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The Dirichlet-to-Neumann operator on C(@�)

WOLFGANG ARENDT AND A. F. M. TER ELST

Abstract. Let � ⇢ Rd be an open bounded set with Lipschitz boundary 0.
Let DV be the Dirichlet-to-Neumann operator with respect to a purely second-
order symmetric divergence form operator with real Lipschitz continuous coef-
ficients and a positive potential V . We show that the semigroup generated by
�DV leaves C(0) invariant and that the restriction of this semigroup to C(0) is
a C0-semigroup. We investigate positivity and spectral properties of this semi-
group. We also present results where V is allowed to be negative. Of independent
interest is a new criterium for semigroups to have a continuous kernel.

Mathematics Subject Classification (2010): 47D06 (primary); 35J57, 35J15,
35K08 (secondary).

1. Introduction

Let � ⇢ Rd be an open set with Lipschitz boundary 0. The Dirichlet-to-Neumann
operator D0 is the self-adjoint operator that is defined in L2(0) as follows. Let
', 2 L2(0). Then ' 2 dom(D0) and D0' =  if and only if there exists a
u 2 H1(�) such that 1u = 0 weakly on �, with Tr u = ' and the weak normal
derivative exists with @⌫u =  . It turns out that the semigroup S generated by�D0
is submarkovian. Hence it extends consistently to a contraction semigroup S(p) on
L p(0) for all p 2 [1,1] and it is a C0-semigroup if p 2 [1,1). By elliptic
regularity the semigroup S leaves the Banach space C(0) of continuous functions
on 0 invariant. Hence it is a natural question whether the restriction of S to C(0) is
aC0-semigroup. As a special case of Theorem 5.3, we prove the following theorem.

Theorem 1.1. Let S be the semigroup generated by the Dirichlet-to-Neumann op-
erator on an open bounded set with Lipschitz boundary 0. Then S leaves C(0)
invariant and the restriction of S to C(0) is a C0-semigroup.

Part of this work is supported by an NZ-EU IRSES counterpart fund and the Marsden Fund
Council from Government funding, administered by the Royal Society of New Zealand. Part of
this work is supported by the EU Marie Curie IRSES program, project ‘AOS’, No. 318910.
Received July 24, 2017; accepted in revised form October 11, 2018.
Published online September 2020.



1170 WOLFGANG ARENDT AND A. F. M. TER ELST

If � has a C1-boundary, then Theorem 1.1 has been proved by Escher [21] and
Engel [20].

Although S leaves C(0) invariant and S is submarkovian, these two facts do
not imply that the restriction T of S to C(0) is a C0-semigroup, since C(0) is not
reflexive. One needs in addition that the generator of the restriction T is densely
defined. This is the major problem that we solve in this paper.

Actually we prove several extensions of Theorem 1.1. The first extension is
that we replace the Laplacian by a divergence form operator A with real symmetric
Lipschitz continuous coefficients. The second extension is that we add a potential
V 2 L1(�, R) to the divergence form operator and consider cases where the po-
tential is negative (but still assuming the Dirichlet problem has a unique solution).
This means that given ' 2 L2(0) we now solve the Dirichlet problem

"
(A + V )u = 0 weakly on �
Tr u = ',

and define the Dirichlet-to-Neumann operator DV by DV' = @⌫u on a suitable
domain. Using form methods one obtains that �DV generates a C0-semigroup
S on L2(0) (see [8]). The main point in this paper is to prove that the part of
DV in C(0) is densely defined in C(0). We prove this for all V 2 L1(�, R),
without any sign condition on V (except assuming that the Dirichlet problem has a
unique solution). This is difficult even for the Laplacian since the normal is merely
a measurable function on 0. For a rich class of potentials we then show that the
restriction of S to C(0) is a C0-semigroup on C(0).

Attention is given to the special case where the semigroup S is positive. Then
we deduce that the Dirichlet-to-Neumann operator is resolvent positive on C(0).

Another main point in this paper is the characterisation of those semigroups in
L2(K ) which have a continuous kernel, where K is a compact metric space. This
is done in an abstract framework. Moreover, we find criteria for the irreducibility
of the semigroup on C(K ). Irreducibility is an important property which implies in
particular that the first eigenfunction is strictly positive. We apply these results to
the Dirichlet-to-Neumann operator but also to elliptic operators with Robin bound-
ary conditions on � if � is connected. So far, for Robin boundary conditions, strict
positivity of the first eigenfunction in C(�)was not known. There is another reason
to consider the Robin operator. Even though � is connected, the boundary 0 need
not be be connected (an example is an annulus). Still we are able to prove irre-
ducibility for the Dirichlet-to-Neumann semigroup on C(0) and this is done with
the Robin semigroup on C(�). We should mention that irreducibility on L2-spaces
is much easier to obtain than on C(K ) (see [26, Corollary 2.11] for elliptic opera-
tors and [10, Theorem 4.2] for the Dirichlet-to-Neumann operator). The difference
can be seen by the consequences for the first eigenfunction. The irreducibility on
L2 merely implies that the first eigenfunction is positive almost everywhere, whilst
irreducibility on C(K ) implies pointwise positive. It is remarkable that our proof
of this strict positivity (which is a purely elliptic property) involves considering the
parabolic problem.
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The paper is organised as follows. In Section 2 we study in an abstract set-
ting when a semigroup S on L2(K ) has a continuous kernel, where K is a compact
metric space. If S is positive and has a self-adjoint generator, then we characterise
when the restriction of S to C(K ) is irreducible. In Section 3 we consider the semi-
group SV generated by�DV , where DV is the Dirichlet-to-Neumann operator with
respect to a symmetric divergence form operator with coefficients akl 2 L1(�, R)
and potential V 2 L1(�, R). We show that SV has a continuous kernel and that
the resolvent of DV leaves C(0) invariant. In Section 4 we prove that the domain
of the part of DV in C(0) is dense in C(0) if the coefficients akl are Lipschitz
continuous. In Section 5 we prove an extension of Theorem 1.1 if akl 2 W 1,1(�)
and the potential V is positive or slightly negative. In Section 6 we study the Robin
semigroup with boundary condition @⌫u+� Tr u = 0 without any sign condition on
� 2 L1(0, R) and with coefficients of the divergence form operator in L1(�, R).
In the last section we show that SV is irreducible if merely � is connected and a
positivity condition is satisfied. Again the coefficients akl are allowed to be mea-
surable.

Using Poisson kernel bounds for the semigroup SV , it is proved in [18] that the
semigroup T is a holomorphic C0-semigroup on C(0) if � has a C1+ -boundary
for some  > 0 and the coefficients akl are merely Hölder continuous. Thus
more boundary smoothness of � is required in [18]. We do not know whether
the semigroup on C(0) in Theorem 1.1 is holomorphic if � has merely a Lipschitz
boundary.

ACKNOWLEDGEMENTS. The first-named author is most grateful for the hospi-
tality extended to him during a fruitful stay at the University of Auckland and the
second-named author for a wonderful stay at the University of Ulm.

2. Continuous kernel and irreducibility

In this section we consider a semigroup S on the space L2(K , µ), where K is com-
pact and µ is a finite Borel measure. Our first aim is to investigate when S has a
continuous kernel. Subsequently we asume that S is positive (in the lattice sense)
and self-adjoint. We will find criteria which imply that the first eigenfunction is
continuous and strictly positive. In the sequel of this paper these two results will
be applied to both the Dirichlet-to-Neumann operator and an elliptic operator with
Robin boundary condition.

In general, by a semigroup on a Banach space X we understand simply a map
S : (0,1) ! L(X) satisfying St+s = St Ss for all t, s 2 (0,1), without any
further continuity assumption. If S is a semigroup on L2(K , µ) we say that S has a
continuous kernel if for all t > 0 there exists a continuous function kt : K⇥K ! C
such that for all u 2 L2(K ) the function Stu is given by

(Stu)(x) =
Z

K
kt (x, y) u(y) dy
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for almost every x 2 K . In many concrete situations regularity properties of kernels
have been investigated, but so far no characterisation for continuity of the kernel
seems to be known. The following theorem is such a charcaterisation in terms of a
natural property, Condition (ii) in Theorem 2.1, which is frequently easy to verify.
Note that the semigroup does not have to be continuous in this theorem.

Theorem 2.1. Let K be a compact metric space and µ a finite Borel measure on K
with suppµ = K . Let S be a semigroup on L2(K , µ). Then the following are
equivalent:

(i) The operator St has a continuous kernel for all t > 0;
(ii) There exists a p0 2 [2,1) such that St L p0(K ) ⇢ C(K ) and S⇤

t L p0(K ) ⇢
C(K ) for all t > 0;

(iii) St L2(K ) ⇢ C(K ) and S⇤
t L2(K ) ⇢ C(K ) for all t > 0.

Proof. (i)) (ii). Trivial.
(ii) ) (iii). We may assume that p0 2 N. Let t > 0. Then S⇤

t is bounded from
L p0(K ) into L1(K ), so by duality St extends to a bounded operator from L1(K )

into Lq0(K ), where 1
q0 = 1� 1

p0 . Also St is bounded from L p0(K ) into L1(K ). So
by interpolation, given p 2 [1, p0], the operator St extends to a bounded operator
from L p(K ) into Lq(K ), where 1

p � 1
q = 1

p0 . Starting with p = 1 and using
the semigroup property, iteration gives that for all t > 0 and k 2 {1, . . . , p0} the
operator St extends to a bounded operator from L1(K ) into Lq(K ), where 1

q =

1� k
p0 . Therefore condition (iii) is valid.

(iii)) (i). Let t > 0. Then S⇤
t L2(K ) ⇢ C(K ) ⇢ L1(K ), so by duality St extends

to a bounded operator from L1(K ) into L2(K ), also denoted by St . Then by the
semigroup property S2t L1(K ) ⇢ L1(K ). Hence by the Dunford–Pettis theorem,
for all t > 0 there exists a bounded measurable function k̃t : K ⇥ K ! C such that

(Stu, v)L2(K ) =
Z

K⇥K
(v ⌦ u) k̃t

for all u, v 2 L2(K ). Hence if u 2 L2(K ), then

(Stu)(x) =
Z

K
k̃t (x, y) u(y) dy (2.1)

for almost every x 2 K and by duality

(S⇤
t u)(x) =

Z

K
k̃⇤
t (x, y) u(y) dy

for almost every x 2 K , where k̃⇤
t (x, y) = k̃t (y, x) for all (x, y) 2 K ⇥ K and

t > 0. If t > 0, then the semigroup property gives that

k̃2t (x, y) =
Z

K
k̃t (x, z) k̃t (z, y) dz (2.2)
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for almost every (x, y) 2 K ⇥ K . In particular, for almost all x 2 K it follows that
(2.2) is valid for almost every y 2 K .

Fix t > 0. Since St L2(K ) ⇢ C(K ) it follows from the Riesz representation
theorem that for all x 2 K there exists a ktx 2 L2(K ) such that

(Stu)(x) = (u, ktx )L2(K )

for all u 2 L2(K ) and kktxk2  kStk2!1. Similarly, for all y 2 K there exists a
k⇤t
y 2 L2(K ) such that

(S⇤
t u)(y) = (u, k⇤t

y )L2(K )

for all u 2 L2(K ). Then kk⇤t
x k2  kS⇤

t k2!1. Next we use (2.1). Let u 2 L2(K ).
Then Z

K
k̃t (x, y) u(y) dy = (Stu)(x) = (u, ktx )L2(K ) (2.3)

for almost every x 2 K . Since C(K ) is separable and C(K ) is dense in L2(K ), also
the space L2(K ) is separable. Then by continuity and density it follows that (2.3)
is valid for all u 2 L2(K ) for almost every x 2 K . Therefore ktx = k̃t (x, · ) almost
everywhere for almost every x 2 K . Similarly, k⇤t

y = k̃⇤
t (y, · ) almost everywhere

for almost every y 2 K . Hence k⇤t
y = k̃t ( · , y) almost everywhere for almost every

y 2 K .
The semigroup property (2.2) and Fubini’s theorem give that for almost every

x 2 K it follows that

k̃2t (x, y) =
Z

K
k̃t (x, z) k̃t (z, y) dz

for almost every y 2 K . Hence for almost every x 2 K it follows that

k̃2t (x, y) =
Z

K
ktx (z) k

⇤t
y (z) dz = (k⇤t

y , ktx )L2(K )

for almost every y 2 K . Define k̂2t : K ⇥ K ! C by

k̂2t (x, y) = (k⇤t
y , ktx )L2(K ).

We proved that k̃2t (x, · ) = k̂2t (x, · ) almost everywhere for almost every x 2 K .
Clearly |k̂2t (x, y)|  kStk2!1 kS⇤

t k2!1 for all x, y 2 K .
Since Stu 2 C(K ) obviously x 7! (Stu)(x) = (u, ktx )L2(K ) is continuous for

all u 2 L2(K ). Hence if y 2 K , then the function x 7! k̂2t (x, y) is continuous from
K intoC. Similarly, for all x 2 K the function y 7! k̂2t (x, y) is continuous from K
into C. In particular, k̂2t is a Carathéodory function and therefore measurable (see
[1, Lemma 4.51]). Because k̃2t (x, · ) = k̂2t (x, · ) almost everywhere for almost
every x 2 K , one deduces from Fubini’s theorem that k̃2t = k̂2t almost everywhere.



1174 WOLFGANG ARENDT AND A. F. M. TER ELST

Define k4t : K ⇥ K ! C by

k4t (x, y) =
Z

K
k̂2t (x, z) k̂2t (z, y) dz.

Then the semigroup poperty (2.2) gives

k̃4t (x, y) =
Z

K
k̃2t (x, z) k̃2t (z, y) dz =

Z

K
k̂2t (x, z) k̂2t (z, y) dz = k4t (x, y)

for almost every (x, y) 2 K ⇥ K . So k̃4t = k4t almost everywhere.
Finally, for all z 2 K the function (x, y) 7! k̂2t (x, z) k̂2t (z, y) is continuous

from K ⇥ K into C and bounded by kStk22!1 kS⇤
t k
2
2!1. Moreover, the measure

is finite. Hence by the Lebesgue dominated convergence theorem one deduces that
k4t is continuous. Therefore k̃4t has a continuous representative.

Remark 2.2. Theorem 2.1 is also valid if K is replaced by a locally compact metric
space X and C(K ) is replaced by Cb(X). We do not know whether the condition
that µ is a finite Borel measure can be relaxed to µ being a regular measure.

In the situation of Theorem 2.1 it follows immediately that St leaves C(K ) in-
variant for all t > 0. Since kernel operators are compact, it follows that (St |C(K ))t>0
is a semigroup of compact operators in C(K ). It is not clear, however, whether it is
a C0-semigroup, even if S is a C0-semigroup on L2(K ).

A subspace I of a (general) Banach lattice E is called an ideal if
"
u 2 I implies |u| 2 I and
u 2 I, v 2 E and 0  v  u implies v 2 I.

A semigroup on E is called irreducible if the only invariant closed ideals are {0}
and E . If (X,6, µ) is a measure space, p 2 [1,1) and I ⇢ L p(X), then I
is a closed ideal if and only if there exists a measurable subset Y ⇢ X such that
I = { f 2 L p(X) : f |Y = 0 a.e.} (see [27, Section III.1 Example 1]). A subspace
I of C(K ) is a closed ideal of C(K ) if and only if there exists a closed set B ⇢ K
such that I = { f 2 C(K ) : f |B = 0} (see [27, Section III.1 Example 2]). We
refer to [23] for much more information on irreducible semigroups. An operator
B : E ! E is called positive if B f � 0 for all f 2 E with f � 0. A semigroup S
on E is called positive if St is positive for all t > 0.

In this paper we need a number of known properties of positive and irreducible
semigroups when E = L2(K ), where K is a compact metric space. For conve-
nience and future reference we collect them in the next lemma.

Lemma 2.3. Let S be a C0-semigroup on L2(K , µ), where K is a compact metric
space and µ is a finite Borel measure on K . Suppose the generator �A of S is
self-adjoint and that St has a bounded kernel for all t > 0. Then one has the
following:
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(a) For all t > 0 the operator St is a Hilbert–Schmidt operator;
(b) The operator A has compact resolvent and min � (A) is an eigenvalue;
(c) If S is positive, then there exists an eigenfunction u1 with eigenvaluemin � (A)

such that u1 � 0 almost everywhere;
(d) If S is positive and irreducible, then the eigenvaluemin � (A) is simple. More-

over, there exists an eigenfunction u1 with eigenvalue min � (A) such that
u1(x) > 0 for almost every x 2 K .

Proof. (a) and (b) are easy.

(c). This follows from the Krein–Rutman theorem, see for example [11, Theo-
rem 12.15].

(d). See [11, Proposition 14.12(c) and Example 14.11(a)].

We emphasise that the eigenfunction u1 in Statement (c) is in general not
unique, even not up to a positive constant. If moreover St L2(K ) ⇢ C(K ) for
all t > 0, then u1 is continuous. If S is irreducible (on L2(K )), then u1(x) > 0 for
almost all x 2 K by Lemma 2.3(c). Of course this does not imply that u1(x) > 0
for all x 2 K . We will relate this strict positivity with the irreducibility of the semi-
group on C(K ). The main point of the following proposition is that the very weak
nondegeneracy condition (ii) implies that the first eigenfunction is strictly positive.

Proposition 2.4. Let K be a compact connected metric space and µ a finite Borel
measure on K with suppµ = K . Let S be a positive C0-semigroup on L2(K , µ)
with self-adjoint generator �A. Suppose that St L2(K ) ⇢ C(K ) for all t > 0.
Define

Sct = St |C(K ) : C(K ) ! C(K )

for all t > 0. Then the following are equivalent:

(i) The semigroup Sc = (Sct )t>0 is irreducible;
(ii) For all x 2 K there exist t > 0 and f 2 C(K ) such that (Sct f )(x) 6= 0;
(iii) There exists a � > 0 such that u1(x) � � for all x 2 K , where u1 2 L2(K )

is an eigenfunction with eigenvalue min � (A) such that u1 � 0 almost every-
where;

(iv) For all f 2 C(K ) with f � 0 and f 6= 0 it follows that (St f )(x) > 0 for all
t > 0 and x 2 K .

Proof. (i)) (iv). This is a variation of a theorem of Majewski and Robinson [22].
Let x 2 K . It follows from irreducibility that there exists a t1 > 0 such that
(Sct1 f )(x) > 0 (see [23, Section C-III Definition 3.1]). Let � 2 (0, t1). We shall
show that (Sct f )(x) = 0 for all t 2 (�,1). Set t0 = t1 � � and g = Sc� f . Then
(Sct0g)(x) > 0. Since Sc has a holomorphic extension to a sector with values in
L(C(K )), it follows from the proof in [23, Theorem C-III.3.2(b)] that (Sct g)(x) > 0
for all t > 0.
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(iv)) (iii). This is trivial.
(iii)) (ii). Take f = u1.
(ii) ) (i). By Theorem 2.1 the operator St has a continuous kernel kt for all

t > 0. Let B ⇢ K be a closed set with ; 6= B 6= K . Define

I = { f 2 C(K ) : f |B = 0}.

Suppose that the closed ideal I is invariant under S. Define g 2 C(K ) by g(x) =
d(x, B). Then g 2 I . Since K is connected there exists an x0 2 @B. Let t > 0.
Because St g 2 I , one deduces that

Z

K
kt (x0, y) d(y, B) dµ(y) = (St g)(x0) = 0.

Hence kt (x0, y) = 0 for a.e. y 2 K \ B. Since kt is continuous and µ is strictly
positive on open sets it follows that kt (x0, y) = 0 for all y 2 K \ B. Because
x0 2 @B one establishes that kt (x0, x0) = 0. The semigroup property and symmetry
then imply that

0 = kt (x0, x0) =
Z

K
kt/2(x0, y) kt/2(y, x0) dµ(y) =

Z

K
|kt/2(x0, y)|2 dµ(y).

Hence kt/2(x0, y) = 0 for almost every y 2 K . Consequently (St/2 f )(x0) = 0 for
all f 2 C(K ). This is for all t > 0, which is a contradiction.

Condition (ii) is automatically satisfied if the semigroup Sc is a C0-semigroup,
because then limt#0 Sct 11 = 11 in C(K ). As a consequence the semigroup is irre-
ducible and u1(x) > 0 for all x 2 K . This is surprising, since only the connected-
ness of K is responsible for this property. We state this as a corollary.

Corollary 2.5. Let K be a compact connected metric space and µ a finite Borel
measure on K with suppµ = K . Let S be a positive C0-semigroup on L2(K , µ)
with self-adjoint generator. Suppose that St L2(K ) ⇢ C(K ) for all t > 0. Define

Sct = St |C(K ) : C(K ) ! C(K )

for all t > 0. If Sc is a C0-semigroup, then it is irreducible and minx2K u1(x) > 0.

There is a remarkable consequence of irreducibility: the semigroup S extends
to a consistent C0-semigroup on L p(K ) for all p 2 [1,1).

Proposition 2.6. Let K be a compact connected metric space and µ a finite Borel
measure on K with suppµ = K . Let S be a positive C0-semigroup on L2(K , µ)
with self-adjoint generator �A. Suppose that St L2(K ) ⇢ C(K ) for all t > 0 and
that Sc is irreducible. Then for all p 2 [1,1) there exists a C0-semigroup S(p)

on L p(K ) which is consistent to S. Moreover, there exists an M � 1 such that
kS(p)

t kp!p  M e��1t for all t > 0 and p 2 [1,1), where �1 = min � (A).
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Proof. Let � > 0 be as in Proposition 2.4(iii). Let 0  f 2 L1(K ). Then

0  f 
k f k1

�
� 

k f k1

�
u1.

Hence St f  k f k1
� Stu1  k f k1

� e��1t u1 and kSt f k1  M e��1t k f k1 for all
t > 0, where M = ��1 ku1k1. Since S is a self-adjoint semigroup, it follows by
duality that kSt f k1  M e��1t k f k1 for all f 2 L2(K ). Then by interpolation
kSt f kp  M e��1t k f kp for all f 2 L2(K ) \ L p(K ). Since the measure is finite
the semigroup is a C0-semigroup, see [28].

We emphasise that we do not assume in Proposition 2.6 that Sc is a C0-semi-
group on C(K ).

3. The Dirichlet-to-Neumann semigroup: invariance of C(0)

In this section we introduce the main setting of this paper and recall some known
results for the Dirichlet-to-Neumann operator and the associated semigroup.

Let � ⇢ Rd be a bounded open set with Lipschitz boundary. For all k, l 2
{1, . . . , d} let akl 2 L1(�, R). Suppose that

akl = alk (3.1)

for all k, l 2 {1, . . . , d} and that there exists a µ > 0 such that

Re
dX

k,l=1
akl(x) ⇠k ⇠l � µ |⇠ |2 (3.2)

for all ⇠ 2 Cd and x 2 �. Let V 2 L1(�, R). Define the forms a, aV : H1(�) ⇥
H1(�) ! C by

a(u, v) =
dX

k,l=1

Z

�
akl (@ku) @lv and aV (u, v) = a(u, v) +

Z

�
V u v.

Let AN be the operator in L2(�) associated with the form a and let AD be the
operator in L2(�) associated with the form a|H10 (�)⇥H10 (�). Then A

N + V is the
operator associated with aV and AD + V is the operator associated with the form
aV |H10 (�)⇥H10 (�). We assume throughout this paper that

0 62 � (AD + V ). (3.3)

Let 0 be the boundary of�. We provide 0 with the (d � 1)-dimensional Hausdorff
measure. Let DV be the Dirichlet-to-Neumann operator in L2(0) associated with
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(aV ,Tr ). This means the following. If ', 2 L2(0), then ' 2 DV and DV' =  
if and only if there exists a u 2 H1(�) such that Tr u = ' and

aV (u, v) = ( ,Tr v)L2(0)

for all v 2 H1(�). It follows from [8, Theorem 4.5], or [12, Theorem 5.10], that
DV is a self-adjoint graph, which is indeed a self-adjoint operator because of the
condition (3.3). Moreover, DV is lower bounded by [8, Theorem 4.15].

We can give another description of the operator DV , for which we need the
notion of a weak conormal derivative. Let H�1(�) be the dual space of H10 (�).
We define the operatorsA,A+ V : H1(�) ! H�1(�) by

hAu, vi = a(u, v) and h(A+ V )u, vi = aV (u, v).

Let u 2 H1(�) and suppose that Au 2 L2(�). Then we say that u has a weak
conormal derivative if there exists a  2 L2(0) such that

a(u, v) �
Z

�
(Au) v =

Z

0
 Tr v

for all v 2 H1(�). By the Stone–Weierstrass it follows that the function  is
unique and we write @⌫u =  . Note that the conormal derivative depends on the
coefficients akl , which is suppressed in the notation.

With this notation the operator AN can be seen as the realization ofA in L2(�)
with Neumann boundary conditions, since

dom(AN ) = {u 2 H1(�) : Au 2 L2(�) and @⌫u = 0}

and ANu = Au for all u 2 dom(AN ).
The alluded characterisation of DV is as follows.

Lemma 3.1. Let ', 2 L2(0). Then the following are equivalent.

(i) ' 2 dom(DV ) and DV' =  .
(ii) There exists a u 2 H1(�) such that (A+ V )u = 0, Tr u = ' and @⌫u =  .

We leave the easy proof to the reader.

Let SV be the semigroup generated by �DV . In the next proposition we use
elliptic regularity to show that the resolvent of DV leaves C(0) invariant.

Lemma 3.2. For all k, l 2 {1, . . . , d} let akl 2 L1(�, R). Let V 2 L1(�, R).
Suppose (3.1), (3.2) and (3.3) are valid. Let ! 2 R be such that kSVt k2!2  e!t
for all t > 0. Let � 2 (!,1) and  2 C(0). Then (� I + DV )�1 2 C(0).
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Proof. Write ' = (� I + DV )�1 2 L2(0). Then DV' =  � �'. There exists
a unique u 2 H1(�) such that Tr u = ' and aV (u, v) =

R
0( � �')Tr v for all

v 2 H1(�). Then

a(u, v) +
Z

�
V u v + �

Z

0
Tr u Tr v =

Z

0
 Tr v

for all v 2 H1(�). Hence by [25, Theorem 3.14(ii)] one deduces that u 2 C(�).
So ' 2 C(0).

Also the semigroup SV leaves C(0) invariant. Even stronger, it maps L1(0)
into C(0).

Proposition 3.3. For all k, l 2 {1, . . . , d} let akl 2L1(�, R). Let V 2 L1(�, R).
Suppose (3.1), (3.2) and (3.3) are valid. Then SVt L2(0) ⇢ C(0) for all t > 0.

For the proof we need the following lemma:

Lemma 3.4. Adopt the notation and assumptions of Proposition 3.3. Suppose
d � 3. Let q 2 [ 2dd+2 ,

d
2 ) and " > 0. Let u 2 H1(�) and 2 L2(0)\L (d�1)q

d�q +"(0).
Suppose that

aV (u, v) =
Z

0
 Tr v

for all v 2 H1(�). Then Tr u 2 L (d�1)q
d�2q

(0).

Proof. This is a special case of [25, Lemma 3.11].

Proof of Proposition 3.3 . First we show that for all t > 0 and ' 2 L2(0) there
exists an " > 0 such that SVt ' 2 Ld�1+"(0). For this we may assume that d � 3,
since the case d = 2 is trivial. For all n 2 {1, . . . , d � 1} define

qn =
2d

d + 3� n
.

Then q1 = 2d
d+2 , qd�2 = 2d

5 and qd�1 = d
2 . Moreover, qn+1 = qnd

d� 1
2 qn

for all
n2{1, . . . , d�2}. We shall show that for all t>0, '2L2(0) and n 2 {1, . . . , d�1}
there exists an ">0 such that SVt '2L (d�1)qn

d�qn +"(0). The proof is by induction on n.

Since (d�1)q1
d�q1 = 2d�1

d < 2, the case n = 1 is trivial. Let n 2 {1, . . . , d � 2}
and suppose that for all t > 0 and ' 2 L2(0) there exists an " > 0 such that
SVt ' 2 L (d�1)qn

d�qn +"(0). Let t > 0 and ' 2 L2(0). Set  = SVt DV SVt '. Then there
exists an " > 0 such that  2 L (d�1)qn

d�qn +"(0) by the induction hypothesis. Note that

DV SV2t' =  . So by definition there exists a u 2 H1(�) such that Tr u = SV2t'
and aV (u, v) =

R
0  Tr v for all v 2 H1(�). Because qn  qd�2 < d

2 one deduces
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from Lemma 3.4 that Tr u 2 L (d�1)qn
d�2qn

(0). Since (d�1)qn+1
d�qn+1 = (d�1)qn

d�qn < (d�1)qn
d�2qn ,

there exists an "0 > 0 such that SV2t' = Tr u 2 L (d�1)qn+1
d�qn+1

+"0
(0), which completes

the induction step. So by induction for all t > 0 and ' 2 L2(0) there exists an
" > 0 such that SVt ' 2 L (d�1)qd�1

d�qd�1
+"

(0). But (d�1)qd�1
d�qd�1

= d � 1.

Thus we proved for all d � 2, t > 0 and ' 2 L2(0) that there exists an
" > 0 such that SVt ' 2 Ld�1+"(0). Now one can argue once again as above and
use this time [25, Lemma 3.10] to deduce that SV2t' 2 C(0) for all t > 0 and
' 2 L2(0).

Corollary 3.5. For all k, l 2 {1, . . . , d} let akl 2 L1(�, R). Let V 2 L1(�, R).
Suppose (3.1), (3.2) and (3.3) are valid. Then SV has a continuous kernel.

Proof. This follows from Proposition 3.3 and Theorem 2.1.

For all t > 0 define T Vt : C(0) ! C(0) by

T Vt = SVt |C(0).

Obviously T V = (T Vt )t>0 is a semigroup, but it is unclear whether it is a C0-
semigroup. Define the part DV,c of DV in C(0) by

dom(DV,c) = {' 2 C(0) \ dom(DV ) : DV' 2 C(0)}

and DV,c' = DV' for all ' 2 dom(DV,c). If T V is a C0-semigroup, then �DV,c
is the generator of T V and consequently dom(DV,c) is dense in C(0).

4. Density of the domain in C(0)

In this section we shall prove that the operator DV,c has dense domain if the coeffi-
cients akl are Lipschitz continuous.

Theorem 4.1. For all k, l 2 {1, . . . , d} let akl 2W 1,1(�, R). Let V 2 L1(�, R).
Suppose (3.1), (3.2) and (3.3) are valid. Then the domain dom(DV,c) of the opera-
tor DV,c is dense in C(0).

For the proof we need a lot of preparation. Throughout this section we adopt
the assumptions of Theorem 4.1.

We aim to prove that DV,c has a dense domain, that is that there are sufficiently
many u 2 H1(�) such that (A + V )u = 0, Tr u is continuous, the function u has
a weak conormal derivative and @⌫u is continuous. The next lemma gives existence
of a class of functions on � with continuous trace, which have a weak conormal
derivative and the conormal derivative is bounded (but not necessarily continuous).
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Lemma 4.2. Let u 2 C1(�)\H2(�). Then u has a weak conormal derivative and
@⌫u 2 L1(0).

Proof. Since the akl 2 W 1,1(�) it follows that Au 2 L2(�). Let v 2 C1(�).
For all k 2 {1, . . . , d} define Fk : � ! C by Fk = v

Pd
l=1 akl (@lu). Then Fk 2

C(�)\H1(�). Moreover, div F =
Pd

k,l=1 akl (@ku) @lv�(Au) v 2 L1(�). Hence
the divergence theorem gives

dX

k,l=1

Z

�
akl (@ku) @lv �

Z

�
(Au) v =

Z

�
div F =

dX

k=1

Z

0
⌫k Tr Fk

=
dX

k,l=1

Z

0
(⌫k Tr (akl @lu))Tr v,

where ⌫ is the normal vector. Then by density

dX

k,l=1

Z

�
akl (@ku) @lv �

Z

�
(Au) v =

dX

k,l=1

Z

0

⇣
⌫k Tr (akl @lu)

⌘
Tr v

for all v2H1(�). So u has a weak conormal derivative and @⌫u =
dP

k,l=1
⌫kTr (akl@lu)2

L1(0).

Our next aim is to show that one can approximate an element of C(0) by
functions u|0 , where u 2 C1(�) \ H2(�) and (A + V )u = 0. We will show
this in Lemma 4.7. For such u one deduces from the previous lemma that u|0 2
dom(DV ) \ C(0) and DV (u|0) = @⌫u 2 L1(0).

The first ingredient is that the Lipschitz domain � can be approximated from
outside by smooth domains.

Lemma 4.3. There exist c1, c2 > 0 and �1,�2, . . . ⇢ Rd such that the following
is valid:

(a) For all n 2 N the set �n is open bounded with C1-boundary. Moreover,
� ⇢ �n+1 ⇢ �n ⇢ �+ B(0, 1n );

(b)
T1

n=1�n = �;
(c) For all n 2 N and z 2 0 there exists a z0 2 �c

n such that |z � z0|  c1
n ;

(d) If n 2 N, z 2 @�n and r 2 (0, 1], then |B(z, r) \�n| � c2 rd .

Proof. This is a straightforward consequence of [15, Theorem 5.1].

Since � has a Lipschitz boundary, one can extend the coefficients akl to
bounded real valued Lipschitz continuous functions onRd , which by abuse of nota-
tion we continue to denote by akl . Reducingµ if necessary, we may assume without
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loss of generality that (3.2) is valid for all ⇠ 2 Cd and x 2 Rd . Similarly we extend
V to a bounded real valued measurable function on Rd , still denoted by V . If �0 ⇢
Rd is open, then we define similarly to a the form a�0 : H1(�0)⇥H1(�0) ! C and
define similarly the operators AD�0 and AN�0 . Moreover, define similarly the operator
A�0 : H1(�0) ! H�1(�0).

If �0,�00 ⇢ Rd are open with �0 ⇢ �00, then we will identify a self-adjoint
operator in L2(�0) with a self-adjoint graph in L2(�00) in a natural way, see [8,
Section 3, in particular Proposition 3.3]. Moreover, we identify an element of
H10 (�0) with an element in H10 (�00) by extending the function with zero. Then
H�1(�00) ⇢ H�1(�0).

If �1,�2, . . . ⇢ Rd are as in Lemma 4.3, then the operators AD�n + V in
L2(�n) are a good approximation for the operator AD + V in L2(�). This is the
content of the next two lemmas. The first lemma is not new. We include the proof
for completeness and refer to Daners [13] for a systematic investigation of domain
approximation.

Lemma 4.4. Let �1,�2, . . . ⇢ Rd be open bounded sets with � ⇢ �n+1 ⇢ �n
for all n 2 N and

T1
n=1�n = �. Let ! 2 R and suppose that V + ! 11�1 � 11�1 .

Then
lim
n!1

(AD�n + V + ! I )�1 = (AD� + V + ! I )�1

in L(L2(�1)).

Proof. Without loss of generality we may assume that V � 11�1 and ! = 0. Let
f, f1, f2, . . . 2 L2(�1) and suppose that lim fn = f weakly in L2(�1). Let n 2 N.
Set un = (AD�n + V )�1 fn . Then un 2 H10 (�n) ⇢ H10 (�1). Moreover,

a�1(un, v) + (V un, v)L2(�1) = ( fn, v)L2(�1) (4.1)

for all v 2 H10 (�n). Choose v = un . Then

µ

Z

�1

|run|2 +
Z

�1

|un|2  a�1(un) + (V un, un)L2(�1)

= ( fn, un)L2(�1)  k fnkL2(�1) kunkL2(�1).

Hence kunkL2(�1)  k fnkL2(�1) and µ
R
�1

|run|2  k fnk2L2(�1). Since ( fn)n2N
is bounded in L2(�1), it follows that the sequence (un)n2N is bounded in H10 (�1).
Passing to a subsequence, if necessary, we may assume that there exists a u 2
H10 (�1) such that lim un = u weakly in H10 (�1). Because�1 is bounded, one then
obtains that lim un = u (strongly) in L2(�1). Since supp un ⇢ �m for all n,m 2 N
with n � m, it follows that supp u ⇢ �m for all m 2 N. So supp u ⇢

T1
m=1�m =

�. Hence u 2 H10 (�) since � has a Lipschitz boundary. Let v 2 H10 (�). Then
v 2 H10 (�n) for all n 2 N. Use (4.1) and take the limit n ! 1. Then

a(u, v) + (V u, v)L2(�) = ( f, v)L2(�).
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So u 2 dom(AD + V ) and (AD + V )u = f |�. Therefore u = (AD + V )�1 f .
Choosing fn = f for all n 2 N we proved that limn!1(AD�n + V )�1 f =

(AD + V )�1 f in L2(�1) for all f 2 L2(�1).
Finally, suppose that not limn!1(AD�n + V )�1 = (AD� + V )�1 in L(L2(�1)).

Then there are " > 0 and f1, f2, . . . 2 L2(�1) such that k fnkL2(�1) = 1 and

k(AD�n + V )�1 fn � (AD� + V )�1 fnkL2(�1) � "

for all n 2 N. Passing to a subsequence, if necessary, we may assume that there ex-
ists an f 2 L2(�1) such that lim fn = f weakly in L2(�1). Then limn!1(AD�n +

V )�1 fn = (AD + V )�1 f in L2(�1) by the above. Since (AD + V )�1 is compact,
also limn!1(AD� + V )�1 fn = (AD + V )�1 f in L2(�1). So limn!1 k(AD�n +

V )�1 fn � (AD� + V )�1 fnkL2(�1) = 0. This is a contradiction.

Lemma 4.5. Let �1,�2, . . . ⇢ Rd be open bounded sets with � ⇢ �n+1 ⇢ �n
for all n 2 N and

T1
n=1�n = �. Then there exists a � > 0 such that

� (AD�n + V ) \ (��, �) = ;

for all large n 2 N.

Proof. For all n 2 N the self-adjoint operators AD�n + V and AD + V are lower
bounded by �kVkL1(�1) and have compact resolvent. Hence they have a dis-
crete spectrum. Let n 2 N. For all m 2 N let �(n)

m be the m-th eigenvalue of
AD�n + V , counted with multiplicity. Define similarly �m with respect to AD + V .
Since limn!1(AD�n + V + ! I )�1 = (AD� + V + ! I )�1 in L(L2(�1)) with
! = kVkL1(�1) + 1 by Lemma 4.4, it follows that limn!1 �

(n)
m = �m for all

m 2 N. For a short proof of this well known fact see [16].
By assumption 0 62 � (AD + V ). Hence there exists a � > 0 such that � (AD� +

V )\(��, �) = ;. Since the eigenvalues converge, then also � (AD�n+V )\(��, �) =
; for all large n 2 N.

The next lemma is a small extension of a special case of [19, Theorem 1.2].

Lemma 4.6. For all c, d, µ,M > 0 and p 2 (d2 _ 2,1) there exist ↵ 2 (0, 1) and
c1 > 0 such that the following is valid.

Let � ⇢ Rd be open non-empty and suppose that |B(z, r) \ �| � c rd for
all z 2 @� and r 2 (0, 1]. Let V 2 L1(�) with kVkL1(�)  M . For all
k, l 2 {1, . . . , d} let akl 2 L1(�, R) with kaklkL1(�)  M and suppose that
Re

Pd
k,l=1 akl(x) ⇠k ⇠l � µ |⇠ |2 for almost all x 2 � and all ⇠ 2 Cd . Let f 2

L p(�) \ L2(�) and u 2 H10 (�). Suppose that

dX

k,l=1

Z

�
akl (@ku) @lv +

Z

�
V u v =

Z

�
f v
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for all v 2 H10 (�). Then u 2 C↵(�) and

|||u|||C↵(�)  c1
⇣
kukH1(�) + k f kL p(�)

⌘
,

where

|||u|||C↵(�) = sup
n |u(x) � u(y)|

|x � y|↵
: x, y 2 � and 0 < |x � y|  1

o
. (4.2)

Proof. If V = 0, then this is a special case of [19, Theorem 1.2] with the choice
0 = ;, 7 = � and ⇣ = 2. If V 6= 0, then one has to replace f by f � V u and
iterate, using of [19, Proposition 3.2].

Now we are able to prove that one can approximate elements in C(0) by ele-
ments ' 2 dom(DV ) \ C(0) with DV' 2 L1(0).

Lemma 4.7. Let ' 2 C(0) and " > 0. Then there exists a u 2 C1(�) \ H2(�)
such that (A+ V )u = 0 and ku|0 � 'kC(0) < ".

Proof. Since {F |0 : F 2 C2(Rd)} is dense in C(0) by the Stone–Weierstraß theo-
rem, we may assume that there exists an F 2 C2(Rd) such that ' = F |0 .

Let c1, c2 > 0 and�1,�2, . . . ⇢ Rd be as in Lemma 4.3. By Lemma 4.5 there
exists a � > 0 such that � (AD�n +V )\(��, �) = ; for all large n 2 N. Without loss
of generality we may assume that � (AD�n +V )\ (��, �) = ; for all n 2 N. Then in
particular AD�n + V is invertible for all n 2 N. Let n 2 N. Define Gn 2 L2(�n) by

Gn = �
dX

k,l=1
@l akl @k(F |�n ).

Since F 2 C2(Rd) and akl 2 W 1,1(Rd) one indeed obtains that Gn 2 L2(�n).
Even stronger, Gn 2 Ld+1(�n). Since AD�n + V is invertible, we can define

wn = (AD�n + V )�1(Gn + V F).

Then wn 2 H10 (�n) \ C0(�n), where the continuity follows for example from
Lemma 4.6. Moreover,

a�n (wn, v) +
Z

�n

V wn v =
Z

�n

(Gn + V F) v = a�n (F |�n , v) +
Z

�n

V F v

for all v 2 H10 (�n). Let un = F |�n � wn . Then (A�n + V )un = 0. So A�n un =

�V un and hence un 2 W 2,p
loc (�n) for all p 2 (1,1) by elliptic regularity. In
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particular un|� 2 C1(�) \ H2(�). Note that un � F |�n = �wn . By Lemmas 4.6
and 4.3(d) there exist ↵ 2 (0, 1) and c3 > 0, independent of n, such that

|||wn|||C↵(�n)  c3
⇣
kGn + V FkLd+1(�n) + kwnkH1(�n)

⌘
(4.3)

for all n2N, where |||wn|||C↵(�n) is defined as in (4.2). Clearly kGn+V FkLd+1(�n)
kG1+V FkLd+1(�1) for all n 2 N. We next show that (kwnkH1(�n))n2N is bounded.

Let n 2 N. Since � (AD�n +V )\ (��, �) = ; it follows that k(AD�n +V )�1k 

��1. Therefore

kwnkL2(�n)  k(AD�n + V )�1k kGn + V FkL2(�n)  1
� kG1 + V FkL2(�1). (4.4)

Set ! = kVkL1(G1). Then

µ

Z

�n

|rwn|
2  a�n (wn)  a�n (wn) +

Z

�n

(V + ! 11�n ) |wn|
2

=
Z

�n

(Gn + V F + !wn)wn


⇣
kG1 + V FkL2(�1) + ! kwnkL2(Gn)

⌘
kwnkL2(Gn).

Together with (4.4) one concludes the sequence (kwnkH1(�n))n2N is bounded.
Using (4.3) there exists a c4 > 0 such that |||wn|||C↵(�n)  c4 uniformly

for all n 2 N. Now let z 2 0. By Lemma 4.3(c) there exists a z0 2 �c
n such that

|z�z0|  c1
n . Hence if n � c1, then |wn(z)| = |wn(z)�wn(z0)|  |||wn|||C↵(�n) |z�

z0|↵  c4 c↵1 n
�↵ . Therefore limn!1 kwn|0kC(0) = 0. Hence limn!1 kun|0 �

F |0kC(0) = 0. So choose u = un|� with n large enough.

We need one more lemma before we can prove density of dom(DV,c) in C(0).
The main aim in the lemma is to solve the Neumann problemwith respect to AN+V
for functions  2 L p(0). If p is large enough then solutions are continuous on �.
We choose p = d. As expected, the kernel of of AN + V gives problems, so we
take orthogonal complements.

Lemma 4.8. Define

H1V?(�) = {u 2 H1(�) : (u, v)H1(�) = 0 for all v 2 ker(AN + V )}

and

Ld,V?(0) = {⌧ 2 Ld(0) : (⌧,Tr v)L2(0) = 0 for all v 2 ker(AN + V )}.

Then one has the following:

(a) ker(AN + V ) ⇢ C(�) is finite dimensional;
(b) If u 2 ker(AN + V ), then Tr u 2 dom(DV,c);
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(c) If ⌧ 2 Ld,V?(0) and " > 0, then there exists a ⌧ 0 2 C(0) \ Ld,V?(0) such
that k⌧ � ⌧ 0kLd (0) < ";

(d) For all ⌧ 2 Ld,V?(0) there exists a unique u 2 H1V?(�) such that aV (u, v) =R
0 ⌧ Tr v for all v 2 H1(�).

Define E : Ld,V?(0) ! H1V?(�) such that

aV (E⌧, v) =
Z

0
⌧ Tr v

for all v 2 H1(�).

(e) The map E is continuous;
(f) If ⌧ 2 Ld,V?(0), then E⌧ 2 C(�);
(g) The map E is continuous from Ld,V?(0) into C(�);
(h) If ⌧ 2 Ld,V?(0), then Tr E⌧ 2 dom(DV ) and DVTr E⌧ = ⌧ .

Proof. (a). The operator AN + V has compact resolvent. Hence its kernel is finite
dimensional. The inclusion follows from [25, Theorem 3.14(ii)].
(b). If v 2 H1(�), then aV (u, v) = ((AN + V )u, v)L2(�) = 0. Therefore Tr u 2
dom(DV ) and DVTr u = 0. Since Tr u 2 C(0) by Statement (a) and obviously the
zero function is continuous, one deduces that Tr u 2 dom(DV,c).
(c). By Statement (a) there exist N 2 N0 and '1, . . . ,'N 2 Tr ker(AN + V ) such
that '1, . . . ,'N is a basis for Tr ker(AN + V ). We may assume without loss of
generality that '1, . . . ,'N is orthonormal in L2(0). Since C(0) is dense in Ld(0)
there exists a ⌧ 00 2 C(0) such that k⌧ � ⌧ 00kLd (0) < ". For all k 2 {1, . . . , N }
set ck = (⌧ 00,'k)L2(0). Then |ck | = |(⌧ 00 � ⌧,'k)L2(0)|  " k'kkL p(0), where
p 2 (1,1) is the dual exponent of d. Set ⌧ 0 = ⌧ 00 �

PN
k=1 ck 'k . Then

k⌧�⌧ 0kLd (0) k⌧�⌧ 00kLd (0)+
NX

k=1
|ck |k'kkLd (0) 

⇣
1+

NX

k=1
k'kkLd (0)k'kkL p(0)

⌘
"

and ⌧ 0 2 C(0) \ Ld,V?(0).

(d). Define the form b : H1V?(�) ⇥ H1V?(�) ! C by b = aV |H1V?(�)⇥H1V?(�).
Then b is a continuous symmetric sesquilinear form. Hence there exists a T 2
L(H1V?(�)) such that b(u, v) = (Tu, v)H1V?(�) for all u, v 2 H1V?(�).

We next show that T is injective. Indeed, if u 2 ker T , then aV (u, v) = 0
for all v 2 H1V?(�). Obviously aV (u, v) = (u, (AN + V )v)L2(�) = 0 for all
v 2 ker(AN + V ). Since H1(�) = H1V?(�) � ker(AN + V ), it follows that
aV (u, v) = 0 for all v 2 H1(�). Hence u 2 dom(AN + V ) and (AN + V )u = 0.
So u 2 ker(AN + V ). Also u 2 H1V?(�). Therefore u = 0 and T is injective.

The inclusion map H1V?(�) ⇢ L2(�) is compact and the form b is L2(�)-
elliptic. Hence by [8, Lemma 4.1] the operator T is invertible.
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The Sobolev embedding theorem, [24, Theorems 2.4.2 and 2.4.6], gives
Tr H1(�) ⇢ L 2d�2

d�2+"
(0) for all " 2 (0, 1]. Moreover, L 2d�2

d�2+"
(0) ⇢ L d

d�1
(0).

Hence there exists a c > 0 such that
�
�
�
Z

0
⌧ Tr v

�
�
�  c k⌧kLd (0) kvkH1(�)

for all ⌧ 2 Ld(0) and v 2 H1(�). Now let ⌧ 2 Ld,V?(0). Then the map
↵ : H1V?(�) ! C given by ↵(v) =

R
0 ⌧ Tr v is continuous and anti-linear. Hence

there exists a unique u 2 H1V?(�) such that (Tu, v)H1V?(�) = ↵(v) for all v 2

H1V?(�). Moreover, kukH1(�)  c kT�1k k⌧kLd (0). Then

aV (u, v) = b(u, v) = (Tu, v)H1V?(�) = ↵(v) =
Z

0
⌧ Tr v

for all v 2 H1V?(�). Clearly a(u, v) = 0 and
R
0 ⌧ Tr v = 0 for all v 2 ker(AN+V ).

Hence aV (u, v) =
R
0 ⌧ Tr v for all v 2 H1(�). Note that E⌧ = u.

(e). In the proof of Statement (d) we deduced that kE⌧kH1(�)  ckT�1kk⌧kLd (0)

for all ⌧ 2 Ld,V?(0). So E is continuous.

(f). This follows from [25, Theorem 3.14(ii)].

(g). By [25, Theorem 3.14(ii)] there exists a c0 > 0 such that

kE⌧kC(�)  c0(kE⌧kL2(�) + k⌧kLd (0))

for all ⌧ 2 Ld,V?(0). But

kE⌧kL2(�)  kE⌧kH1(�)  c kT�1k k⌧kLd (0).

So kE⌧kC(�)  c0(c kT�1k + 1)k⌧kLd (0) for all ⌧ 2 Ld,V?(0).

(h). This follows from the definitions of E and DV .

Now we are able to prove that the operator DV,c is densely defined.

Proof of Theorem 4.1. Let H1V?(�), Ld,V?(0) and the map E : Ld,V?(0) !
H1V?(�) \ C(�) be as in Lemma 4.8. Let M > 0 be such that

kE⌧kC(�)  M k⌧kLd (0)

for all ⌧ 2 Ld,V?(0). Let N 2 N0 and u1, . . . , uN 2 ker(AN + V ) be such that
u1, . . . , uN is a basis for ker(AN + V ) and is orthonormal in H1(�). Note that
uk 2 C(�) for all k 2 {1, . . . , N } by Lemma 4.8(a).
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Let ' 2 C(0) and " > 0. By Lemma 4.7 there exists a u 2 C1(�) \ H2(�)
such that (A + V )u = 0 and ku|0 � 'kC(0) < ". Then u has a weak conormal
derivative and @⌫u 2 L1(0) by Lemma 4.2. If v 2 ker(AN + V ), then

Z

0
(@⌫u)Tr v = a(u, v) �

Z

�
(Au) v = a(u, v) +

Z

�
V u v

= aV (u, v) = (u, (AN + V )v)L2(�) = 0.

So @⌫u 2 Ld,V?(0). By Lemma 4.8(c) there exists a ⌧ 2 C(0) \ Ld,V?(0) such
that k⌧ � @⌫ukLd (0) < ". Choose w = E⌧ . Then w 2 H1V?(�) \ C(�) and

aV (w, v) =
Z

0
⌧ Tr v

for all v 2 H1(�). Set ck = (u, uk)H1(�) 2 C for all k 2 {1, . . . , N }. Then by
construction w � u +

PN
k=1 ck uk 2 H1V?(�). Let v 2 H1(�). Then

aV
⇣
w � u +

NX

k=1
ck uk, v

⌘
= aV (w, v) � aV (u, v)

=
Z

0
⌧ Tr v �

⇣ Z

0
(@⌫u)Tr v +

Z

�
((A+ V )u) v

⌘

=
Z

0
(⌧ � @⌫u)Tr v.

Note that ⌧ � @⌫u 2 Ld,V?(0). So

w � u +
NX

k=1
ck uk = E(⌧ � @⌫u).

Hence

kw � u +
NX

k=1
ck ukkC(�)  M k⌧ � @⌫ukLd (0)  M ".

Then kw|0 � ' +
PN

k=1 ck uk |0kC(0)  (M + 1)".
Finally note that Trw 2 dom(DV ) and DV (Trw) = ⌧ by Lemma 4.8(h). Since

both Trw and ⌧ are continuous, one deduces that Trw 2 dom(DV,c). Moreover,
Tr uk 2 dom(DV,c) for all k 2 {1, . . . , N } by Lemma 4.8(b). So ' 2 dom(DV,c).
The proof of Theorem 4.1 is complete.

5. C0-semigroup on C(0)

We next consider the problem whether �DV,c generates a C0-semigroup on C(0).
If (X,B, µ) is a measure space, then for operators on the Hilbert space L2(X) the
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notation of positivity has two different meanings and in the next lemma we need
both of them. We will use the following terminology if confusion is possible. If
B is an operator in a Hilbert space H , then we say that B is positive in the Hilbert
space sense if (Bu, u)H � 0 for all u 2 dom(B). If B : L2(X) ! L2(X) is a linear
operator, then we say that B is positive in the Banach lattice sense if B f � 0 for all
f 2 L2(X) with f � 0. Here f � 0 means that f (x) � 0 for almost all x 2 X .
Below we consider the two cases X = �, provided with the Lebesgue measure, and
X = 0, provided with the (d � 1)-dimensional Hausdorff measure.

The following proposition is known if akl = �kl , that is if A = �1.

Proposition 5.1. For all k, l2{1, . . . , d} let akl 2 L1(�, R). Let V 2 L1(�, R).
Suppose (3.1), (3.2) and (3.3) are valid.

(a) Suppose that AD+V is positive in the Hilbert space sense and 0 62 � (AD+V ).
Then the semigroup SV is positive in the Banach lattice sense;

(b) Suppose that V � 0. Then the semigroup SV is submarkovian.

Proof. Statement (a) can be proved as in [9, Theorem 5.1] or [17, Theorem 2.3(a)],
with obvious modifications. Statement (b) is similar to [17, Theorem 2.3(b)].

It turns out that the resolvent of DV,c behaves well. Recall that DV is a lower-
bounded self-adjoint operator.

Lemma 5.2. For all k, l 2 {1, . . . , d} let akl 2 L1(�, R). Let V 2 L1(�, R).
Suppose (3.1), (3.2) and (3.3) are valid. Let ! 2 R be such that kSVt k2!2  e!t
for all t > 0. Let � 2 (!,1). Then one has the following:

(a) � I + DV,c is invertible;
(b) (� I + DV,c)

�1 = (� I + DV )�1 for all  2 C(0);
(c) If AD+V is positive in the Hilbert space sense, then (� I+DV,c)

�1 is positive
in the Banach lattice sense.

Proof. (a). Let  2 C(0). Write ' = (� I + DV )�1 2 L2(0). Then DV' =
 � �' and ' 2 C(0) by Lemma 3.2. So  � �' 2 C(0) and ' 2 dom(DV,c).
Obviously (� I + DV,c)(� I + DV )�1 =  . So the operator � I + DV,c is surjec-
tive. Since � I+DV is injective, also the operator � I+DV,c is injective. Therefore
� I + DV,c is bijective, that is invertible.
Statement (b) is now clear.
(c). It follows from Proposition 5.1(a) that the operator (� I + DV )�1 is positive in
the Banach lattice sense on L2(0). Then the statement is a consequence of State-
ment (b).

We now prove the main theorem of this paper. In view of our general assump-
tion (3.3), Condition (a) can be reformulated by saying that the first eigenvalue of
AD + V is strictly positive. In contrast to this, Condition (b) does not include any
spectral condition (except that 0 62 � (AD + V )). As a matter of fact, in fact the
potential can be very negative.
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Theorem 5.3. For all k, l 2 {1, . . . , d} let akl 2W 1,1(�, R). Let V 2 L1(�, R).
Suppose (3.1), (3.2) and (3.3) are valid. Moreover, suppose that at least one of the
following conditions is valid:

(a) AD + V is positive in the Hilbert space sense;
(b) One has akl = �kl for all k, l 2 {1, . . . , d} and the set � has a C1,1-boundary.

Then SVt C(0) ⇢ C(0) for all t > 0 and (SVt |C(0))t>0 is a C0-semigroup whose
generator is �DV,c.

Proof. (a). The operator �DV,c is a densely defined resolvent positive operator
by Theorem 4.1 and Lemma 5.2(c). Moreover, the positive cone in C(0) has a
non-empty interior. Hence �DV,c is the generator of a C0-semigroup by [2, Corol-
lary 2.3].
(b). By [7, Proposition 6.10] the semigroup SV leaves L1(0) invariant and there
exists an M � 1 such that kSVt 'k1  M k'k1 for all t 2 (0, 1] and ' 2 L1(0).
Then kT Vt kC(0)!C(0)  M for all t 2 (0, 1]. If ' 2 dom(DV,c), then

k(I � T Vt )'kC(0) 
Z t

0
kSVs DV'k1 ds  M t kDV'k1

for all t 2 (0, 1]. Hence limt#0 T Vt ' = ' in C(0). Since dom(DV,c) is dense
in C(0) by Theorem 4.1, one deduces that T V is a C0-semigroup on C(0). It is
easy to verify that �DV,c is the generator. (This argument also works if V �0 and
merely the akl 2 W 1,1(�, R), by using Proposition 5.1(b) instead of [7, Proposi-
tion 6.10].)

Whereas under Condition (a) the semigroup T V is positive (in the Banach
lattice sense), this is in general not the case under Condition (b), see [14].

Corollary 5.4. For all k, l2{1, . . . , d} let akl 2W 1,1(�, R). Let V 2 L1(�, R).
Suppose (3.1), (3.2) and (3.3) are valid. Suppose AD + V is positive in the Hilbert
space sense. Then for all p 2 [1,1) the semigroup SV extends to a C0-semigroup
on L p(0).

Proof. Let t > 0 and ' 2 L2(0). Then

kSVt 'k1 = sup
 2C(0)
k k11

|(SVt ', )L2(0)|

= sup
 2C(0)
k k11

|(', T Vt  )L2(0)|  sup
 2C(0)
k k11

k'k1 kT Vt  k1  kT Vt k k'k1.

Hence SVt extends to a bounded operator S
V (1)
t : L1 ! L1 and kSV (1)

t k  kT Vt k.
It is easy to verify that SV (1) is a semigroup on L1. Moreover, supt2(0,1] kS

V (1)
t k 

supt2(0,1] kT Vt k < 1. Since 0 has finite measure, the semigroup SV (1) is a C0-
semigroup. Then by duality and interpolation the corollary follows.
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6. The Robin semigroup on C(�)

In order to prove irreducibility of T V in case AD+V is positive in the Hilbert space
sense, we make a detour and prove irreducibility for the Robin Laplacian.

Throughout this section we assume that � ⇢ Rd is a bounded open connected
set with Lipschitz boundary, akl = alk 2 L1(�, R), the ellipticity condition (3.2)
is valid and V 2 L1(�, R). Moreover, let � 2 L1(0, R). We do not assume that
0 62 � (AD + V ). Define the sesquilinear form aV,� : H1(�) ⇥ H1(�) ! C by

aV,�(u, v) = aV (u, v) +
Z

0
� Tr u Tr v.

Then aV,� is an L2(�)-elliptic sesquilinear form. Let AV,� be the associated oper-
ator. Then AV,� is self-adjoint and bounded below. It is easy to see that

dom(AV,�) = {u 2 H1(�) : Au 2 L2(�) and @⌫u + � Tr u = 0}

and AV,�u = Au+V u for all u 2 dom(AV,�). So AV,� is the realisation ofA+V
with Robin boundary conditions. The operator �AV,� generates a C0-semigroup
SV,� on L2(�), which is called the Robin semigroup. If � � 0 then it is well
known that the semigroup SV,� has Gaussian kernel bounds (see [4, Theorem 4.9])
and therefore the semigroup SV,� on L2(�) extrapolates to a C0-semigroup on
L p(�) for all p 2 [1,1). It is an open problem whether the same is valid without
the condition � � 0. Added in proof: this also remains true without the condition
� � 0.1

The main theorem of this section is as follows:

Theorem 6.1. Adopt the above notation and assumptions:

(a) The semigroup SV,� is positive (in the Banach lattice sense);
(b) If t > 0 then SV,�

t L2(�) ⇢ C(�);
(c) If � > !, then (� I + AV,�)

�d L2(�) ⇢ C(�). Here ! 2 R is chosen large
enough such that supt>0 e�!tkS

V,�
t k2!2 < 1;

(d) For all t > 0 the operator SV,�
t has a continuous kernel kt : �⇥� ! R;

(e) The operator AV,� has compact resolvent;
(f) The semigroup SV,� is irreducible (on L2(�));
(g) The eigenvalue min � (AV,�) is simple;
(h) The semigroup (SV,�

t |C(�))t>0 is a C0-semigroup on C(�);
(i) The semigroup (SV,�

t |C(�))t>0 is irreducible (on C(�));
(j) There exists a � > 0 such that u1(x) � � for all x 2 �, where u1 2 L2(�)

is an eigenfunction of AV,� with eigenvalue min � (AV,�) such that u1 � 0
almost everywhere;

1 See D. Daners, Inverse positivity for general Robin problems on Lipschitz domain, Archiv.
Math. (Basel) 29 (2009), 57–69, Theorem 2.2 and Lemma 3.2.
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(k) For all p 2 [1,1) the semigroup SV,� extends consistently to a C0-semigroup
on L p(�).

Proof.

(a). This follows as in the proof of [4, Theorem 4.9]. The positivity of � is not
needed in that proof;

(b). This follows from [25, Theorem 3.14(ii)] and Theorem 2.1(i)) (ii);
(c). This follows from [25, Lemmas 3.11 and 3.10];
(d). This is a consequence of Statement (b) and Theorem 2.1;
(e). Easy;
(f). This is a consequence of [26, Corollary 2.11];
(g). See Lemma 2.3(d);
(h). Define the part AV,�,c of AV,� in C(�) by

dom(AV,�,c) = {u 2 C(�) \ dom(AV,�) : AV,�u 2 C(�)}

and AV,�,cu = AV,�u for all u 2 dom(AV,�,c). Then dom(AV,�,c) is dense
in C(�) by the arguments in the proof of [25, Theorem 4.3]. (Remark, unfor-
tunately there is a gap in the proof of [25, Theorem 4.3] for the part that the
restriction (SV,�

t |C(�))t>0 of the Robin semigroup in C(�) is a C0-semigroup,
since it is unclear whether supt2(0,1] kS

V,�
t k1!1 < 1. He used that the

semigroup SV,� has a kernel with Gaussian bounds, which is only known in
case � � 0.)
Let ! 2 R be as in Statement (c). Let � > !. Then the operator � I + AV,�,c
is invertible by the same argument as in the proof of Lemma 5.2(a). Since
the resolvent operator (� I + AV,�)

�1 is positive on L2(�), also the resolvent
operator (� I + AV,�,c)

�1 is positive on C(�). Moreover, the positive cone
in C(�) has a non-empty interior. Hence �AV,�,c is the generator of a C0-
semigroup by [2, Corollary 2.3];

(i). and (j). This follows from Corollary 2.5;
(k). The proof is similar to the proof of Corollary 5.4.

Remark 6.2. In order to avoid confusion with the assumptions and notation in the
rest of this paper we continued to assume in this section that the coefficients are
symmetric and that there are no first-order terms. One can, however, consider the
full Robin form a : H1(�) ⇥ H1(�) ! C given by

a(u, v) =
dX

k,l=1

Z

�
akl (@ku) @lv +

dX

k=1

Z

�
bk (@ku) v +

dX

k=1

Z

�
ck u @kv

+
Z

�
c0 u v +

Z

0
� Tr u Tr v,
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where akl , bk, ck, c0 2 L1(�, R) and � 2 L1(0, R), together with the ellipticity
condition (3.2). We do not assume any longer that the akl are symmetric. Let A be
the m-sectorial operator associated with a and let S be the semigroup generated by
�A on L2(�). Then Statements (a), (b), (c), (d), (e), (f), (h) and (k) are still valid,
with the same proof. Instead of Statement (g) one can consider �1 = inf{Re � : � 2
� (A)}. Then �1 2 � (A) by [3, Proposition 3.11.2] and it follows as before that �1
is a simple eigenvalue. If A is symmetric, then also Statement (j) is valid.

We do not know whether Statement (i) is still valid if A is not symmetric.
We also do not know whether Statement (k) is valid if bk, ck, c0 2 L1(�) and
� 2 L1(0) are complex valued.

7. Strictly positive first eigenfunction and extensions to L p(0)

In this section we consider the case where the semigroup generated by �DV is
positive (in the Banach lattice sense) and under the condition that � is connected
we show that the first eigenfunction is strictly positive. We deduce from this that the
Dirichlet-to-Neumann semigroup is irreducible on C(0). This is surprising since
we merely assume that � is connected. For example, if � is an annulus, then 0 is
not connected. The result also allows us to extend the semigroup SV consistently
to a C0-semigroup on L p(0) for all p 2 [1,1).

We adopt the assumptions and notation as in Section 3. In particular, for all
k, l 2 {1, . . . , d} let akl 2 L1(�, R). Let V 2 L1(�, R). We suppose that
(3.1), (3.2) and (3.3) are valid. In addition we assume that � is connected and that
AD +V is positive (in the Hilbert space sense). Then SV is a positive semigroup by
Proposition 5.1(a). Moreover, SVt L2(0) ⇢ C(0) for all t > 0 by Proposition 3.3
and DV is self-adjoint with compact resolvent. So all eigenfunctions of DV are
elements of C(0). Let �1 = min � (DV ). Let '1 2 C(0) be an eigenfunction with
eigenvalue �1 such that '1 � 0.

Theorem 7.1. Adopt the above notation and assumptions. Then min'1 > 0.

The theorem is an immediate consequence of the next proposition.

Proposition 7.2. Let � 2 R and ' 2 dom(DV ) be and eigenfunction of DV with
eigenvalue ��. Suppose that ' � 0. We identify the real number � with the con-
stant function � 110 on 0. Consider the Robin operator AV,� as in Section 6. Then
min � (AV,�) = 0. Let u1 2 C(�) be an eigenfunction of AV,� with eigenvalue 0
as in Theorem 6.1(j). Then there exists a c > 0 such that ' = c u1|0 . In particular,
dim span{ 2 ker(� I + DV ) :  � 0} = 1 and '(z) > 0 for all z 2 0.

Proof. By definition of DV there exists a u 2 H1(�) such that Tr u = ' and

aV (u, v) = �� (',Tr v)L2(0) (7.1)

for all v 2 H1(�). Since ' � 0 it follows that u is real valued and u� 2 H10 (�).
Choose v = u�. Then aV (u, u�) = 0. But @k(u�) = �(@ku) 11[u<0] for all
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k 2 {1, . . . , d}. Therefore aV (u�, u�) = aV (u, u�) = 0. Since AD + V is a
positive operator in the Hilbert space sense with trivial kernel by assumption (3.3),
it follows that u� = 0. Therefore u � 0 and clearly u 6= 0. It follows from (7.1)
that aV,�(u, v) = 0 for all v 2 H1(�). Therefore u 2 dom(AV,�) and AV,�u = 0.
The operator �AV,� is self-adjoint, has compact resolvent and generates a positive
irreducible semigroup in L2(�). Hence it follows from the inverse Krein–Rutman
theorem [6, Lemma 5.14] that 0 = min � (AV,�).

Since min � (AV,�) is a simple eigenvalue of AV,� by Theorem 6.1(g), it fol-
lows that there exists a c 2 C \ {0} such that u = c u1. But both u1, u � 0.
Therefore c > 0. Then ' = Tr u = c Tr u1. Since u1(x) > 0 for all x 2 � by
Theorem 6.1(j), obviously '(z) > 0 for all z 2 0.

Recall that T V is the restriction of the Dirichlet-to-Neumann semigroup SV to
C(0). We show below that T V is irreducible. We cannot deduce this in general
from the strict positivity of the first eigenfunction via Proposition 2.4, since 0 is not
connected in general.

Irreducibility of SV in L2(0) is much easier. We need the following result.

Proposition 7.3. Let (Y,6, µ) be a finite measure space. Let B be a lower
bounded self-adjoint operator in L2(Y ) and suppose that �B generates a pos-
itive C0-semigroup S on L2(Y ). Let ' 2 L2(Y ) and suppose that '(y) > 0
for almost every y 2 Y . Further suppose that St' = ' for all t > 0 and that
dim span{ 2 ker B :  � 0} = 1. Then S is irreducible.

Proof. The proof is a variation of the proof of [5, Proposition 2.2]. Let Y1 be a
measurable subset of Y and suppose that St L2(Y1) ⇢ L2(Y1) for all t > 0. Set
Y2 = Y \ Y1. Since St is self-adjoint one deduces that St L2(Y2) ⇢ L2(Y2) for all
t > 0. Let t > 0. Then

' 11Y1 + ' 11Y2 = ' = St' = St (' 11Y1) + St (' 11Y2).

Since St leaves L2(Y1) and L2(Y2) invariant, it follows that St (' 11Y1) = ' 11Y1
and St (' 11Y2) = ' 11Y2 . So ' 11Y1 2 ker B and ' 11Y2 2 ker B. Since dim span{ 2
ker B :  � 0} = 1 one deduces that ' 11Y1 = 0 or ' 11Y2 = 0. Therefore µ(Y1) = 0
or µ(Y2) = 0.

Proposition 7.4. The semigroup SV is irreducible on L2(0) and min � (DV ) is a
simple eigenvalue.

Proof. It follows from Proposition 7.2 that '1(z)>0 for all z20 and dim span{ 2
ker(DV � �1 I ) :  � 0} = 1. Apply Proposition 7.3 to the operator DV � �1 I .
One deduces that SV is irreducible. Then the eigenvalue min � (DV ) is simple by
Lemma 2.3(d).

Now we prove the irreducibility in C(0).

Theorem 7.5. The semigroup T V is irreducible on C(0).
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Proof. Let 01 be a closed subset of 0 with ; 6= 01 6= 0. Set I = {' 2 C(0) :
'|01 = 0}. Assume that T Vt I ⇢ I for all t > 0. We consider two cases.

Case I. Suppose 01 is not open. Then there exists an x0 2 @01. Then one can
argue as in the proof of the implication (ii) ) (i) in the proof of Proposition 2.4
to deduce that (T Vt u)(x0) = 0 for all u 2 C(0) and t > 0. But (T Vt '1)(x0) =
e��1t '1(x0) > 0 for all t > 0 by Theorem 7.1. This is a contradiction.

Case II. Suppose 01 is open. Then 01 is a connected component of 0. Hence
� (01) > 0 and � (0 \ 01) > 0. Let J = {' 2 L2(0) : '|01 = 0}. Then J is
the closure of I in L2(0) and SVt J ⇢ J for all t > 0. Since SV is irreducible one
deduces that � (01) = 0 or � (0 \ 01) = 0. This is a contradiction.

Corollary 7.6. For all p 2 [1,1) the semigroup SV extends consistently to a C0-
semigroup on L p(0).

Proof. This follows from Proposition 2.6.

Corollary 7.7. Let ' 2 C(0) with ' � 0 and ' 6= 0. Then (T Vt ')(z) > 0 for all
t > 0 and z 2 0.

Proof. Apply Proposition 2.4(i)) (iv).

We do not know whether T V is a C0-semigroup (unless the akl are Lipschitz
continuous, see Theorem 5.3(a)).
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