn+1 =

hn+1ni Pljkn+1 = hn+1ni Pn+1jkl = 0.
Proof. In the following, the computation is pointwisely estimated.

In case hn+1ni = 0,8i . Obviously Proposition 3.7 is true. In case hn+1ni 6= 0.
This is a neighborhoodU such that hn+1ni 6=0 onU . Then we have that An+1n+1�=0
on U by Proposition 3.6. Exterior differentiate An+1n+1n+1 = 0, we obtain that
An+1n+1n+1;�=0, i.e., An+1n+1�;n+1=0. Now exterior differentiate An+1n+1�=0,
we get that

An+1n+1�|l = An+1n+1�;µ = 0. (3.25)
It can be seen from (3.25) and Proposition 3.5 that

A��n+1|l = A��n+1;µ = 0. (3.26)

By (3.25), (3.26), Proposition 2.4, Proposition 3.4 and Proposition 3.5, using the
Ricci identity, we have that for 8� 6= µ

A��n+1|n|µ = A�µn+1|n|� = hn+1n� A�µn+1|n;n+1
= hn+1n� A�µn+1;n+1|n
= 0,

(3.27)
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and
A�n+1n+1|n|µ = 0. (3.28)

Exterior differentiate (3.25) and (3.26), combining (3.27) and (3.28), we obtain that

A��n+1|n+1✓n+1n = A�n+1n+1|n+1✓n+1n = 0. (3.29)

This implies that hn+1ni Pn+1jkn+1 = hn+1ni Pn+1jkl = hn+1ni Pljkn+1 = 0.

Proposition 3.8. Let
⇣
Mn+1

, F
⌘
be a Randers space with constant flag curvature

K = 1. If (M, F) is a hypersurface of
⇣
Mn+1

, F
⌘
. Then Ai jn+1|n = 0.

Proof. In the following, the computation is pointwisely estimated.
It follows from Proposition 3.6 that

hn+1nl = 0 or An+1n+1� = 0. (3.30)

(1) In case An+1n+1� = 0. It can be seen from (3.26) and the first formula of
Proposition 3.2 that Ai jn+1|n = 0;

(2) In case hn+1ni = 0.

It follows from (3.13) that

A��n+1|l �
X

⌧

hn+1⌧ l An+1n+1⌧ = 0. (3.31)

Setting l = n in (3.31), we get that Ai jn+1|n = 0.

4. Proof of the main theorem

Let

⇤ f =
X

i, j
(nH1�i j � hn+1i j ) f|i | j +

X

i,�,µ
(nH1�i� � hn+1i� ) f|i Pnµµ�, (4.1)

where nH1 =
P

i h
n+1
i i .

For Randers space (M, F) with constant flag curvature K = 1, using (2.7) and
the first formula of Proposition 3.2, we get

Rn+1j i j = �
X

s
(An+1is|n As j j |n � An+1 js|n As ji |n)

= �(An+1i i |n Ai j j |n � An+1 j j |n A j ji |n)

= 0.

(4.2)
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It can be seen from the second formula of Proposition 2.2, Proposition 3.5, Propo-
sition 3.7 and (4.2) that hn+1j i | j = hn+1j j |i . So we can obtain

X

j
(nH1�i j � hn+1i j )| j = 0,

which together with Proposition 2.6 implies that the operator ⇤ is self-adjoint.
It follows from Proposition 2.2, Proposition 2.4, Proposition 3.5, Proposi-

tion 3.7 and Proposition 3.8 that

hn+1i j |k � hn+1ik| j = �Rn+1i jk = 0, (4.3)

and X

i, j,k
hn+1i j hn+1ki;s R

s
njk = �

X

i, j,k
hn+1i j Pn+1kis (�s j�nk � �sk�nj )

= �
X

i, j
hn+1i j Pn+1ni j +

X

i,k
hn+1in Pn+1kik = 0.

(4.4)

It follows from (4.3) and (4.4) that
X

i, j,k
hn+1i j hn+1i j |k|k

=
X

i, j,k
hn+1i j hn+1ik| j |k

=
X

i, j,k
hn+1i j (hn+1ki |k| j + hn+1ki;s R

s
njk + hn+1si Rsk jk + hn+1ks Rsi jk � hn+1ki Rn+1n+1 jk)

=
X

i, j,k
hn+1i j (hn+1kk|i | j + hn+1si Rsk jk + hn+1ks Rsi jk).

(4.5)

It follows from Proposition 2.4, Proposition 3.7 and (4.5) that

1
2
divbg(S|i!

i )

=
X

k

1
2
S|k|k +

1
2

X

�,µ

S|µPn��µ

=
X

i, j,k
(hn+1i j |k )2 +

X

i, j,k
hn+1i j hn+1i j |k|k +

X

i, j,�,µ
hn+1i j hn+1i j |µP

n
��µ

=
X

i, j,k
(hn+1i j |k )2 +

X

i, j,k
hn+1i j hn+1kk|i | j

+
X

i, j,k
hn+1i j (hn+1si Rsk jk + hn+1ks Rsi jk)

+
X

i, j,�,µ
hn+1i j hn+1i j |µP

n
��µ.

(4.6)



COMPACT HYPERSURFACES IN RANDERS SPACE 1163

Since the second mean curvature H2 = 1
n(n+1) [(nH1)

2 � S] is constant, we have
that (nH1)2|i = S|i . It follows from (4.6) that

1
2
divbg((nH1)2|i!

i )

=
X

i, j,k
(hn+1i j |k )2 +

X

i, j,k
hn+1i j hn+1kk|i | j

+
X

i, j,k
hn+1i j (hn+1si Rsk jk + hn+1ks Rsi jk) +

X

i, j,�,µ
hn+1i j hn+1i j |µP

n
��µ.

(4.7)

It follows from (4.1) and (4.7) that

⇤(nH1) =
X

i
nH1(nH1)|i |i �

X

i, j
hn+1i j (nH1)|i | j

+
X

i,�,µ
(nH1�i� � hn+1i� )(nH1)|i Pnµµ�

=
1
2
divbg[(nH1)2|i!

i ] �
X

i
(nH1|i )2

�
X

i,�,µ
nH1(nH1)|µPn��µ �

X

i, j
hn+1i j (nH1)|i | j

+
X

i,�,µ
(nH1�i� � hn+1i� )(nH1)|i Pnµµ�

=
X

i, j,k
(hn+1i j |k )2 �

X

i
(nH1|i )2

+
X

i, j,k
hn+1i j (hn+1si Rsk jk + hn+1ks Rsi jk)

+
X

i, j,�,µ
hn+1i j hn+1i j |µP

n
��µ �

X

i,�,µ
hn+1i� (nH1)|i Pnµµ�.

(4.8)

Lemma 4.1. Let (M, F) be a Randers space with constant flag curvature K = 1
and (Mn, F) a compact hypersurface of (M, F) with constant second mean curva-
ture H2 � 0. Then

P
i, j,k(h

n+1
i j |k )2 �

P
i (nH1|i )2 � 0.

Proof. Since H2 is constant, exterior differentiate H2 = 1
n(n+1) [(nH1)

2 � S], we
have that

n2H1H1|k =
X

i j
hn+1i j hn+1i j |k ,

which implies that

n4H21 (H1|k)2 =

✓X

i j
hn+1i j hn+1i j |k

◆2


X

i j
(hn+1i j )2

X

i, j
(hn+1i j |k )2. (4.9)
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On the other hand, it follows from H2 � 0 that (nH1)2 � S2. Then it is easy to see
from (4.9) that

P
i, j,k(h

n+1
i j |k )2 �

P
i (nH1|i )2 � 0.

Lemma 4.2. Let
⇣
Mn+1

, F
⌘
be a Randers space with constant flag curvature K =

1. If (M, F) is a hypersurface of
⇣
Mn+1

, F
⌘
. Then hn+1i i | j P

n
��µ = 0.

Proof. In the following, the computation is pointwisely estimated.

(1) In case An+1n+1� = 0. By (3.25) and Proposition 3.3, we have

Pn��µ = An+1n+1µ|n = 0; (4.10)

(2) In case hn+1ni = 0. Exterior differentiate hn+1n� = 0, we obtain

(
hn+1�µ = 0 8� 6= µ

hn+1�� = �hn+1n�;� = �A��n+1|n.
(4.11)

For a Randers space
⇣
Mn+1

, F
⌘
with constant flag curvature K = 1, (2.8) implies

that
Ai jk|n|l � Ai jl|n|k = �Ai jk�nl + Ai jl�nk . (4.12)

It follows from (4.12) and Proposition 3.2 that

Aµµn+1|n|� = A�µn+1|n|µ = 0, 8� 6= µ. (4.13)

By the second formula of (4.11) and (4.13), we get
(
hn+1��|µ = �A��n+1|n|⌫ = 0 8� 6= µ

hn+1��|� = �Aµµn+1|n|� = 0 8� 6= µ.
(4.14)

This completes the proof of Lemma 4.2.

Lemma 4.3. Let (Mn+1
, F) be a Randers space with constant flag curvature K =1.

If (M, F) is a hypersurface of (Mn+1
, F). Then

X

i, j,k,s,t
hn+1i j hn+1si (Asjt |n Atkk|n � Askt |n Atk j |n)

+
X

i, j,k,s,t
hn+1i j hn+1ks (Asjt |n Atik|n � Askt |n Ati j |n) = 0.
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Proof. It follows from (4.11) that
X

i, j,k,s,t
hn+1i j hn+1si (Asjt |n Atkk|n � Askt |n Atk j |n)

+
X

i, j,k,s,t
hn+1i j hn+1ks (Asjt |n Atik|n � Askt |n Ati j |n)

=
X

i,k,t
hn+1i i hn+1i i (Aiit |n Atkk|n � Aikt |n Atki |n)

+
X

i,k,t
hn+1i i hn+1kk (Akit |n Atik|n � Akkt |n Atii |n)

= 0.

(4.15)

Now we can prove the following:
Main Theorem. Let (M, F) be a Randers space with constant flag curvature
K = 1 and (Mn, F) a compact hypersurface of (M, F) with constant second mean
curvature H2. If H2 � 0 and the norm square S of the second fundamental form of
M satisfies

S 
n

(n � 2)(nH2 + 2)

⇣
n(n � 1)H22 + 4(n � 1)H2 + n

⌘
, (4.16)

then either S = nH2 and M is a Randers space with constant flag curvature K =
1+ H2; or

S =
n

(n � 2)(nH2 + 2)

⇣
n(n � 1)H22 + 4(n � 1)H2 + n

⌘

and M = S1(
p
1� r2) ⇥ Sn�1(r), where r =

q
n�2

n(H2+1) .

Proof. It can be seen from Proposition 2.2, Proposition 2.4, Proposition 3.5 ⇠
Proposition 3.8 that

X

i, j,k
hn+1i j hn+1si Rsk jk

=
X

i, j,k
hn+1i j hn+1si [Rsk jk + hn+1s j hn+1kk � hn+1sk hn+1k j ]

=
X

i, j,k,s
hn+1i j hn+1si [(�s j�kk � �sk�k j ) � (Ask j�kn � Askk� jn)

�
X

t
(Asjt |n Atkk|n � Askt |n Atk j |n) + hn+1s j hn+1kk � hn+1sk hn+1k j ]

� (n � 1)S + 3nH21 S � 2(nH21 )2 �
n(n � 2)

p
n(n � 1)

|H1|[S � nH21 ]
3
2

�
X

i, j,k,s
hn+1i j hn+1si hn+1sk hn+1k j

�
X

i, j,k,s,t
hn+1i j hn+1si (Asjt |n Atkk|n � Askt |n Atk j |n).

(4.17)
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And X

i, j,k
hn+1i j hn+1ks Rsi jk

=S � (nH1)2 � S2 +
X

i, j,k,s
hn+1i j hn+1si hn+1sk hn+1k j

�
X

i, j,k,s,t
hn+1i j hn+1ks (Asjt |n Atik|n � Askt |n Ati j |n).

(4.18)

It follows from (4.17), (4.18) and Lemma 4.3 that
X

i, j,k
hn+1i j hn+1si Rsk jk +

X

i, j,k
hn+1i j hn+1ks Rsi jk

�nS � (nH1)2 � S2 + 3nH21 S � 2(nH21 )2 �
n(n � 2)

p
n(n � 1)

|H1|[S � nH21 ]
3
2 .

(4.19)

Substituting (4.19), Lemma 4.1 and Lemma 4.2 into (4.8), we obtain

⇤(nH1)

�nS � (nH1)2 � S2 + 3nH21 S � 2(nH21 )2 �
n(n � 2)

p
n(n � 1)

|H1|[S � nH21 ]
3
2

�(S � nH21 )
n
n + nH21 � S �

n(n � 2)
p
n(n � 1)

|H1|
q
S � nH21

o
.

(4.20)

It is a direct check that our assumption condition (4.16), i.e.,

S 
n

(n � 2)(nH2 + 2)

⇣
n(n � 1)H22 + 4(n � 1)H2 + n

⌘

is equivalent to

n + nH21 � S �
n(n � 2)

p
n(n � 1)

|H1|
q
S � nH21 . (4.21)

Therefore the right hand side of (4.20) is non-negative. Since M is compact and the
operator ⇤ is self-adjoint, we have that either S � nH21 = 0 or

S =
n

(n � 2)(nH2 + 2)

⇣
n(n � 1)H22 + 4(n � 1)H2 + n

⌘
. (4.22)

(1) In case S � nH21 = 0. We have that hn+1i i = |H1| =
p
H2 is constant and

hn+1i j = 0,8i 6= j .
It follows from Proposition 2.2 and Proposition 2.4 that

Rinjn = �i j�nn � �in� jn + hn+1i j hn+1nn � hn+1in hn+1jn

= �i j � �in� jn + �i j
p
H2hn+1nn � �inhn+1nn � jnhn+1nn

= (�i j � �in� jn)(1+ H2).

(4.23)
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This together with Proposition 2.4 yields that M is a Randers space with con-
stant flag curvature K = 1+ H2;

(2) In the latter case.

We first prove that M is a Riemannian. Suppose M is not a Riemannian. Then
A��µ 6= 0 at a point x . It can be seen from (4.11) and Proposition 3.6 that hn+1ni =

hn+1�µ = 0,8� 6= µ and hn+1µµ = �,8µ. Then we obtain

H1 =
n � 1
n

�, S = (n � 1)�2 and H2 =
n � 2
n

�2. (4.24)

It is easy to see from (4.24) that

S <
n

(n � 2)(nH2 + 2)

⇣
n(n � 1)H22 + 4(n � 1)H2 + n

⌘
, (4.25)

which is in contradiction (4.22). So M is a Riemannian. Then M = S1(
p
1� r2)⇥

Sn�1(r), where r =
q

n�2
n(H2+1) . We complete the proof of Main theorem.
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