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The Dirichlet-to-Neumann operator on C (9€2)

WOLFGANG ARENDT AND A.F. M. TER ELST

Abstract. Let @ C R? be an open bounded set with Lipschitz boundary T".
Let Dy be the Dirichlet-to-Neumann operator with respect to a purely second-
order symmetric divergence form operator with real Lipschitz continuous coef-
ficients and a positive potential V. We show that the semigroup generated by
—Dy leaves C(I') invariant and that the restriction of this semigroup to C(I") is
a Cp-semigroup. We investigate positivity and spectral properties of this semi-
group. We also present results where V is allowed to be negative. Of independent
interest is a new criterium for semigroups to have a continuous kernel.

Mathematics Subject Classification (2010): 47D06 (primary); 35J57, 35J15,
35K08 (secondary).

1. Introduction

Let © C R? be an open set with Lipschitz boundary I'. The Dirichlet-to-Neumann
operator Dy is the self-adjoint operator that is defined in L,(I") as follows. Let
@,y € Ly(I"). Then ¢ € dom(Dg) and Doy = v if and only if there exists a
u € H'(Q) such that Au = 0 weakly on €2, with Tru = ¢ and the weak normal
derivative exists with d,u = . It turns out that the semigroup S generated by — Dy
is submarkovian. Hence it extends consistently to a contraction semigroup S”) on
L,(T) for all p € [1,00] and it is a Co-semigroup if p € [1,00). By elliptic
regularity the semigroup S leaves the Banach space C(I") of continuous functions
on I' invariant. Hence it is a natural question whether the restriction of S to C(I") is
a Co-semigroup. As a special case of Theorem 5.3, we prove the following theorem.

Theorem 1.1. Let S be the semigroup generated by the Dirichlet-to-Neumann op-
erator on an open bounded set with Lipschitz boundary I". Then S leaves C(I")
invariant and the restriction of S to C(I") is a Co-semigroup.
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If Q has a C*°-boundary, then Theorem 1.1 has been proved by Escher [21] and
Engel [20].

Although S leaves C(I") invariant and § is submarkovian, these two facts do
not imply that the restriction 7" of S to C(I") is a Cp-semigroup, since C (I") is not
reflexive. One needs in addition that the generator of the restriction 7' is densely
defined. This is the major problem that we solve in this paper.

Actually we prove several extensions of Theorem 1.1. The first extension is
that we replace the Laplacian by a divergence form operator A with real symmetric
Lipschitz continuous coefficients. The second extension is that we add a potential
V € Loo(2, R) to the divergence form operator and consider cases where the po-
tential is negative (but still assuming the Dirichlet problem has a unique solution).
This means that given ¢ € Ly(I") we now solve the Dirichlet problem

(A+ V)u =0 weakly on 2
Tru = ¢,

and define the Dirichlet-to-Neumann operator Dy by Dy¢ = 0d,u on a suitable
domain. Using form methods one obtains that —Dy generates a Cp-semigroup
S on Lr(I") (see [8]). The main point in this paper is to prove that the part of
Dy in C(I') is densely defined in C(I"). We prove this for all V € Lo (22,R),
without any sign condition on V (except assuming that the Dirichlet problem has a
unique solution). This is difficult even for the Laplacian since the normal is merely
a measurable function on I'. For a rich class of potentials we then show that the
restriction of S to C(I") is a Cg-semigroup on C(I").

Attention is given to the special case where the semigroup S is positive. Then
we deduce that the Dirichlet-to-Neumann operator is resolvent positive on C(I").

Another main point in this paper is the characterisation of those semigroups in
L>(K) which have a continuous kernel, where K is a compact metric space. This
is done in an abstract framework. Moreover, we find criteria for the irreducibility
of the semigroup on C(K). Irreducibility is an important property which implies in
particular that the first eigenfunction is strictly positive. We apply these results to
the Dirichlet-to-Neumann operator but also to elliptic operators with Robin bound-
ary conditions on €2 if Q2 is connected. So far, for Robin boundary conditions, strict
positivity of the first eigenfunction in C () was not known. There is another reason
to consider the Robin operator. Even though €2 is connected, the boundary I" need
not be be connected (an example is an annulus). Still we are able to prove irre-
ducibility for the Dirichlet-to-Neumann semigroup on C(I") and this is done with
the Robin semigroup on C (2). We should mention that irreducibility on L-spaces
is much easier to obtain than on C(K) (see [26, Corollary 2.11] for elliptic opera-
tors and [10, Theorem 4.2] for the Dirichlet-to-Neumann operator). The difference
can be seen by the consequences for the first eigenfunction. The irreducibility on
L, merely implies that the first eigenfunction is positive almost everywhere, whilst
irreducibility on C(K) implies pointwise positive. It is remarkable that our proof
of this strict positivity (which is a purely elliptic property) involves considering the
parabolic problem.
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The paper is organised as follows. In Section 2 we study in an abstract set-
ting when a semigroup S on L,(K) has a continuous kernel, where K is a compact
metric space. If S is positive and has a self-adjoint generator, then we characterise
when the restriction of S to C(K) is irreducible. In Section 3 we consider the semi-
group SV generated by — Dy, where Dy is the Dirichlet-to-Neumann operator with
respect to a symmetric divergence form operator with coefficients ay; € Lo (€2, R)
and potential V € Lo (2, R). We show that § V has a continuous kernel and that
the resolvent of Dy leaves C(I") invariant. In Section 4 we prove that the domain
of the part of Dy in C(I") is dense in C(I") if the coefficients ay; are Lipschitz
continuous. In Section 5 we prove an extension of Theorem 1.1 if ay; € W (Q)
and the potential V is positive or slightly negative. In Section 6 we study the Robin
semigroup with boundary condition d,u + 8 Tr u = 0 without any sign condition on
B € Loo(I", R) and with coefficients of the divergence form operator in Lo (2, R).
In the last section we show that SV is irreducible if merely Q is connected and a
positivity condition is satisfied. Again the coefficients ay; are allowed to be mea-
surable.

Using Poisson kernel bounds for the semigroup SV , it is proved in [18] that the
semigroup 7 is a holomorphic Cy-semigroup on C(I') if € has a C!**-boundary
for some ¥ > 0 and the coefficients ay; are merely Holder continuous. Thus
more boundary smoothness of 2 is required in [18]. We do not know whether
the semigroup on C(I") in Theorem 1.1 is holomorphic if €2 has merely a Lipschitz
boundary.

ACKNOWLEDGEMENTS. The first-named author is most grateful for the hospi-
tality extended to him during a fruitful stay at the University of Auckland and the
second-named author for a wonderful stay at the University of Ulm.

2. Continuous kernel and irreducibility

In this section we consider a semigroup S on the space L2 (K, ), where K is com-
pact and  is a finite Borel measure. Our first aim is to investigate when § has a
continuous kernel. Subsequently we asume that S is positive (in the lattice sense)
and self-adjoint. We will find criteria which imply that the first eigenfunction is
continuous and strictly positive. In the sequel of this paper these two results will
be applied to both the Dirichlet-to-Neumann operator and an elliptic operator with
Robin boundary condition.

In general, by a semigroup on a Banach space X we understand simply a map
S:(0,00) - L(X) satisfying S;5 = S; S for all ¢, s € (0, 00), without any
further continuity assumption. If S is a semigroup on Ly (K, ) we say that S has a
continuous kernel if for all t > 0 there exists a continuous functionk;: K x K — C
such that for all u € L(K) the function S;u is given by

(Spu) (x) =kaz(x,y)u(y)dy
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for almost every x € K. In many concrete situations regularity properties of kernels
have been investigated, but so far no characterisation for continuity of the kernel
seems to be known. The following theorem is such a charcaterisation in terms of a
natural property, Condition (ii) in Theorem 2.1, which is frequently easy to verify.
Note that the semigroup does not have to be continuous in this theorem.

Theorem 2.1. Let K be a compact metric space and | a finite Borel measure on K
with suppp = K. Let S be a semigroup on Ly(K, ). Then the following are
equivalent:

(i) The operator S; has a continuous kernel for all t > 0;
(ii) There exists a po € [2, 00) such that S;Lp,(K) C C(K) and SfL,,(K) C
C(K) forallt > 0y
(iii) S;L2(K) C C(K) and S;L2(K) C C(K) forallt > 0.

Proof. (i) = (ii). Trivial.
(ii) = (iii). We may assume that pg € N. Let ¢ > 0. Then S} is bounded from
L, (K) into Lo (K), so by duality S; extends to a bounded operator from L;(K)

into Lg,(K), where oo = 1— . Also S; is bounded from L , (K) into Leo(K). So

by interpolation, given p € [1, po], the operator S; extends to a bounded operator

from L,(K) into L,(K), where % — é = % Starting with p = 1 and using

the semigroup property, iteration gives that for all + > 0 and k € {1, ..., po} the
operator §; extends to a bounded operator from L (K) into L,(K), where é =

11— %. Therefore condition (iii) is valid.

(iii) = (i). Lett > 0. Then S;L>(K) C C(K) C Loo(K), so by duality S; extends
to a bounded operator from L (K) into L>(K), also denoted by S;. Then by the
semigroup property Sp;L1(K) C Lo (K). Hence by the Dunford—Pettis theorem,
for all > O there exists a bounded measurable function Izt : K x K — C such that

(Seu, V)1, (k) = / @@ u)k
KxK

forall u,v € Ly(K). Hence if u € L>(K), then
(S0 = [ Rty dy @1
K

for almost every x € K and by duality

(Sfu)(x) = /K k(x, y)u(y) dy

for almost every x € K, where lz;*(x, y) = 12,(y, x) for all (x,y) € K x K and
t > 0. If t > 0, then the semigroup property gives that

kot (x, y) = /K ke(x, 2) ke (z, y) dz (22)
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for almost every (x, y) € K x K. In particular, for almost all x € K it follows that
(2.2) is valid for almost every y € K.

Fix t > 0. Since S;L,(K) C C(K) it follows from the Riesz representation
theorem that for all x € K there exists a k. € £,(K) such that

(Siu)(x) = (u, k) Ly (k)

forall u € Ly(K) and [|kL[l2 < ||Stll2—o00- Similarly, for all y € K there exists a
k;" € L£5(K) such that

(Sfu)(y) = (u, K5 Ly (k)

forallu € Ly(K). Then k¥ ]2 < ||Sfll2—>00. Next we use (2.1). Letu € Ly(K).
Then

/K B Ges ) () dy = (S () = (s KD k) 23)

for almost every x € K. Since C(K) is separable and C (K) is dense in L,(K), also
the space L(K) is separable. Then by continuity and density it follows that (2.3)
is valid for all u € L>(K) for almost every x € K. Therefore k! = k;(x, -) almost
everywhere for almost every x € K. Similarly, k;’ = IE;k (y, -) almost everywhere
for almost every y € K. Hence k;’ = k;(-, y) almost everywhere for almost every
yeKk.

The semigroup property (2.2) and Fubini’s theorem give that for almost every
x € K it follows that

lézt(x,y)=/K1€z<x,z)l€t<z,y>dz

for almost every y € K. Hence for almost every x € K it follows that
kar(x, y) = /K k() K (2) dz = (K2 K Ly

for almost every y € K. Define ky: K x K — C by
faoe (x, ) = (K3 K Ly )

We proved that ko (x, ) = 122, (x, -) almost everywhere for almost every x € K.
Clearly [k2; (x, )| < [IS¢ll2—00 | Sf 1200 for all x, y € K .

Since S;u € C(K) obviously x +— (S;u)(x) = (u, k%), (k) is continuous for
allu € Ly(K). Hence if y € K, then the function x +— 122, (x, y) is continuous from
K into C. Similarly, for all x € K the function y 122, (x, y) is continuous from K
into C. In particular, 122, is a Carathéodory function and therefore measurable (see
[1, Lemma 4.51]). Because 122, (x, ) = 122, (x, -) almost everywhere for almost
every x € K, one deduces from Fubini’s theorem that lgzt = 122, almost everywhere.
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Define k4;: K x K — Cby

kaw=/£Mxn@@mmA
K

Then the semigroup poperty (2.2) gives
@mw:f&mm%mwa:f@m@@mwazmww
K K

for almost every (x, y) € K x K. So 124, = k4, almost everywhere.

Finally, for all z € K the function (x, y) +— ko (x,2) ko (z, y) is continuous
from K x K into C and bounded by ||.S; ||%_) 0o IISF ||%_) o+ Moreover, the measure
is finite. Hence by the Lebesgue dominated convergence theorem one deduces that
k4; is continuous. Therefore 1;4, has a continuous representative. O

Remark 2.2. Theorem 2.1 is also valid if K is replaced by a locally compact metric
space X and C(K) is replaced by Cp(X). We do not know whether the condition
that p is a finite Borel measure can be relaxed to u being a regular measure.

In the situation of Theorem 2.1 it follows immediately that S; leaves C (K) in-
variant for all # > 0. Since kernel operators are compact, it follows that (S;|c(k))s>0
is a semigroup of compact operators in C (K). It is not clear, however, whether it is
a Co-semigroup, even if S is a Co-semigroup on Lo (K).

A subspace I of a (general) Banach lattice E is called an ideal if

|:u € I implies |u| € I and

uel, ve Eand0 <v <uimpliesv € I.

A semigroup on E is called irreducible if the only invariant closed ideals are {0}
and E. If (X, X, ) is a measure space, p € [1,00) and I C L,(X), then /
is a closed ideal if and only if there exists a measurable subset ¥ C X such that
I ={f eL,X): fly =0ae.} (see [27, Section III.1 Example 1]). A subspace
I of C(K) is a closed ideal of C(K) if and only if there exists a closed set B C K
such that I = {f € C(K) : f|p = 0} (see [27, Section III.1 Example 2]). We
refer to [23] for much more information on irreducible semigroups. An operator
B: E — E is called positive if Bf > 0 for all f € E with f > 0. A semigroup S
on E is called positive if S; is positive for all # > 0.

In this paper we need a number of known properties of positive and irreducible
semigroups when £ = L»(K), where K is a compact metric space. For conve-
nience and future reference we collect them in the next lemma.

Lemma 2.3. Let S be a Co-semigroup on Lo(K, w), where K is a compact metric
space and | is a finite Borel measure on K. Suppose the generator —A of S is
self-adjoint and that S; has a bounded kernel for all t > 0. Then one has the
following:
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(a) Forallt > O the operator S; is a Hilbert—Schmidt operator;

(b) The operator A has compact resolvent and min o (A) is an eigenvalue;

(c) If S is positive, then there exists an eigenfunction u1 with eigenvalue min o (A)
such that u; > 0 almost everywhere;

(d) If S is positive and irreducible, then the eigenvalue min o (A) is simple. More-
over, there exists an eigenfunction uy with eigenvalue mino (A) such that
u1(x) > 0 for almost every x € K.

Proof. (a) and (b) are easy.

(c). This follows from the Krein—Rutman theorem, see for example [11, Theo-
rem 12.15].

(d). See [11, Proposition 14.12(c) and Example 14.11(a)]. ]

We emphasise that the eigenfunction u; in Statement (c) is in general not
unique, even not up to a positive constant. If moreover S;L(K) C C(K) for
all + > 0, then u; is continuous. If S is irreducible (on Ly(K)), then u;(x) > 0 for
almost all x € K by Lemma 2.3(c). Of course this does not imply that u#;(x) > 0
for all x € K. We will relate this strict positivity with the irreducibility of the semi-
group on C(K). The main point of the following proposition is that the very weak
nondegeneracy condition (ii) implies that the first eigenfunction is strictly positive.

Proposition 2.4. Let K be a compact connected metric space and | a finite Borel
measure on K with suppu = K. Let S be a positive Co-semigroup on Lo(K, [v)
with self-adjoint generator —A. Suppose that S;L,(K) C C(K) for allt > 0.
Define

S; = Silck): C(K) = C(K)

forallt > 0. Then the following are equivalent:

(1) The semigroup S¢ = (87 )0 is irreducible;

(ii) Forall x € K there existt > 0 and f € C(K) such that (57 f)(x) # 0;

(iii) There exists a § > O such that ui(x) > 6 for all x € K, where u; € L(K)
is an eigenfunction with eigenvalue min o (A) such that u; > 0 almost every-
where;

(iv) Forall f € C(K) with f > 0and f # 0 it follows that (S; f)(x) > 0 for all
t>0andx € K.

Proof. (i) = (iv). This is a variation of a theorem of Majewski and Robinson [22].
Let x € K. It follows from irreducibility that there exists a f; > 0 such that
(S,C1 F)x) > 0 (see [23, Section C-III Definition 3.1]). Let § € (0, #;). We shall
show that (S7 f)(x) = O forall # € (§,00). Settg = t; — & and g = S5 f. Then
(Sf0 g)(x) > 0. Since S¢ has a holomorphic extension to a sector with values in
L(C(K)), it follows from the proof in [23, Theorem C-II1.3.2(b)] that (Sf g)(x) > 0
forall r > 0.
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(iv) = (iii). This is trivial.

(iii) = (ii). Take f = uy.

(i1)) = (i). By Theorem 2.1 the operator S; has a continuous kernel &; for all
t > 0.Let B C K be aclosed set with @ # B # K. Define

I'={feC(): flp=0}

Suppose that the closed ideal [ is invariant under S. Define g € C(K) by g(x) =
d(x, B). Then g € I. Since K is connected there exists an xo € dB. Lett > 0.
Because S;g € I, one deduces that

/K ki (x0, ) d(y, B) du(y) = (Si8)(x0) =O.

Hence k;(xg, y) = 0 fora.e.y € K \ B. Since k; is continuous and p is strictly
positive on open sets it follows that k;(xp, y) = O for all y € K \ B. Because
Xo € 0B one establishes that &; (xg, xo) = 0. The semigroup property and symmetry
then imply that

0=kt(xo,xo)=/Kkz/z(XO,y)kt/z(y,XO)dM(y)=fK|kt/z(XO,y)|2dﬂ(y).

Hence k;2(xg, y) = 0 for almost every y € K. Consequently (S;,2 f)(xo) = 0 for
all f € C(K). This is for all ¢+ > 0, which is a contradiction. O

Condition (ii) is automatically satisfied if the semigroup S€ is a Co-semigroup,
because then lim; o S;1 = 1 in C(K). As a consequence the semigroup is irre-
ducible and u1(x) > O for all x € K. This is surprising, since only the connected-
ness of K is responsible for this property. We state this as a corollary.

Corollary 2.5. Let K be a compact connected metric space and | a finite Borel
measure on K with suppuw = K. Let S be a positive Co-semigroup on Lo (K, ()
with self-adjoint generator. Suppose that S;Ly(K) C C(K) for allt > 0. Define

$¢ = Silcw): C(K) = C(K)
forallt > 0. If S€ is a Co-semigroup, then it is irreducible and min,cg uj(x) > 0.

There is a remarkable consequence of irreducibility: the semigroup S extends
to a consistent Co-semigroup on L, (K) for all p € [1, 00).

Proposition 2.6. Let K be a compact connected metric space and | a finite Borel
measure on K with suppu = K. Let S be a positive Co-semigroup on Lo(K, i)
with self-adjoint generator —A. Suppose that S;L>(K) C C(K) for allt > 0 and
that S€ is irreducible. Then for all p € [1, 00) there exists a Co-semigroup SP)
on L,(K) which is consistent to S. Moreover, there exists an M > 1 such that

IISt(p)Ilp_>p <Me M forallt >0and p € [1,00), where A\| = mino (A).
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Proof. Let § > 0 be as in Proposition 2.4(iii). Let 0 < f € Lo (K). Then

1flloo - I1f lloo “r

0< f<
=f= 8 3

Hence S, f < Ml gy < Ml o=21 31 and 1S, flloo < M e 7 || flloo for all
t > 0, where M = 87! ||lu1|lo. Since S is a self-adjoint semigroup, it follows by
duality that ||S; f|l1 < M e M1 | fll1 for all f € Ly(K). Then by interpolation

1S fllp < M e M1 I fll, forall f € Lo(K) N L,(K). Since the measure is finite
the semigroup is a Cyp-semigroup, see [28]. O

We emphasise that we do not assume in Proposition 2.6 that S¢ is a Co-semi-
group on C(K).

3. The Dirichlet-to-Neumann semigroup: invariance of C(I')

In this section we introduce the main setting of this paper and recall some known
results for the Dirichlet-to-Neumann operator and the associated semigroup.

Let Q@ C R? be a bounded open set with Lipschitz boundary. For all k,[ €
{1,...,d}letay € Loo(S2, R). Suppose that

arl = ax (3.1)
forall k,l € {1, ..., d} and that there exists a ;© > O such that
d JR—
Re ) an(x) & & > pl& (32)
k=1

forall £ € C?and x € Q. Let V € Loo(Q2, R). Define the forms a, ay : H'(Q) x
H'(Q) — Cby

d
a(u, v) = Z/Qak, (0u) v and av(u,v):a(u,v)-i—/QVui

k=1

Let AN be the operator in L;(€2) associated with the form a and let AP be the
operator in L;(£2) associated with the form a| HY (@) H (@) Then AN + V is the

operator associated with ay and AP + V is the operator associated with the form
ay| HIQ)xH () We assume throughout this paper that

0¢o(AP +V). (3.3)

Let I" be the boundary of 2. We provide I' with the (d — 1)-dimensional Hausdorff
measure. Let Dy be the Dirichlet-to-Neumann operator in L,(I") associated with
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(ay, Tr). This means the following. If ¢, ¢ € Lo(I"), then ¢ € Dy and Dy¢ = ¢
if and only if there exists au € H'(2) such that Tru = ¢ and

ay(u,v) = (¥, Trv), ()

for all v € HY(RQ). It follows from [8, Theorem 4.5], or [12, Theorem 5.10], that
Dy is a self-adjoint graph, which is indeed a self-adjoint operator because of the
condition (3.3). Moreover, Dy is lower bounded by [8, Theorem 4.15].

We can give another description of the operator Dy, for which we need the
notion of a weak conormal derivative. Let H~!(Q) be the dual space of HO1 ().

We define the operators A, A+ V: H'(Q) — H~1(Q) by
(Au,v) =a(,v) and {((A+ V)u,v)=ay(u,v).

Let u € H'(Q) and suppose that Au € L,(2). Then we say that u has a weak
conormal derivative if there exists a ¢ € L, (I") such that

a(u,v)—/(Au)v:/wm
Q r

for all v € H'(Q). By the Stone—Weierstrass it follows that the function 1 is
unique and we write d,u = . Note that the conormal derivative depends on the
coefficients ay;, which is suppressed in the notation.

With this notation the operator AV can be seen as the realization of A in L, ()
with Neumann boundary conditions, since

dom(AN) = {u € H'(Q) : Au € L>(Q) and d,u = 0}

and ANu = Au for all u € dom(AN).
The alluded characterisation of Dy is as follows.

Lemma 3.1. Let ¢, € Lo(I'). Then the following are equivalent.

(i) ¢ € dom(Dy) and Dy = .
(ii) There exists au € H' () such that (A+ V)u =0, Tru = ¢ and d,u = .

We leave the easy proof to the reader.

Let SV be the semigroup generated by —Dy . In the next proposition we use
elliptic regularity to show that the resolvent of Dy leaves C(I") invariant.

Lemma 3.2. Forallk,l € {1,...,d}letay € Loo(2,R). Let V € Loo(22,R).
Suppose (3.1), (3.2) and (3.3) are valid. Let v € R be such that ||S,V lamn < et
forallt > 0. Let A € (w,00)and Y € C(I"). Then (A I + Dv)_lw e C(IN).
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Proof. Write ¢ = (A\ I + Dy)~'y € Lo(I"). Then Dy¢ =  — L . There exists
a unique u € H'() such that Tru = ¢ and ay (u,v) = fr(w — i) Tro for all
v e HY(Q). Then

a(u,v)—i—/ Vuﬁ+x/Trum=/va
Q r r

for all v € H'(S2). Hence by [25, Theorem 3.14(ii)] one deduces that u € C(R).
Sop e C(IN). O

Also the semigroup SV leaves C(I') invariant. Even stronger, it maps L (I")
into C(I).

Proposition 3.3. Forallk,l € {1,...,d}letay € Loo(2,R). Let V € Loo(22, R).
Suppose (3.1), (3.2) and (3.3) are valid. Then StVLz(F) c C(I") forallt > 0.

For the proof we need the following lemma:

Lemma 3.4. Adopt the notation and assumptions of Proposition 3.3. Suppose
d>3.Letq €[5, %) ande > 0. Letu € H'(Q) and € Ly(T)NLw-1q ,, (1).

d—q
Suppose that

ay(u,v) = / ¥ Trv
r

forallv e H(Q). Then Tru € L w-1)y (T).

@=1q
d—2q

Proof. This is a special case of [25, Lemma 3.11]. O

Proof of Proposition 3.3 . First we show that for all #+ > 0 and ¢ € L,(I") there
exists an ¢ > O such that S,V<p € Lj—_14¢(I"). For this we may assume that d > 3,

since the case d = 2 is trivial. For alln € {1, ...,d — 1} define
B 2d
=y +3—n’
Then g1 = dz—fz, qi—2 = % and qg—1 = %. Moreover, g1 = dif”ld for all

nefl,...,d—2}. We shall show that forallt >0,p e Ly(I")andn € {1,2...,d—1}

there exists an ¢ > 0 such that S,V @ €L @-1g, te (I"). The proof is by induction on 7.
d—qn

Since % = de;l < 2,thecasen = listrivial. Letn € {1,...,d — 2}

and suppose that for all # > 0 and ¢ € L,(I") there exists an & > 0 such that

SY ¢ € Lu-ng (D). Letr > 0and ¢ € Lo(T"). Set ¢ = SY Dy S) ¢. Then there
d—qn
exists an € > 0 such that ¢ € L y-1)q, e (I") by the induction hypothesis. Note that
d—qn

Dy Sz‘;gp = . So by definition there exists a u € H'(S) such that Tru = Szvt(p
and ay (1, v) = fr‘ W Tro forallv € H' (). Because Gn < q4—2 < % one deduces
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@=Ddns1 _ @d=1)gn (d=1)gn

from Lemma 3.4 that Tru € L (j:é)q(fun (I"). Since i = < a2,
there exists an ¢’ > 0 such that Szvlcp =Tru € Lwu-1gq,, +€,(F), which completes

d—qy 4
the induction step. So by induction for all # > 0 and ¢ € L,(I") there exists an

¢ > Osuchthat §) ¢ € L(i:q)qd,l ., (D). But % =d—1.

Thus we proved for all ddlz 2,t > 0 and ¢ € Lo(I") that there exists an
& > 0 such that Stho € Ly—_1+¢(I"). Now one can argue once again as above and
use this time [25, Lemma 3.10] to deduce that Sz‘;(p e C() forall + > 0 and
o € Ly(IN). O

Corollary 3.5. Forallk,l € {1,...,d}letay € Loo(2,R). Let V € Loo(22, R).
Suppose (3.1), (3.2) and (3.3) are valid. Then SV has a continuous kernel.

Proof. This follows from Proposition 3.3 and Theorem 2.1. O

For all ¢ > 0 define T,V: cT)— CT)by
7Y =8 lcwm).

Obviously TV = (T,V),~0 is a semigroup, but it is unclear whether it is a Co-
semigroup. Define the part Dy . of Dy in C(I') by

dom(Dy ) ={p € C(I') Ndom(Dy) : Dyp € C(I')}

and Dy ¢ = Dy for all ¢ € dom(Dy ). If TV isa Co-semigroup, then —Dvy
is the generator of TV and consequently dom(Dy ) is dense in C(I").

4. Density of the domain in C(I')

In this section we shall prove that the operator Dy . has dense domain if the coeffi-
cients ay; are Lipschitz continuous.

Theorem 4.1. Forallk,l € {1,...,d} let ayy € W"°(Q,R). Let V € Loo(Q2, R).
Suppose (3.1), (3.2) and (3.3) are valid. Then the domain dom(Dy ) of the opera-
tor Dy . is dense in C(I").

For the proof we need a lot of preparation. Throughout this section we adopt
the assumptions of Theorem 4.1.

We aim to prove that Dy . has a dense domain, that is that there are sufficiently
many u € H'(Q) such that (A + V)u = 0, Tru is continuous, the function u has
a weak conormal derivative and 9, u is continuous. The next lemma gives existence
of a class of functions on 2 with continuous trace, which have a weak conormal
derivative and the conormal derivative is bounded (but not necessarily continuous).
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Lemma 4.2. Letu € C'(Q)NH?(Q). Then u has a weak conormal derivative and
oyu € Loo(I).

Proof. Since the a; € WH2°(Q) it follows that Au € L(RQ). Let v € C®(RQ).
Forallk € {1,...,d} define F;: @ — Cby Fy =0 Zleald (0;u). Then Fy, €
C(Q)NH (). Moreover, div F = ZZJ=1 ag () 9v— (Au) v € L1(RQ). Hence
the divergence theorem gives

/akl (Sku)agv—/(./lu)v_/ divF = Z/varFk
k,[=1

/ (v Tr (ag; du)) Tr v,

k,I=1

where v is the normal vector. Then by density

/ ag; (dxu) v — / (Au)v = / v Tr (ayy 81u)) Trv
k, =1 k,[=1

d
forallve H! (2). So u has a weak conormal derivative and d,u =»_ v Tr (ax 0ju) €
k=1
Loo(T). O

Our next aim is to show that one can approximate an element of C(I") by
functions u|r, where u € C'(Q) N H3(Q) and (A + V)u = 0. We will show
this in Lemma 4.7. For such u# one deduces from the previous lemma that u|r €
dom(Dy) N C(I") and Dy (u|r) = dyu € Lo(T").

The first ingredient is that the Lipschitz domain €2 can be approximated from
outside by smooth domains.

Lemma 4.3. There exist c1,ca > 0 and 1, Q, ... C R? such that the following
is valid:

(a) For all n € N the set @, is open bounded with C*°-boundary. Moreover,
QC Qi1 C R C R+ B(O, )

(b) m;:ozl Q_n = 5;

(c) Foralln € Nand z €T there exists a 7' € QS such that |z — 7'| <

(d) IfneN,z€dQ,andr € (0, 1], then |B(z,r) \ Qu| > c2r?.

1.
n’

Proof. This is a straightforward consequence of [15, Theorem 5.1]. O

Since 2 has a Lipschitz boundary, one can extend the coefficients ay; to
bounded real valued Lipschitz continuous functions on R¢, which by abuse of nota-
tion we continue to denote by ay;. Reducing p if necessary, we may assume without
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loss of generality that (3.2) is valid for all £ € C? and x € R?. Similarly we extend
V to a bounded real valued measurable function on R?, still denoted by V. If Q' C
R? is open, then we define similarly to a the form ag/: H'(Q') x H'(Q') — C and
define similarly the operators Ag, and AY,. Moreover, define similarly the operator
Ag: H(Q) - HI(Q).

If @', Q" c RY are open with Q' C Q”, then we will identify a self-adjoint
operator in L,(2") with a self-adjoint graph in L»(2”) in a natural way, see [8,
Section 3, in particular Proposition 3.3]. Moreover, we identify an element of
HOl (") with an element in HO1 (2”) by extending the function with zero. Then
H ' (Q") c H'(Q).

If Q1,€,... C R? are as in Lemma 4.3, then the operators Agﬂ + Vin

L>(2,) are a good approximation for the operator AP 4+ V in L,(R). This is the
content of the next two lemmas. The first lemma is not new. We include the proof
for completeness and refer to Daners [13] for a systematic investigation of domain
approximation.

Lemmad44. Let 21, Qo, ... C_Rd be open bounded sets with Q@ C Q41 C
foralln € Nand (72, 2, = Q. Let » € R and suppose that V + o g, > lg,.
Then

lim (A3 + V4ol '=A8+V+on™
n—o0o n
in L(L2(21)).

Proof. Without loss of generality we may assume that V > g, and w = 0. Let
fs f1, f2, ... € Lr(21) and suppose that lim f,, = f weakly in L>(2;). Letn € N.
Setu, = (Agn + V)*lf,,. Then u, € HO1 (2p) C HO1 (£21). Moreover,

aq, (Un, v) + (Vuu, )0 = (fu, V@) 4.1)

forall v € HOl (2,). Choose v = uy,. Then

IL/ |V, |* +/ lun|® < ag, () + (V ttn, un) 1y (2)
Q Q
= (fusun) Ly @) = I fullLa@) lunllLy@))-

Hence [lunllLy@)) < I fallLace)) and 1 fo |Vu,|* < ||fn||%2(91)- Since (fn)neN
is bounded in L;(£21), it follows that the sequence (), is bounded in HO1 (21).
Passing to a subsequence, if necessary, we may assume that there exists a u €
HOl (£21) such that lim u,, = u weakly in HO1 (€21). Because €21 is bounded, one then

obtains that limu,, = u (strongly) in L»(£21). Since suppu, C Q,n forall n, m e N
with n > m, it follows that suppu C €, for all m € N. So suppu C (e 2m =
Q. Hence u € HO1 (R2) since 2 has a Lipschitz boundary. Let v € HO1 (2). Then
v E Hol(Qn) for all n € N. Use (4.1) and take the limit n — oo. Then

a(,v) + (Vu,v),@ = (f, V),@)-
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So u € dom(AP + V) and (AP + V)u = f|q. Therefore u = (AP + V)~ f.
Choosing f, = f for all n € N we proved that limn_)oo(Agn + V) lf =
(AP + V)=l fin Ly(Q)) forall f LQ(QI)
Finally, suppose that not hm,,_mo(A + V)l (AD +V)"lin L(L2(21)).
Then there are ¢ > 0 and f1, f2,... € Lz(Ql) such that || fullz,(@,) =1 and

1A + V) fa = (AS+ V) fulla = &
for all n € N. Passing to a subsequence, if necessary, we may assume that there ex-
ists an f € L,(€21) such that lim f,, = f weakly in L>(€21). Then lim,,_mo(Agn +
V)_lf,, = (AP + V)_lf in L,(€21) by the above. Since (AP + V)~ lis compact,
also lim,— 0o (AG + V)7 fy = (AP + V)71 f in La(Q1). So lim,c0 [(AG +
VYL — (A5 + V)7 full Ly, = 0. This is a contradiction. O

Lemma 4.5. Let 21, 2, ... C_Rd be open bounded sets with Q@ C Q11 C
foralln € Nand (2, Qu = Q. Then there exists a § > 0 such that

o(AG +V)N(=8,8) =0
for all large n € N.

Proof. For all n € N the self-adjoint operators AD + V and AP + V are lower
bounded by —||V |1 (e, and have compact resolvent Hence they have a dis-

crete spectrum. Let n € N. For all m € N let )»,(fl' ) be the m-th eigenvalue of
Agn + V, counted with multiplicity. Define similarly A, with respect to AP 4+ V.

Since lim,oo(AJ +V +wl)™! = (A8 +V + o)~ in L(L2(R))) with
= IVl + 1 by Lemma 44, it follows that lim, 0 A’ = A, for all

m € N. For a short proof of this well known fact see [16].
By assumption O ¢ o (AP 4 V). Hence there exists a § > 0 such that O’(Ag +
V)N(-34, §) = @. Since the eigenvalues converge, then also o(Agn—i—V)ﬂ(—S, 8) =
@ for all large n € N. O

The next lemma is a small extension of a special case of [19, Theorem 1.2].

Lemma 4.6. Forallc,d,u, M >0and p € (% Vv 2, 00) there exista € (0, 1) and
c1 > 0 such that the following is valid.

Let @ C R4 be open non-empty and suppose that |B(z,r) \ Q| = cr? for
all z € 0Q andr € (0,1]. Let V € Loo(2) with |VLo < M. For all
k,l € {1,...,d} let ay € Loo(2,R) with |lakllL@) < M and suppose that
Re ZZ,I:I an(x) €& > wl&|* for almost all x € Qand all € € C4. Let f €

L,(2) N Ly(2) and u € Hol(Q). Suppose that

/akl(aku)azv—f-/ Vuv—/fv
k,l=1
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forallv € Hy(Q). Thenu € C*(Q) and

ulllce @) < ci <||u||H1(Q) + ”f”Lp(Q)),

where

lu(x) —u(y)l

lllcoey = sup | o xyeQado<lr—y 1) @2

Proof. If V. = 0, then this is a special case of [19, Theorem 1.2] with the choice
'=0,T =Qand ¢ = 2. If V # 0, then one has to replace f by f — V u and
iterate, using of [19, Proposition 3.2]. O

Now we are able to prove that one can approximate elements in C(I') by ele-
ments ¢ € dom(Dy) N C(I") with Dy € Loo(I").

Lemma 4.7. Let ¢ € C(T') and € > 0. Then there exists au € C1(Q) N H*(Q)
such that (A+ V)u =0 and |lulr — ¢llcary < &.

Proof. Since {F|r : F € C*(R%)} is dense in C(I") by the Stone—Weierstra3 theo-
rem, we may assume that there exists an F € C>(R?) such that ¢ = F|r.

Letcy, co > 0and 1, 5, ... C RY be as in Lemma 4.3. By Lemma 4.5 there
exists aé > 0 such that & (Agn +V)N(=48,8) = @ forall large n € N. Without loss

of generality we may assume that a(Agn +V)N(=4,8) =P foralln € N. Then in
particular Agn + V is invertible for all n € N. Let n € N. Define G,, € L2(2,) by

d
Gn=— Y daud(Flg,).
KI=1

Since F € C2(R?) and a; € W1°(R?) one indeed obtains that G, € L»(2,).
Even stronger, G, € Lg+1(2,). Since Agﬂ + V is invertible, we can define

wy = (A3, + V) NG, + V F).

Then w, € HO1 (£2,) N Co(£2,), where the continuity follows for example from
Lemma 4.6. Moreover,

agn(wn,v)-i-/ Vuw,v= (Gn+VF)5=aQn(F|Qn,v)+/ VF7v
n QII n

for all v € H} (). Letu, = Flg, — wy. Then (Ag, + V)u, = 0. So Ag,u, =
—V u, and hence u, € Wli’cp (2,,) for all p € (1, c0) by elliptic regularity. In
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particular u,|q € C'(Q) N H*(Q). Note that u, — Flg, = —w,. By Lemmas 4.6
and 4.3(d) there exist « € (0, 1) and ¢3 > 0, independent of n, such that

Hwnllica@y < e3(1Gn +V FllLgyin + lwallina,)) 4.3)

forall neN, where |[|w,|[|ce(g,) is defined asin (4.2). Clearly ||G,+V F L, (@)=
I1G1+V FllL, @) foralln € N. We next show that (lwn |l g1, ))nen is bounded.

Letn € N. Since 0 (A + V)N (=8, 8) = @it follows that [ (A3 + V)| <
8~!. Therefore

lwalls@n < 1CAR + V)G, +V Fliis@n < 2 1G1 + V Fliyq)- (44)

Setw = ”V”Loo(Gl)' Then

I'L/ |an|2 =< aQn(wn) =< aQn(wn) +/ (V+0)]1§2n) |wn|2
Q2

Qp

= (Gy+VF+ow,)w,
QH

= (IG1 +V Flla@y + @ lwnll G ) 10allLoGo-
Together with (4.4) one concludes the sequence (||wn || 51(g,))neN is bounded.

Using (4.3) there exists a ¢4 > 0 such that [[|w,|||ce@, =< cs4 uniformly
forall n € N. Now let z € I'. By Lemma 4.3(c) there exists a z’ € Q such that

lz—z'| < 5t Henceifn > ¢y, then [w,(2)| = [w,(2)—wa ()| < [||walllce@,) l2—
7'1% < cqcf n™*. Therefore lim, oo [|[wy|rllcqry = 0. Hence lim, oo [lux|r —
Firllcay = 0. So choose u = u,|g with n large enough. ]

We need one more lemma before we can prove density of dom(Dy ) in C(I").
The main aim in the lemma is to solve the Neumann problem with respect to AV +V
for functions ¥ € L,(I"). If p is large enough then solutions are continuous on 2.

We choose p = d. As expected, the kernel of of AN 4 V gives problems, so we
take orthogonal complements.

Lemma 4.8. Define
Hy () ={ue H(Q): (u,v)1q) = 0forallv € ker(AN + V)}
and
Logvi(T)={teLyT):(xr,Trv)r,) =0forallv e ker(AN 4+ V)}.
Then one has the following:

(a) ker(AN 4+ V) C C(Q) is finite dimensional;
(b) Ifu € ker(AN + V), then Tru € dom(Dy .);
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(©) Ift € Lgvi(T)and e > 0, then there exists at’ € C(I') N Ly, v (') such
that |t — t'||L,r) < €&

(d) For aﬂ € Lq v (') there exists a unique u € H‘l,l(Q) such that ay (u, v) =
frtTrv forallv e H(SQ).

Define E: Ly y,(I') — H‘I,J_(Q) such that
ay(Et,v) :/ tTrv
r

forallv e H(RQ).

(e) The map E is continuous;

(f) Ift € Ly, v (), then ET € C(Q);

(g) The map E is continuous from Ly v (') into C (Q);

(h) Ift € Lgy1(I'), then Tr Et € dom(Dvy) and DyTrEt = 1.

Proof. (a). The operator AN + V has compact resolvent. Hence its kernel is finite
dimensional. The inclusion follows from [25, Theorem 3.14(ii)].

(b). If v € HY(Q), then ay (u, v) = (AN + V)u, v)1,q) = 0. Therefore Tru €
dom(Dy) and DyTru = 0. Since Tru € C(I") by Statement (a) and obviously the
zero function is continuous, one deduces that Tru € dom(Dy ).

(c). By Statement (a) there exist N € Ny and ¢, ..., ¢y € Tr ker(AN + V) such
that @1, ..., @y is a basis for Tr ker(AN + V). We may assume without loss of
generality that ¢, ..., ¢y is orthonormal in Ly (I"). Since C(I") is dense in L4(I")
there exists a 7”7 € C(I") such that ||t — t”||z,r) < ¢. Forallk € {I,..., N}
set cx = (t", gr)Lyry. Then ek| = [(7" — 7, 00) L,y < € llgkllL,r), where
p € (1, 00) is the dual exponent of d. Set v’ = 7"/ — Z,ivzl ¢k . Then

N N
le = Neum = le=" g+ Y leilloelam < (14 Ikl aa el e
k=1 k=1

andt' e CT)N Ly vy (T).

(d). Define the form b: H), () x H), () — Cby b = avlgl (@xHl, @
Then b is a continuous symmetric sesquilinear form. Hence there exists a T €
E(H‘I,J_(SZ)) such that b(u, v) = (Tu, U)H‘I/L(Q) forall u,v € H‘I,J_(Q).

We next show that T is injective. Indeed, if u € ker T, then ay (u,v) = 0
for all v € H‘I,L(Q). Obviously ay (u,v) = (u, (AV + Vv, = 0 for all
v € ker(AN + V). Since H/(Q) = H) | (Q) & ker(AN + V), it follows that
ay(u,v) = 0forall v € H'(RQ). Hence u € dom(A"N + V) and (AN + V)u = 0.
Sou € ker(AN + V). Alsou € H}, | (). Therefore u = 0 and T is injective.

The inclusion map H‘l,J_(Q) C L(S2) is compact and the form b is L, (€2)-
elliptic. Hence by [8, Lemma 4.1] the operator T is invertible.
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The Sobolev embedding theorem, [24, Theorems 2.4.2 and 2.4.6], gives
TTHYQ) Cc L 242 (') for all ¢ € (0, 1]. Moreover, Ld2d2—2 I c deil(r).
s <

Hence there exists a ¢ > 0 such that
| [+ T8 = el ol
r

forall T € Lg(I') and v € H'(Q). Now let 7 € Ly yvi(I'). Then the map
o H‘I, 1(Q) — C given by a(v) = fr T Trv is continuous and anti-linear. Hence
there exists a unique u € H‘I,L(Q) such that (T'u, v)H‘h(Q) = a(v) forall v €

Hy, | (). Moreover, ||u]| 1) < ¢ IT 7|l |]ly(r)- Then
ay(u,v) =b(u,v) = (Tu, U)H‘l/l(g) =a(v) = /F tTrov

forallv € H}, | (Q). Clearly a(u, v) =0and [t Trv = 0 forall v € ker(AV +V).
Hence ay (u, v) = fr T Trv for all v € H'(Q). Note that ET = u.

(e). In the proof of Statement (d) we deduced that IETl g1q) < el Il @)
forall T € Ly v (I'). So E is continuous.

(f). This follows from [25, Theorem 3.14(ii)].
(g). By [25, Theorem 3.14(ii)] there exists a ¢’ > 0 such that
1ETlcg < CNETLy ) + 1T lLym)

forallt € Ly,y 1 (I'). But
IETl Lo < IETlgiigy < cIT 1 TllLa)-

So | Etlleg < (e IT I+ DlitliLyr) forall T € La v (I).
(h). This follows from the definitions of £ and Dy . O

Now we are able to prove that the operator Dy . is densely defined.

Proof of Theorem 4.1. Let H] v1(€), Lgy1(T') and the map E: Lgy (') —
H}, | () N C(Q) be as in Lemma 4.8. Let M > 0 be such that

IETlci = MlITlL,m
forallt € Lyy (). Let N € Npand uy,...,un € ker(AN + V) be such that

Ul oo UN is a basis for ker(AN + V) and is orthonormal in HI(Q). Note that
up € C(Q) forallk € {1,..., N} by Lemma 4.8(a).
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Letp € C(I') and ¢ > 0. By Lemma 4.7 there exists au € Cl(Q) N H*(Q)
such that (A + V)u = 0 and |lulr — ¢|lcqry < €. Then u has a weak conormal
derivative and 8,u € Loo(I") by Lemma 4.2. If v € ker(AN + V), then

/(avu)mza(u,v)—/(Au)i:a(u,v)-i—/ Vuv
r Q Q
=ayu,v) = u, (AY + V)v)1,@) =0.

So dyu € Lg,yv1 (I'). By Lemma 4.8(c) there existsat € C(I') N Ly, y 1 (I') such
that ||t — dyullr, ) < €. Choose w = Et. Thenw € H‘IU_(Q) N C(RQ) and

ay(w, v) =/ tTrv
r

forall v € H(Q). Set ¢y = (u,uk)Hl(Q) € Cforall k € {1I,..., N}. Then by
construction w — u + 21]{\7:1 Cruy € H\I,L(Q). Letv € H(Q). Then

N
av(w —u+ ch U, v) = ay(w,v) —ay(u,v)
k=1

:/rm—(/(auu)er/((AJr V)u)v)
r I Q
=/(r—avu)m.

r

Note that t — dyu € Ly v (I'). So

N
w—u+chuk = E(t — dyu).
k=1

Hence

N
lw—u+ Y crurlleg <Mt = dullL,w) < Me.
k=1
Then [lwir — ¢ + Y3 ek uglrllca) < (M + Ds.

Finally note that Tr w € dom(Dy) and Dy (Tr w) = 7 by Lemma4.8(h). Since
both Trw and t are continuous, one deduces that Trw € dom(Dy ). Moreover,
Truy € dom(Dy ) forall k € {1,..., N} by Lemma 4.8(b). So ¢ € dom(Dvy ).
The proof of Theorem 4.1 is complete. O

5. Cy-semigroup on C(I')

We next consider the problem whether —Dy . generates a Co-semigroup on C(I").
If (X, B, ) is a measure space, then for operators on the Hilbert space L (X) the
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notation of positivity has two different meanings and in the next lemma we need
both of them. We will use the following terminology if confusion is possible. If
B is an operator in a Hilbert space H, then we say that B is positive in the Hilbert
space sense if (Bu,u)y > 0forallu € dom(B).If B: Ly(X) — L,(X) is alinear
operator, then we say that B is positive in the Banach lattice sense if Bf > 0 for all
f € Lo(X) with f > 0. Here f > 0 means that f(x) > O for almost all x € X.
Below we consider the two cases X = €2, provided with the Lebesgue measure, and
X =T, provided with the (d — 1)-dimensional Hausdorff measure.
The following proposition is known if ag; = &, thatisif A = —A.

Proposition 5.1. Forallk,le{l,...,d}letay e Loo(2,R). Let V € Loo(2, R).
Suppose (3.1), (3.2) and (3.3) are valid.

(a) Suppose that AP +V is positive in the Hilbert space sense and 0 & o (AP+V).
Then the semigroup SV is positive in the Banach lattice sense;
(b) Suppose that V > 0. Then the semigroup SV is submarkovian.

Proof. Statement (a) can be proved as in [9, Theorem 5.1] or [17, Theorem 2.3(a)],
with obvious modifications. Statement (b) is similar to [17, Theorem 2.3(b)]. [

It turns out that the resolvent of Dy . behaves well. Recall that Dy is a lower-
bounded self-adjoint operator.

Lemma 5.2. Forall k,l € {1,...,d}let ayy € Loo(2,R). Let V € Loo(2,R).
Suppose (3.1), (3.2) and (3.3) are valid. Let v € R be such that ||Stv lamn < e®!
forallt > 0. Let . € (w, 00). Then one has the following:

(@) A1 + Dy is invertible;

(b) A1 + Dy,o)~'¥ = (1 + Dy)~'y forall y € C(I);

(c) If AP +V is positive in the Hilbert space sense, then (A I —|—Dv,c)_1 is positive
in the Banach lattice sense.

Proof. (a). Let ¥ € C(I'). Write ¢ = (A I + Dy)~ 'y € Lo(I"). Then Dy¢ =
Y —Agand g € C(I') by Lemma 3.2. So¢y —L¢ € C(I') and ¢ € dom(Dy ).
Obviously (A + Dy o)(A I + Dy) "y = . So the operator A I 4+ Dy  is surjec-
tive. Since A I + Dy is injective, also the operator A I 4+ Dy . is injective. Therefore
A1 + Dy . is bijective, that is invertible.

Statement (b) is now clear.

(c). It follows from Proposition 5.1(a) that the operator (A [ + Dy)lis positive in
the Banach lattice sense on L, (I"). Then the statement is a consequence of State-
ment (b). ]

We now prove the main theorem of this paper. In view of our general assump-
tion (3.3), Condition (a) can be reformulated by saying that the first eigenvalue of
AP + V is strictly positive. In contrast to this, Condition (b) does not include any
spectral condition (except that 0 ¢ o (AP 4+ V)). As a matter of fact, in fact the
potential can be very negative.
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Theorem 53. Forall k,l€{1, ..., d} letay € W'°(Q,R). Let V € Loo(Q, R).
Suppose (3.1), (3.2) and (3.3) are valid. Moreover, suppose that at least one of the
following conditions is valid:

(@) AP +V is positive in the Hilbert space sense;
(b) One has ay; = 6 forallk,l € {1, ...,d} and the set Q has a Cl*l—boundary.

Then StVC(F) c C() forallt > 0 and (S,V|c(r)),>0 is a Co-semigroup whose
generator is —Dy .

Proof. (a). The operator —Dy . is a densely defined resolvent positive operator
by Theorem 4.1 and Lemma 5.2(c). Moreover, the positive cone in C(I") has a
non-empty interior. Hence — Dy . is the generator of a Co-semigroup by [2, Corol-
lary 2.3].

(b). By [7, Proposition 6.10] the semigroup S V leaves Loo(I") invariant and there
exists an M > 1 such that ||S,V<p||OQ < M ||¢|loc forall t € (0, 1] and ¢ € Lo(I").
Then ||TtV||C(r)_>c(r) < M forallt € (0, 1]. If ¢ € dom(Dy ), then

t
I =T )Yolle) < /O ISY Dygllocds < Mt || Dyl

for all + € (0, 1]. Hence lim; g Ttv<p = ¢ in C(I'). Since dom(Dy ) is dense
in C(I") by Theorem 4.1, one deduces that TV is a Cy-semigroup on C(I"). It is
easy to verify that —Dy . is the generator. (This argument also works if V >0 and
merely the ay; € whoQ, R), by using Proposition 5.1(b) instead of [7, Proposi-
tion 6.10].) ]

Whereas under Condition (a) the semigroup TV is positive (in the Banach
lattice sense), this is in general not the case under Condition (b), see [14].

Corollary 54. Forallk,le{l,...,d}letape WH°(Q,R). Let V € Loo(Q2, R).
Suppose (3.1), (3.2) and (3.3) are valid. Suppose AP +vis positive in the Hilbert
space sense. Then for all p € [1, 00) the semigroup SV extends to a Co-semigroup
on Ly(I).

Proof. Lett > 0and ¢ € Lo(I"). Then

1S ¢l = sup (S @, ¥l

YeC(T)
¥ lloe=1
_ v 14 14
= sup (¢, T, V), = sup el 1T, ¥lloo < IIT," @l
YeC() YeC(T)
¥ lleo=<1 ¥ lleo=1

Hence S,V extends to a bounded operator Stv(l): Ly — Ly and ||S,V(1)|| < ||T,V||.

It is easy to verify that V(1 is a semigroup on L. Moreover, SUPse(0,1] IISIV(D | <

SUP,(0.1] ||T,V|| < oo. Since I' has finite measure, the semigroup SV is a Co-
semigroup. Then by duality and interpolation the corollary follows. O
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6. The Robin semigroup on C ()

In order to prove irreducibility of 7V in case AP 4 V is positive in the Hilbert space
sense, we make a detour and prove irreducibility for the Robin Laplacian.
Throughout this section we assume that 2 C R is a bounded open connected
set with Lipschitz boundary, ay; = ajx € Loo(£2, R), the ellipticity condition (3.2)
isvalid and V € Lo (2, R). Moreover, let 8 € Loo(I", R). We do not assume that
0¢ o (AP + V). Define the sesquilinear form ay g: HY(Q) x H(Q) - C by

ay g(u, v) = ay(u, v) +/5Trum.
r

Then ay g is an L, (2)-elliptic sesquilinear form. Let Ay g be the associated oper-
ator. Then Ay g is self-adjoint and bounded below. It is easy to see that

dom(Ay g) = {u € H'(RQ) : Au € L() and d,u + p Tru = 0}

and Ay gu = Au+V uforallu € dom(Ay g). So Ay g is the realisation of A+ V
with Robin boundary conditions. The operator —Ay g generates a Co-semigroup
SV-8 on L,(R), which is called the Robin semigroup. If 8 > 0 then it is well
known that the semigroup S"# has Gaussian kernel bounds (see [4, Theorem 4.9])
and therefore the semigroup SV-# on L,(Q2) extrapolates to a Co-semigroup on
L,(2) forall p € [1, 00). It is an open problem whether the same is valid without
the conldition B = 0. Added in proof: this also remains true without the condition
B =0.
The main theorem of this section is as follows:

Theorem 6.1. Adopt the above notation and assumptions:

(a) The semigroup S"-P is positive (in the Banach lattice sense);

(b) Ift > 0 then S’ L,(Q) C C(); B

©) If » > w, then (M I + Av,ﬂ)’sz(Q) C C(R). Here w € R is chosen large
enough such that sup,_y e~ S, l1m2 < oo;

(d) For allt > O the operator S,V # has a continuous kernel k:QxQ— R;

(e) The operator Ay g has compact resolvent;

(f) The semigroup SV-P is irreducible (on L»());

() The eigenvalue mino (Ay g) is simple;

(h) The semigroup (Stv’ﬂ IC@)),>0 is a Co-semigroup on C(Q);

(i) The semigroup (S,V # IC@)),>0 is irreducible (on C(Q));

(j) There exists a 8 > 0 such that ui(x) > 8 for all x € Q, where u; € L(2)

is an eigenfunction of Ay g with eigenvalue mino (Ay g) such that uy > 0
almost everywhere;

I See D. Daners, Inverse positivity for general Robin problems on Lipschitz domain, Archiv.
Math. (Basel) 29 (2009), 57-69, Theorem 2.2 and Lemma 3.2.
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(k) Forall p € [1, 00) the semigroup SV-P extends consistently to a Co-semigroup
on L,(R2).
Proof.
(a). This follows as in the proof of [4, Theorem 4.9]. The positivity of 8 is not

(b).
(©).
(d).
(e).
(®.
(8)-
(h).

Q).
).

needed in that proof;

This follows from [25, Theorem 3.14(ii)] and Theorem 2.1(1)= (ii);
This follows from [25, Lemmas 3.11 and 3.10];

This is a consequence of Statement (b) and Theorem 2.1;

Easy;

This is a consequence of [26, Corollary 2.11];

See Lemma 2.3(d);

Define the part Ay g . of Ay g in C(Q) by

dom(Ay gc) = {u € C(Q) Ndom(Ay ) : Ay gu € C(Q)}

and Ay g .u = Ay gu for all u € dom(Ay g ). Then dom(Ay g ) is dense
in C(R2) by the arguments in the proof of [25, Theorem 4.3]. (Remark, unfor-
tunately there is a gap in the proof of [25, Theorem 4.3] for the part that the
restriction (Stv # lc (5)) +=0 of the Robin semigroup in C () is a Cy-semigroup,
since it is unclear whether sup,( 1 1S)# oo < 00. He used that the
semigroup S"°# has a kernel with Gaussian bounds, which is only known in
case 8 >0.)

Let w € R be as in Statement (c). Let A > . Then the operator A I + Ay g ¢
is invertible by the same argument as in the proof of Lemma 5.2(a). Since
the resolvent operator (A [ 4+ Ay, ﬁ)_l is positive on L, (£2), also the resolvent
operator (Al + Ay, ,g,c)_l is positive on C(£2). Moreover, the positive cone
in C(R) has a non-empty interior. Hence —Ay g . is the generator of a Co-
semigroup by [2, Corollary 2.3];

and (j). This follows from Corollary 2.5;

The proof is similar to the proof of Corollary 5.4. [

Remark 6.2. In order to avoid confusion with the assumptions and notation in the
rest of this paper we continued to assume in this section that the coefficients are
symmetric and that there are no first-order terms. One can, however, consider the
full Robin form a: H'(Q) x H'(Q) — C given by

d d d
a(u, v) = Z/akz(aku)az_erZ/bk(aku)iJrZ/Ckuak_v
Q k=17 k=17

k,I=1

+/cou5+//3Trum,
Q r
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where ag;, bi, ¢k, co € Loo(2,R) and 8 € Lo (T, R), together with the ellipticity
condition (3.2). We do not assume any longer that the ay; are symmetric. Let A be
the m-sectorial operator associated with a and let S be the semigroup generated by
—A on Ly(2). Then Statements (a), (b), (c), (d), (e), (f), (h) and (k) are still valid,
with the same proof. Instead of Statement (g) one can consider A; = inf{Re X : X €
o (A)}. Then 1 € o(A) by [3, Proposition 3.11.2] and it follows as before that A;
is a simple eigenvalue. If A is symmetric, then also Statement (j) is valid.

We do not know whether Statement (i) is still valid if A is not symmetric.
We also do not know whether Statement (k) is valid if by, ck, co € Loo(£2) and
B € Loo(I") are complex valued.

7. Strictly positive first eigenfunction and extensions to L ,(T')

In this section we consider the case where the semigroup generated by —Dy 1is
positive (in the Banach lattice sense) and under the condition that €2 is connected
we show that the first eigenfunction is strictly positive. We deduce from this that the
Dirichlet-to-Neumann semigroup is irreducible on C(I"). This is surprising since
we merely assume that €2 is connected. For example, if 2 is an annulus, then I is
not connected. The result also allows us to extend the semigroup S" consistently
to a Cp-semigroup on L, (I") for all p € [1, 00).

We adopt the assumptions and notation as in Section 3. In particular, for all
k,l € {1,...,d}letay; € Loo(2,R). Let V € Loo(2,R). We suppose that
(3.1), (3.2) and (3.3) are valid. In addition we assume that €2 is connected and that
AP 1V is positive (in the Hilbert space sense). Then SV is a positive semigroup by
Proposition 5.1(a). Moreover, StVLz(F) C C(T) for all t > 0O by Proposition 3.3
and Dy is self-adjoint with compact resolvent. So all eigenfunctions of Dy are
elements of C(I"). Let A1 = mino (Dy). Let ¢; € C(I") be an eigenfunction with
eigenvalue A1 such that ¢; > 0.

Theorem 7.1. Adopt the above notation and assumptions. Then min ¢ > 0.
The theorem is an immediate consequence of the next proposition.

Proposition 7.2. Let § € R and ¢ € dom(Dy) be and eigenfunction of Dy with
eigenvalue —f. Suppose that ¢ > 0. We identify the real number 8 with the con-
stant function B It on I'. Consider the Robin operator Ay g as in Section 6. Then
mino (Ay g) = 0. Letu; € C(RQ) be an eigenfunction of Ay g with eigenvalue 0
as in Theorem 6.1(j). Then there exists a ¢ > 0 such that ¢ = cuy|r. In particular,
dimspan{yr e ker(B1 + Dy) : v >0} =1and ¢(z) >0 forallz € T.

Proof. By definition of Dy there existsau € H () such that Tru = ¢ and
ay(u,v) = =B (¢, Trv)r,m) (7.1)

forallv € H'(). Since ¢ > 0 it follows that u is real valued and u~ € H, ().
Choose v = u~. Then ay(u,u”) = 0. But d(u~) = —(dku) I<o for all
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k € {1,...,d}. Therefore ay(u—,u~") = ay(u,u") = 0. Since AP + V isa
positive operator in the Hilbert space sense with trivial kernel by assumption (3.3),
it follows that u~ = 0. Therefore u > 0 and clearly u # 0. It follows from (7.1)
that ay g(u, v) =0forallv € H' (). Therefore u dom(Ay g) and Ay gu = 0.
The operator —Ay g is self-adjoint, has compact resolvent and generates a positive
irreducible semigroup in L, (€2). Hence it follows from the inverse Krein—-Rutman
theorem [6, Lemma 5.14] that 0 = mino (Ay g).

Since mino (Ay g) is a simple eigenvalue of Ay g by Theorem 6.1(g), it fol-
lows that there exists a ¢ € C \ {0} such that © = cu;. But both u;,u > 0.
Therefore ¢ > 0. Then ¢ = Tru = cTru;. Since u;(x) > 0 for all x € Q by
Theorem 6.1(j), obviously ¢(z) > Oforallz € I'. O

Recall that TV is the restriction of the Dirichlet-to-Neumann semigroup S to
C(I"). We show below that TV is irreducible. We cannot deduce this in general
from the strict positivity of the first eigenfunction via Proposition 2.4, since I' is not
connected in general.

Irreducibility of SV in L,(I") is much easier. We need the following result.

Proposition 7.3. Let (Y, X, 1) be a finite measure space. Let B be a lower
bounded self-adjoint operator in Ly(Y) and suppose that —B generates a pos-
itive Co-semigroup S on Lr(Y). Let ¢ € Lo(Y) and suppose that ¢(y) > 0
for almost every y € Y. Further suppose that S;¢ = ¢ for all t > 0 and that
dimspan{yr € ker B : ¥ > 0} = 1. Then S is irreducible.

Proof. The proof is a variation of the proof of [5, Proposition 2.2]. Let Y] be a
measurable subset of ¥ and suppose that S;L>(Y1) C Lo(Y7) for all # > 0. Set
Y, = Y \ Y. Since S; is self-adjoint one deduces that S;L>(Y2) C L (Y3) for all
t >0.Lett > 0. Then

ply, +oly, =¢ =8¢ =S8(ply)+ S(¢1ly,).

Since S; leaves Lp(Y7) and Lp(Y>) invariant, it follows that S;(¢ 1y,) = ¢ 1y,
and S; (¢ 1y,) = ¢ 1y,. Sop 1y, € ker B and ¢ 1y, € ker B. Since dim span{yr €
ker B : > 0} =1 one deduces that ¢ 1y, = 0 or ¢ Iy, = 0. Therefore u(¥Y;) =0
or u(¥) =0. ]

Proposition 7.4. The semigroup SV is irreducible on L>(I") and mino (Dy) is a
simple eigenvalue.

Proof. It follows from Proposition 7.2 that ¢ (z) >0 for all z € I" and dim span{ys €
ker(Dy — A1 1) : ¥ > 0} = 1. Apply Proposition 7.3 to the operator Dy — A1 1.
One deduces that SV is irreducible. Then the eigenvalue min o (Dy) is simple by
Lemma 2.3(d). ]

Now we prove the irreducibility in C(I").

Theorem 7.5. The semigroup TV is irreducible on C(T).
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Proof. Let I'1 be a closed subset of ' with @ £ 'y A T'. Set I = {p € C(I') :
@|r, = 0}. Assume that 7,V 1 C I for all t > 0. We consider two cases.

Case 1. Suppose T'1 is not open. Then there exists an xg € dI';. Then one can
argue as in the proof of the implication (ii) = (i) in the proof of Proposition 2.4
to deduce that (TtVu)(xo) =O0forallu € C(I') and ¢t > 0. But (Ttvgol)(xo) =

e " 1 (xp) > 0 for all # > 0 by Theorem 7.1. This is a contradiction.

Case I1. Suppose T'y is open. Then I'j is a connected component of I". Hence
o(l')) >0and o (I'\I'1) > 0. Let J = {9 € Lo(I') : ¢lr, = 0}. Then J is
the closure of I in L,(I") and S,VJ c J forallt > 0. Since SV is irreducible one
deduces that 6(I'1) =0 or o (I" \ I'1) = 0. This is a contradiction. O

Corollary 7.6. For all p € [1, o) the semigroup S” extends consistently to a Co-
semigroup on L, (I").

Proof. This follows from Proposition 2.6. O

Corollary 7.7. Let ¢ € C(I') with ¢ > 0 and ¢ # 0. Then (T,qu)(z) > 0 for all
t>0andz el.

Proof. Apply Proposition 2.4(i) = (iv). O

We do not know whether TV is a Cy-semigroup (unless the ay; are Lipschitz
continuous, see Theorem 5.3(a)).
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