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Convergence of the Yamabe flow on manifolds
with minimal boundary

SÉRGIO ALMARAZ AND LIMING SUN

Abstract. We study the Yamabe flow on compact Riemannian manifolds of
dimensions greater than two with minimal boundary. Convergence to a metric
with constant scalar curvature and minimal boundary is established in dimensions
up to seven, and in any dimensions if the manifold is spin.
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1. Introduction

Let Mn be a closed manifold with dimension n � 3. In order to solve the Yam-
abe problem (see [33]), R. Hamilton introduced the Yamabe flow, which evolves
Riemannian metrics on M according to the equation

@

@t
g(t) = �(Rg(t) � Rg(t))g(t) ,
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where Rg denotes the scalar curvature of the metric g and Rg stands for the average

✓Z

M
dvg

◆�1 Z

M
Rgdvg.

Here, dvg is the volume form of (M, g). Although the Yamabe problem was solved
using a different approach in [4, 25, 31], the Yamabe flow is a natural geometric
deformation to metrics of constant scalar curvature. The convergence of the Yamabe
flow on closed manifolds was studied in [13, 28, 34]. This question was solved
in [8, 9] under the hypotheses of the positive mass theorem.

In this work, we study the convergence of the Yamabe flow on compact n-
dimensional manifolds with boundary, when n � 3. For those manifolds, J. Escobar
raised the question of existence of conformal metrics with constant scalar curvature
which have the boundary as a minimal hypersurface. This problem was studied
in [10,15,23]; see also [3, 19].

Let (Mn, g0) be a compact Riemannian manifold with boundary @M and di-
mension n � 3. We consider the following conformal invariant defined in [15]:

Q(M) = inf
g2[g0]

R
M Rgdvg + 2

R
@M Hgd�g

�R
M dvg

� n�2
n

= inf
{ u2C1(M̄),u 6⌘0}

R
M

⇣
4(n�1)
n�2 |du|2g0 + Rg0u2

⌘
dvg0 +

R
@M 2Hg0u

2d�g0
⇣R

M |u|
2n
n�2 dvg0

⌘ n�2
n

,

where Hg and d�g denote respectively the trace of the 2nd fundamental form and the
volume form of @M , with respect to the metric g, and [g0] stands for the conformal
class of the metric g0.

We are interested in a formulation of the Yamabe flow for compact manifolds
with minimal boundary proposed by S. Brendle in [7]. This flow evolves a confor-
mal family of metrics g(t), t � 0, according to the equations

8
<

:

@

@t
g(t) = �(Rg(t) � Rg(t))g(t) in M

Hg(t) = 0 on @M .
(1.1)

Theorem 1.1 ([7]). Suppose that:

(i) Q(M)  0, or
(ii) Q(M) > 0 and M is locally conformally flat with umbilic boundary.

Then, for every initial metric g(0) on M with minimal boundary, the flow (1.1) exists
for all time t � 0 and converges to a constant scalar curvature metric with minimal
boundary.
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Inspired by the ideas in [8,9], we handle the remaining cases of this problem. Define

ZM = {x0 2 M\@M ; lim sup
x!x0

dg0(x, x0)
2�d |Wg0(x)| = 0} ,

Z@M ={x02@M; lim sup
x!x0

dg0(x,x0)
2�d |Wg0(x)|= lim sup

x!x0
dg0(x,x0)

1�d |⇡g0(x)|=0},

and Z = ZM [Z@M ,

where Wg0 denotes the Weyl tensor of M , ⇡g0 the trace-free second fundamental
form of @M , and d =

h
n�2
2

i
. Our first result is the following:

Theorem 1.2. Suppose that (Mn, g0) is not conformally diffeomorphic to the hemi-
sphere Sn+ and satisfies Q(M) > 0. If

(a) Z = ;, or
(b) n  7, or
(c) M is spin,

then, for any initial metric g(0) on M with minimal boundary, the flow (1.1) exists
for all time t � 0 and converges to a metric with constant scalar curvature and
minimal boundary.

Since the round sphere Sn minus a point is diffeomorphic to Rn , which is spin, the
following is an immediate consequence of Theorems 1.1 and 1.2:

Corollary 1.3. If M ⇢ Sn is a compact domain with smooth boundary, then the
flow (1.1), starting with any metric with minimal boundary, exists for all time t � 0
and converges to a metric with constant scalar curvature and minimal boundary.

Condition (a) in Theorem 1.2 is particularly satisfied if the Weyl tensor and the
trace-free second fundamental form are nonzero everywhere on M\@M and @M
respectively. Conditions (b) and (c) allow us to make use of the positive mass
theorem in [26, 27, 32] and its corresponding version for manifolds with a non-
compact boundary in [2].

Before stating our main result, from which Theorem 1.2 follows, we will
briefly discuss those positive mass theorems.
Definition 1.4. Let (N , g) be a Riemannian manifold with a (possibly empty)
boundary @N . We say that N is asymptotically flat with order p > 0, if there
is a compact set K ⇢ N and a diffeomorphism f : N\K ! Rn\B1(0) or
f : N\K ! Rn

+\B+
1 (0) such that, in the coordinate chart defined by f (which

we call the asymptotic coordinates of N ), we have

|gab(y) � �ab| + |y||gab,c(y)| + |y|2|gab,cd(y)| = O(|y|�p) , as |y| ! 1 ,

where a, b, c, d = 1, ..., n. Here, Rn
+ = {(y1, ..., yn) 2 Rn ; yn � 0}, B1(0) =

{y 2 Rn ; |y|  1} and B+
1 (0) = B1(0) \ Rn

+.
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Suppose the manifold Nn , with dimension n � 3, is asymptotically flat with
order p > n�2

2 , as defined above. Assume also that Rg is integrable on N , and
Hg is integrable on @N if @N is noncompact. Let (y1, ..., yn) be the asymptotic
coordinates induced by the diffeomorphism f .

If f takes values in Rn\B1(0) then @N is compact (or empty) and the limit

mADM(g) := lim
R!1

nX

a,b=1

Z

y2Rn, |y|=R
(gab,b � gbb,a)

ya
|y|

d�R

exists and is called the ADM mass of (N , g). Moreover, mADM(g) is a geometric
invariant in the sense that it does not depend on the asymptotic coordinates; see [6].
Conjecture 1.5 (Positive mass). If Rg, Hg � 0, then we have mADM(g) � 0 and
the equality holds if and only if N is isometric to Rn . In particular, @N = ; when
the equality holds.

As a consequence of [26,27,32] we have:

Theorem 1.6. Conjecture 1.5 holds true if n  7 or if N is spin.

The proof for n  7 was obtained by Schoen and Yau in [26, 27], and the one for
spin manifolds by Witten in [32] when M = ;. The boundary condition used in [2]
can be used to extend Witten’s result to the case @M 6= ;.

If f takes values in Rn
+\B+

1 (0) then the limit

m(g) := lim
R!1

(
nX

a,b=1

Z

y2Rn
+,|y|=R

(gab,b � gbb,a)
ya
|y|

d�R

+
n�1X

i=1

Z

y2@Rn
+,|y|=R

gni
yi
|y|

d�R

) (1.2)

exists, and we call it the mass of (M, g). Moreover, m(g) is a geometric invariant
in the sense that it does not depend on the asymptotic coordinates; see [2].
Conjecture 1.7 (Positive mass with a noncompact boundary). If Rg, Hg � 0,
then we have m(g) � 0 and the equality holds if and only if N is isometric to Rn

+.
In [2], this conjecture is reduced to Conjecture 1.5, so we have the following

result:

Theorem 1.8. Conjecture 1.7 holds true if n  7 or if N is spin.

The asymptotically flat manifolds used in this paper are obtained as the gener-
alized stereographic projections of the compact Riemannian manifold (M, g0) with
nonempty boundary. Those stereographic projections are performed around points
x0 2 M by means of Green functions Gx0 , with singularity at x0. After choosing
a new background metric gx0 2 [g0] with better coordinates expansion around x0
(see Section 3), we consider the asymptotically flat manifold (M\{x0}, ḡx0), where
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ḡx0 = G
4

n�2
x0 gx0 satisfies Rḡx0 ⌘ 0 and Hḡx0 ⌘ 0. If x0 2 Z@M , according to Propo-

sition 3.13 below, this manifold has asymptotic order p > n�2
2 , so Conjecture 1.7

claims that m(ḡx0) > 0 unless M is conformally equivalent to the unit hemisphere.
If x0 2 ZM , this manifold has asymptotic order p > n�2

2 (see [9, Proposition 19]),
so Conjecture 1.5 claims that mADM(ḡx0) > 0.

Our main result, which implies Theorem 1.2, is the following:
Theorem 1.9. Suppose that (Mn, g0) is not conformally diffeomorphic to the unit
hemisphere Sn+ and satisfies Q(M) > 0. Assume that mADM(ḡx0) > 0 for all
x0 2 ZM and m(ḡx0) > 0 for all x0 2 Z@M . Then, for any initial metric g(0) with
minimal boundary, the flow (1.1) exists for all t � 0 and converges to a constant
scalar curvature metric with minimal boundary.

The proof of Theorem 1.9 follows the arguments in [8]; see also [1]. An es-
sential step is the construction of a family of test functions around each point
x0 2 M , whose energies are uniformly bounded by the Yamabe quotient Y (Sn)
if x0 2 M\@M , and by Q(Sn+) if x0 2 @M . If x0 2 M\@M , the test functions
used are essentially the ones introduced by S. Brendle in [9] for the case of closed
manifolds. If x0 2 @M , the functions used here were obtained in [10] in the case
of umbilic boundary, where the authors address the existence of solutions to the
Yamabe problem for manifolds with boundary. In this paper, however, we estimate
their energies without any assumption on the boundary.

An additional difficulty in controlling the energy of interior test functions by
Y (Sn) arises when their centers get close to the boundary (see Subsection 3.3).
In this case, the techniques in [9] cannot be directly adapted because the standard
(and symmetric) bubble in Rn , which represents the sphere metric and is essential
in the construction of the test functions, does not satisfy the Neumann boundary
condition unless it is centered on @Rn

+. However, here we are able to exploit the
sign of this Neumann derivative, when centered inRn

+\@Rn
+, to obtain the necessary

estimates.
This paper is organized as follows. In Section 2, we establish some prelim-

inaries and prove the long-time existence of the flow. In Section 3, we construct
the necessary test functions and estimate their energy. In Section 4, we make use
of the decomposition theorem in [24] to carry out a blow-up analysis using the test
functions. In Section 5, first we use the blow-up analysis to prove a result which is
analogous to Proposition 3.3 of [8]. Then we use it to prove our main theorem by
estimating the solution to the flow uniformly in t � 0.

ACKNOWLEDGEMENTS. The first author is grateful to the Princeton University
Mathematics Department, where this work began during his short visit in 2015, and
the hospitality of Professor F. Marques. The second author would like to thank Pro-
fessor YanYan Li for his continuous support, encouragement and motivation. Both
authors thank the anonymous referee for the thorough review and highly appreciate
his/her comments and suggestions.
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2. Preliminary results and long-time existence

Notation. In the rest of this paper, Mn will denote a compact manifold of dimen-
sion n � 3 with boundary @M , and g0 will denote a background Riemannian metric
on M . We will denote by Br (x) the metric ball in M of radius r with center x 2 M
(observe that Br (x) intersects @M when gg0(x, @M) < r).

For any Riemannian metric g on M , ⌘g will denote the inward unit normal
vector to @M with respect to g and 1g the Laplace-Beltrami operator.

If z0 2 Rn
+, we set B+

r (z0) = {z 2 Rn
+ ; |z � z0| < r},

Dr (z0) = B+
r (z0) \ @Rn

+ , and @+B+
r (z0) = @B+

r (z0) \ Rn
+ .

Finally, for any z = (z1, ..., zn) 2 Rn we set z̄ = (z1, ..., zn�1, 0) 2 @Rn
+

⇠= Rn�1.
Convention. We assume that (M, g0) satisfies Q(M) > 0. According to [15,
Lemma 1.1], we can also assume that Rg0 > 0 and Hg0 ⌘ 0, after a conformal
change of the metric. Multiplying g0 by a positive constant, we can suppose thatR
M dvg0 = 1. We will adopt the summation convention whenever confusion is not
possible, and use indices a, b, c, d = 1, ..., n, and i, j, k, l = 1, ..., n � 1.

If g = u
4

n�2 g0 for some positive smooth function u on M , we know that
8
>><

>>:

Rg = u� n+2
n�2

✓
�
4(n � 1)
n � 2

1g0u + Rg0u
◆

in M

Hg = u� n
n�2

✓
�
2(n � 1)
n � 2

@

@⌘g0
u + Hg0u

◆
on @M ,

(2.1)

and the operators Lg = 1g � n�2
4(n�1) Rg and Bg = @

@⌘g
� n�2

2(n�1)Hg satisfy

L
u

4
n�2 g0

(u�1⇣ ) = u� n+2
n�2 Lg0⇣, (2.2)

B
u

4
n�2 g0

(u�1⇣ ) = u� n
n�2 Bg0⇣ , (2.3)

for any smooth function ⇣ .
If u(t) = u(·, t) is a 1-parameter family of positive smooth functions on M

and g(t) = u(t)
4

n�2 g0 with Hg0 ⌘ 0, then (1.1) can be written as
8
><

>:

@

@t
u(t) = �

n � 2
4

(Rg(t) � Rg(t)) u(t), in M,

@

@⌘g0
u(t) = 0 , on @M.

(2.4)

The first equation of (2.4) can also be written as

@

@t
u(t)

n+2
n�2 =

n + 2
4

✓
4(n � 1)
n � 2

1g0u � Rg0u + Rg(t)u
n+2
n�2

◆
.
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Short-time existence of solutions to the equations (2.4) can be obtained by stan-
dard theory for quasilinear parabolic equations. Hence, the equations (2.4) have a
solution u(t) defined for all t in the maximal interval [0, Tmax).

Taking @/@⌘g0 on both sides of the first equation of (2.4) and using the second
one, one gets @Rg(t)/@⌘g0 = 0 on @M . Hence the scalar curvature has evolution
equations

8
><

>:

@

@t
Rg(t) = (n � 1)1g(t)Rg(t) + (Rg(t) � Rg(t))Rg(t) in M
@

@⌘g(t)

Rg(t) = 0 on @M ,
(2.5)

where the first equation comes from the well known first variation formula of scalar
scalar curvature.

Observe that for all t � 0 we have

@

@t
dvg(t) = �

n
2
(Rg(t) � Rg(t)) dvg(t) (2.6)

and
@

@t
Rg(t) = �

n � 2
2

Z

M
(Rg(t) � Rg(t))2dvg(t). (2.7)

In particular, Rg(t) is decreasing and one can easily derive that (1.1) preserves the
volume which we can normalize to

Z

M
dvg(t) = 1, for all t 2 [0, Tmax).

So, Rg(t) � Q(M) > 0 for all t � 0.

Proposition 2.1. We have Rg(t) � min {infM Rg(0), 0}, for all t 2 [0, Tmax).

Proof. Following (2.5), this is an application of maximum principle.

Proposition 2.2. For each T 2 (0, Tmax), there exist C(T ), c(T ) > 0 such that

sup
M
u(t)  C(T ) and inf

M
u(t) � c(T ), for all t 2 [0, T ]. (2.8)

In particular, Tmax = 1.

Proof. Set � = 1 � min {infM Rg(0), 0} = max{supM(1 � Rg(0)), 1}. Then, by
Proposition 2.1, Rg(t) + � � 1 for all t 2 [0, Tmax). It follows from (2.4) and (2.7)
that

@

@t
log u(t) =

n � 2
4

(Rg(t) � Rg(t)) 
n � 2
4

(Rg(0) + � ).

Then there exists C(T ) > 0 such that supM u(t)  C(T ) for all t 2 [0, T ].
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Defining P = Rg0 + �
�
sup0tT supM u(t)

� 4
n�2 we obtain

�
4(n � 1)
n � 2

1g0u(t) + Pu(t) � �
4(n � 1)
n � 2

1g0u(t) + Rg0u(t) + �u(t)
n+2
n�2

= (Rg(t) + � )u(t)
n+2
n�2 � 0

for all 0  t  T . Then it follows from Proposition A.4 in the appendix that

inf
M
u(t)

✓
sup
M

u(t)
◆ n+2

n�2
� c(T )

Z

M
u(t)

2n
n�2 dvg0 = c(T ),

by our volume normalization. This proves the second equation of (2.8).
Now we can follow [8, Proposition 2.6] to prove that if 0 < ↵ < min{4/n, 1}

then there is C̃(T ) such that

|u(x1, t1) � u(x2, t2)|  C̃(T )
�
(t1 � t2)↵/2 + dg0(x1, x2)

↵
�

for all x1, x2 2 M and t1, t2 2 [0, T ] satisfying 0 < t1 � t2 < 1. Then standard
regularity theory for parabolic equations can be used to prove that all higher order
derivatives of u are uniformly bounded on every fixed interval [0, T ]. This implies
the long-time existence of u.

Set
R1 = lim

t!1
Rg(t) > 0. (2.9)

Because @Rg(t)/@⌘g(t) = 0 holds on @M , we can follow the proof of Corollary 3.2
in [8] line by line, making use of (2.5), (2.6) and (2.7), to obtain

Corollary 2.3. For any 1 < p < n/2+ 1 we have

lim
t!1

Z

M
|Rg(t) � R1|pdvg(t) = 0 .

3. The test functions

In this section we construct the test functions to be used in the blow-up analysis of
Section 4. Those functions are perturbations of the symmetric functions U✏ (see
(3.1) below), which represent the spherical metric on Rn and have maximum at the
origin.

We will make use of the following coordinate systems:
Definition 3.1. Fix x0 2 @M and geodesic normal coordinates for @M centered at
x0. Let (y1, ..., yn�1) be the coordinates of x 2 @M and ⌘(x) be the inward unit
vector normal to @M at x . For small yn � 0, the point expx (yn⌘(x)) 2 M is said to
have Fermi coordinates (y1, ..., yn) (centered at x0).
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Definition 3.2. Let g be any (smooth) Riemannian metric on M . Consider M̃ the
double of M along its boundary and extend g to a (smooth) Riemannian metric
g̃ on M̃ . Fix x0 2 M and let  ̃x0 : Br (0) ⇢ Rn ! M̃ be normal coordinates
(with respect to g̃) centered at x0. If B̃x0,r =  ̃�1

x0 ( ̃x0(Br (0)) \ M), we define the
extended normal coordinates (centered at x0)

 x0 : B̃x0,r ⇢ Rn ! M

as the restriction of  ̃x0 to B̃x0,r .
Observe that this definition depends on the metric g̃ chosen, but this does not

harm our arguments in this section because we can fix the extension to M̃ of the
background metric g0.
Convention. We will refer to extended normal coordinates as normal coordinates
for short.
Notation. We set D̃x0,r =  �1

x0 ( x0(B̃x0,r ) \ @M) and @+ B̃x0,r = @ B̃x0,r\D̃x0,r ⇢
@Br (0).

Set Mt = {x 2 M ; dg0(x, @M)  t} and let �0 > 0 be a small constant to be
chosen later (see Remark 4.1 below). In the next subsections we will define three
types of test functions:
• Type A test functions (ū A;(x0,✏)): defined in Subsection 3.2 using Fermi coordi-
nates centered at any x0 2 @M and with energy to be controlled by Q(Sn+);

• Type B test functions (ū B;(x0,✏)): defined in Subsection 3.3 using normal co-
ordinates centered at any x0 2 M2�0\@M and with energy to be controlled by
Y (Sn);

• Type C test functions (ūC;(x0,✏)): defined in Subsection 3.4 using normal coor-
dinates centered at any x0 2 M\M�0 and with energy to be controlled by Y (Sn).

We fix P0 = P0(M, g0) > 0 small such that (extended) normal coordinates with
center x0 are defined in B̃x0,2P0 for all x0 2 M\@M , and Fermi coordinates with
center at x0 are defined in B+

2P0(0) for all x0 2 @M .

Convention. In this section we will use the normalization R1 = 4n(n�1), without
loss of generality.

3.1. The auxiliary function � and some algebraic preliminaries

Firstly we fix some notation. If ✏ > 0, we define

U✏(y) =

✓
✏

✏2 + |y|2

◆ n�2
2

for y 2 Rn . (3.1)

It is well known that U✏ satisfies
(
1U✏ + n(n � 2)U

n+2
n�2
✏ = 0 inRn

+

@nU✏ = 0 on @Rn
+,

(3.2)
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and

4n(n � 1)

 Z

Rn
+

U✏(y)
2n
n�2 dy

! 2
n

= Q(Sn+) . (3.3)

In this subsection H will denote a symmetric trace-free 2-tensor on Rn
+ with com-

ponentsHab, a, b = 1, ..., n, satisfying
8
>>><

>>>:

Hab(0) = 0 for a, b = 1, ..., n
Han(x) = 0 for x 2 Rn

+, a = 1, ..., n
@kHi j (0) = 0 for i, j, k = 1, ..., n � 1
Pn�1

j=1 x jHi j (x) = 0 for x 2 @Rn
+, i = 1, ..., n � 1 .

(3.4)

We will also assume that those components are of the form

Hab(x) =
X

1|↵|d
hab,↵x↵ for x 2 Rn

+ , (3.5)

where d =
h
n�2
2

i
and each ↵ stands for a multi-index. Obviously, the constants

hab,↵ 2 R satisfy han,↵ = 0 for any ↵, and hab,↵ = 0 for any ↵ 6= (0, ..., 0, 1) with
|↵| = 1, where a, b = 1, ..., n.

Let � : R ! R be a non-negative smooth function such that � |[0,4/3] ⌘ 1 and
� |[5/3,1) ⌘ 0. If ⇢ > 0, we define

�⇢(x) = �

✓
|x |
⇢

◆
for x 2 Rn . (3.6)

Notice that @n�⇢ = 0 on @Rn
+.

Let V = V (✏, ⇢,H) be the smooth vector field on Rn
+ obtained in [10, Theo-

rem A.4], which satisfies
8
<

:

Pn
b=1 @b

⇢
U

2n
n�2
✏ (�⇢Hab � @aVb � @bVa + 2

n (divV )�ab)

�
= 0 inRn

+

@nVi = Vn = 0 on @Rn
+ ,

(3.7)

for a = 1, ..., n, and i = 1, ..., n � 1, and

|@�V (x)|  C(n, |�|)
n�1X

i, j=1

dX

|↵|=1
|hi j,↵|(✏ + |x |)|↵|+1�|�| (3.8)

for any multi-index �. Here �ab = 1 if a = b and �ab = 0 if a 6= b.
We define symmetric trace-free 2-tensors S and T on Rn

+ by

Sab = @aVb + @bVa �
2
n
@cVc�ab and T = H� S . (3.9)
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(Recall that we are adopting the summation convention.) Observe that Tin= Sin=0
on @Rn

+ for i=1, ..., n � 1. It follows from (3.7) that T satisfies

U✏@bTab +
2n
n � 2

@bU✏Tab = 0 , in B+
⇢ (0) , for a = 1, ..., n . (3.10)

In particular,

n � 2
4(n � 1)

U✏@a@bTab + @a(@bU✏Tab) = 0 , in B+
⇢ (0) , (3.11)

where we have used U✏@a@bU✏ � n
n�2@aU✏@bU✏ = 1

n (U✏1U✏ � n
n�2 |dU✏ |

2)�ab in
Rn

+ for all a, b = 1, ..., n.
Next we define the auxiliary function � = �✏,⇢,H by

� = @aU✏Va +
n � 2
2n

U✏@aVa . (3.12)

By a direct computation, we have
(
1� + n(n + 2)U

4
n�2
✏ � = n�2

4(n�1)U✏@b@aHab + @b(@aU✏Hab) in B+
⇢ (0)

@n� = 0 on @Rn
+ .

(3.13)

By the estimate (3.8), � satisfies

|�(x)|  C✏
n�2
2

n�1X

i, j=1

dX

|↵|=1
|hi j,↵|(✏ + |x |)|↵|+2�n (3.14)

and
�
�
�
�1�(x) + n(n + 2)U

4
n�2
✏ �(x)

�
�
�
�  C✏

n�2
2

n�1X

i, j=1

dX

|↵|=1
|hi j,↵|(✏ + |x |)|↵|�n , (3.15)

for all x 2 Rn
+.

Observe that if n = 3 then d = 0, in which caseH ⌘ 0 and � ⌘ 0.
Convention. In the rest of Subsection 3.1 we will assume that n � 4.

We define algebraic Schouten tensor and algebraic Weyl tensor by

Aac = @c@eHae + @a@eHce � @e@eHac �
1

n � 1
@e@ fHe f �ac

and
Zabcd = @b@dHac � @b@cHad + @a@cHdb � @a@dHbc

+
1

n � 2
(Aac�bd � Aad�bc + Abd�ac � Abc�db) .
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We also set

Qab,c = U✏@cTab �
2

n � 2
@aU✏Tbc �

2
n � 2

@bU✏Tac

+
2

n � 2
@dU✏Tad�bc +

2
n � 2

@dU✏Tbd�ac .

(3.16)

Lemma 3.3. If the tensorH satisfies
(
Zabcd = 0 inRn

+

@nHi j = 0 on @Rn
+ ,

thenH = 0 in Rn
+.

Proof. Observe that the hypothesis @nHi j = 0 on @Rn
+ implies that hi j,↵ = 0 for

↵ = (0, ..., 0, 1). In this case, the expression (3.5) can be written as

Hab(x) =
dX

|↵|=2
hab,↵x↵ .

Now the result is just in [10, Proposition 2.3].

Proposition 3.4. Set Ur = Br/4(0, ..., 0, 3r2 )⇢Rn
+. Then there exists C=C(n) > 0

such that
n�1X

i, j=1

dX

|↵|=1
|hi j,↵|2r2|↵|�4+nC

Z

Ur
Zabcd Zabcd+Cr�1

Z

D 5r
3

(0)\D 4r
3

(0)
@nHi j@nHi j ,

for all r > 0.

Proof. If r = 1, observe that the square roots of both sides of the inequality are
norms inH, due to Lemma 3.3. The general case follows by scaling.

Lemma 3.5. There exists C = C(n) > 0 such that

✏n�2r6�2n
Z

Ur
Zabcd Zabcd 

C
✓

Z

B+
2r (0)\B

+
r (0)

Qab,cQab,c

+ ✓✏n�2
n�1X

i, j=1

dX

|↵|=1
|hi j,↵|2r2|↵|+2�n

for all 0 < ✓ < 1 and all r � ✏.

Proof. This follows from the third formula in the proof of in [10, Proposition 2.5],
by means of Young’s inequality. Observe that, in our calculations, we are using the
range 1  |↵|  d in the summation formulas, instead of the range 2  |↵|  d
used in [10].
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Lemma 3.6. There exists C = C(n) > 0 such that

✏n�2r5�2n
Z

D 5r
3

(0)\D 4r
3

(0)
@nHi j@nHi j  C✓✏n�2

n�1X

i, j=1

dX

|↵|=1
|hi j,↵|2r2|↵|+2�n

+
C
✓

Z

B+
2r (0)\B

+
r (0)

Qi j,nQi j,n

for all 0 < ✓ < 1 and all r � ✏.

Proof. Let � : R ! R be a non-negative smooth function such that �(t) = 1 for
t 2 [4/3, 5/3] and �(t) = 0 for t /2 [1, 2]. For r > 0 and x 2 Rn

+ we define
�r (x) = �(|x |/r). Observe that @nSi j = � 1

n�1@nSnn�i j on @R
n
+. On the other

hand, (3.10) gives @nSnn = �@nTnn = 0. Thus, @nSi j = 0 and @nHi j = @nTi j =
U�1
✏ Qi j,n on @Rn

+. Integration by parts gives
Z

@Rn
+

U
2(n�1)
n�2

✏ @nHi j@nHi j�r =
Z

@Rn
+

U
2

n�2
✏ Qi j,nQi j,n�r

= �
Z

Rn
+

@n
�
U

2
n�2
✏ Qi j,nQi j,n�r

�

= �
Z

Rn
+

@n(U
2

n�2
✏ Qi j,n�r )Qi j,n

�
Z

Rn
+

U
2

n�2
✏ @nQi j,nQi j,n�r .

(3.17)

Using Young’s inequality, the result now follows from the inequalities

U
2(n�1)
n�2

✏ @nHi j@nHi j�r � C�1✏n�1r2�2n@nHi j@nHi j�r

and

|@n(U
2

n�2
✏ Qi j,n�r )| + |U

2
n�2
✏ @nQi j,n�r |  C✏

n
2

n�1X

i, j=1

dX

|↵|=1
|hi j,↵|r |↵|�2�n .

Proposition 3.7. There exists � = �(n) > 0 such that

�✏n�2
n�1X

i, j=1

dX

|↵|=1
|hi j,↵|2

Z

B+
⇢ (0)

(✏ + |x |)2|↵|+2�2ndx 
1
4

Z

B+
⇢ (0)

Qab,cQab,cdx

for all ⇢ � 2✏.

Proof. This follows from Proposition 3.4, Lemma 3.5, and Lemma 3.6.
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3.2. Type A test functions (ūA;(x0,✏))

In this subsection we use the same test functions as in [10] but we need to do some
changes when estimating their energy by Q(Sn+) because the boundary does not
need to be umbilical in our case.

For ⇢ 2 (0, P0/2], the Fermi coordinates centered at x0 2 @M define a smooth
map  x0 : B+

⇢ (0) ⇢ Rn
+ ! M . We will sometimes omit the symbols  x0 in

order to simplify our notation, identifying  x0(x) 2 M with x 2 B+
⇢ (0). In those

coordinates, we have the properties gab(0) = �ab and gnb(x) = �nb, for any x 2
B+
⇢ (0) and a, b = 1, ..., n. If we write g = exp(h), where exp denotes the matrix
exponential, then the symmetric 2-tensor h satisfies the following properties:

8
>>><

>>>:

hab(0) = 0 for a, b = 1, ..., n
han(x) = 0 for x 2 B+

⇢ (0) a = 1, ..., n
@khi j (0) = 0 for i, j, k = 1, ..., n � 1
Pn�1

j=1 x j hi j (x) = 0 for x 2 D⇢(0), i = 1, ..., n � 1 .

The last two properties follow from the fact that Fermi coordinates are normal on
the boundary.

According to [22, Proposition 3.1], for each x0 2 @M we can find a conformal

metric gx0 = f
4

n�2
x0 g0, with fx0(x0) = 1, and Fermi coordinates centered at x0 such

that det(gx0)(x) = 1 + O(|x |2d+2), where d =
⇥n�2
2

⇤
. In particular, if we write

gx0 = exp(hx0), we have tr(hx0)(x) = O(|x |2d+2). Moreover, Hgx0 , the trace of
the second fundamental form of @M , satisfies

Hgx0 (x) = �
1
2
gi j@ngi j (x) = �

1
2
@n(log det(gx0))(x) = O(|x |2d+1) . (3.18)

Since M is compact, we can assume that 1/2  fx0  3/2 for any x0 2 @M ,
choosing P0 smaller if necessary.

Notation. In order to simplify our notation, in the coordinates above, we will write
gab and gab instead of (gx0)ab and (gx0)ab respectively, and hab instead of (hx0)ab.

In this subsection we denote by

Hab(x) =
X

1|↵|d
hab,↵x↵

the Taylor expansion of order d associated with the function hab(x). Thus, we
have hab(x) = Hab(x) + O(|x |d+1). Observe that H is a symmetric trace-free
2-tensor on Rn

+, which satisfies the properties (3.4) and has the form (3.5). Then
we can use the function � = �✏,⇢,H (see formula (3.12)) and the results obtained in
Subsection 3.1.
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Recall the definitions of U✏ in (3.1), �⇢ in (3.6), and R1 in (2.9). Define

Ū(x0,✏)(x) =

✓
4n(n � 1)

R1

◆ n�2
4
�⇢( 

�1
x0 (x))

�
U✏( �1

x0 (x)) + �( �1
x0 (x))

�

+

✓
4n(n � 1)

R1

◆ n�2
4
✏
n�2
2
�
1� �⇢( 

�1
x0 (x))

�
Gx0(x),

(3.19)

for x 2 M . Here, Gx0 is the Green’s function of the conformal Laplacian Lgx0 =

1gx0 � n�2
4(n�1) Rgx0 , with pole at x0 2 @M , satisfying the boundary condition

@

@⌘gx0
Gx0 �

n � 2
2(n � 1)

Hgx0Gx0 = 0, (3.20)

on @M\{x0}, and the normalization lim|y|!0 |y|n�2Gx0( x0(y)) = 1. This func-
tion, obtained in Proposition B.2, satisfies

|Gx0( x0(y)) � |y|2�n|  C
n�1X

i, j=1

dX

|↵|=1
|hi j,↵||y||↵|+2�n

+

8
<

:

C|y|d+3�n if n � 5

C(1+ | log |y||) if n = 3, 4

�
�
�
�
@

@yb
(Gx0( x0(y)) � |y|2�n)

�
�
�
�  C

n�1X

i, j=1

dX

|↵|=1
|hi j,↵||y||↵|+1�n+C|y|d+2�n,

(3.21)

for all b = 1, ..., n.
We define the test function

ū A;(x0,✏) = fx0Ū(x0,✏) . (3.22)

Observe that this function depends also on the radius ⇢ above, which will be fixed
later in Section 4. Such constant will also be referred to as ⇢A in order to avoid
confusion with test functions of the other subsections.

Our main result in this subsection is the following estimate for the energy of
ū A;(x0,✏):
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Proposition 3.8. Under the hypotheses of Theorem 1.9, there exists P1 =
P1(M, g0) > 0 such that

Z

M

⇢
4(n � 1)
n � 2

|dūA;(x0,✏)|
2
g0 + Rg0 ū

2
A;(x0,✏)

�
dvg0

✓Z

M
ū

2n
n�2
A;(x0,✏)dvg0

◆ n�2
n

=

Z

M

⇢
4(n � 1)
n � 2

|dŪ(x0,✏)|
2
gx0

+ Rgx0 Ū
2
(x0,✏)

�
dvgx0 +

Z

@M
2Hgx0 Ū

2
(x0,✏)d�gx0

✓Z

M
Ū

2n
n�2
(x0,✏)dvgx0

◆ n�2
n

 Q(Sn+)

for all x0 2 @M and 0 < 2✏ < ⇢A < P1.

Let � be the constant obtained in Proposition 3.7.

Proposition 3.9. There exist C, P1 > 0, depending only on (M, g0), such that

Z

B+
⇢ (0)

⇢
4(n � 1)
n � 2

|d(U✏ + �)|2gx0
+ Rgx0 (U✏ + �)2

�
dx

+
Z

D⇢(0)
2Hgx0 (U✏ + �)2d�

 4n(n � 1)
Z

B+
⇢ (0)

U
4

n�2
✏ (U2✏ +

n + 2
n � 2

�2)dx

+
Z

@+B+
⇢ (0)

⇢
4(n � 1)
n � 2

U✏@aU✏ +U2✏ @bhab � @bU2✏ hab
�
xa
|x |

d�⇢

�
�

2

n�1X

i, j=1

dX

|↵|=1
|hi j,↵|2✏n�2

Z

B+
⇢ (0)

(✏ + |x |)2|↵|+2�2ndx

+ C
n�1X

i, j=1

dX

|↵|=1
|hi j,↵|✏n�2⇢|↵|+2�n + C✏n�2⇢2d+4�n

for all 0 < 2✏  ⇢  P1.
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Proof. Following the steps in [10, Proposition 3.6] we obtain
Z

B+
⇢ (0)

⇢
4(n � 1)
n � 2

|d(U✏ + �)|2gx0
+ Rgx0 (U✏ + �)2

�
dx

+
Z

D⇢(0)
2Hgx0 (U✏ + �)2d�


Z

B+
⇢ (0)

4(n � 1)
n � 2

|dU✏ |2dx +
Z

B+
⇢ (0)

4(n � 1)
n � 2

n(n + 2)U
4

n�2
✏ �2dx

+
Z

@+B+
⇢ (0)

⇣
U2✏ @bhab � @bU2✏ hab

⌘ xa
|x |

d�⇢ �
1
4

Z

B+
⇢ (0)

Qab,cQab,cdx

+
�

2

n�1X

i, j=1

dX

|↵|=1
|hi j,↵|2✏n�2

Z

B+
⇢ (0)

(✏ + |x |)2|↵|+2�2ndx

+ C
n�1X

i, j=1

dX

|↵|=1
|hi j,↵|✏n�2⇢|↵|+2�n + C✏n�2⇢2d+4�n .

The result follows by making use of Proposition 3.7 and

|dU✏ |2 = @a(U✏@aU✏) �U✏1U✏ = @a(U✏@aU✏) + n(n � 2)U
2n
n�2
✏ .

As in [10, p. 1006], we define the flux integral

I(x0, ⇢) =
4(n � 1)
n � 2

Z

@+B+
⇢ (0)

(|x |2�n@aGx0 � @a|x |2�nGx0)
xa
|x |

d�⇢

�
Z

@+B+
⇢ (0)

|x |2�2n(|x |2@bhab � 2nxbhab)
xa
|x |

d�⇢ ,

(3.23)

for ⇢ > 0 sufficiently small.

Proposition 3.10. There exists P1 = P1(M, g0) > 0 such that
Z

M

⇢
4(n � 1)
n � 2

|dŪ(x0,✏)|
2
gx0

+ Rgx0 Ū
2
(x0,✏)

�
dvgx0 +

Z

@M
2Hgx0 Ū

2
(x0,✏)d�gx0

 Q(Sn+)

⇢Z

M
Ū

2n
n�2
(x0,✏)dvgx0

� n�2
n

� ✏n�2I(x0, ⇢)

�
�

4

n�1X

i, j=1

dX

|↵|=1
|hi j,↵|2✏n�2

Z

B+
⇢ (0)

(✏ + |x |)2|↵|+2�2ndx

+ C
n�1X

i, j=1

dX

|↵|=1
|hi j,↵|✏n�2⇢|↵|+2�n + C✏n�2⇢2d+4�n + C✏n⇢�n

for all 0 < 2✏  ⇢  P1.
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Proof. As in [9, Proposition 15], we get

4n(n � 1)
Z

B+
⇢ (0)

U
4

n�2
✏

✓
U2✏ +

n + 2
n � 2

�2
◆
dx

 Q(Sn+)

 Z

B+
⇢ (0)

(U✏ + �)
2n
n�2 dx

! n�2
n

+
n�1X

i, j=1

dX

|↵|=1
|hi j,↵|⇢|↵|�n✏n

+ C
n�1X

i, j=1

dX

|↵|=1
|hi j,↵|2✏n�1

Z

B+
⇢ (0)

(✏ + |x |)2|↵|+2�2ndx

(3.24)

for all 0 < 2✏  ⇢  P1 and P1 sufficiently small. Now, with Proposition 3.9 at
hand, our proof is analogous to the one in [10, Proposition 4.1].

Corollary 3.11. There exist P1, ✓, C0 > 0, depending only on (M, g0), such that
Z

M

⇢
4(n � 1)
n � 2

|dŪ(x0,✏)|
2
gx0

+ Rgx0 Ū
2
(x0,✏)

�
dvgx0 +

Z

@M
2Hgx0 Ū

2
(x0,✏)d�gx0

 Q(Sn+)

⇢Z

M
Ū

2n
n�2
(x0,✏)dvgx0

� n�2
n

� ✏n�2I(x0, ⇢)

� ✓✏n�2
Z

B+
⇢ (0)

|Wg0(x)|
2(✏ + |x |)6�2ndx

� ✓✏n�2
Z

D⇢(0)
|⇡g0(x)|

2(✏ + |x |)5�2nd� + C0✏n�2⇢2d+4�n

+ C0
✓
✏

⇢

◆n�2 1
| log(⇢/✏)|

for all 0 < 2✏  ⇢  P1. Here, we denote by Wg0 the Weyl tensor of (M, g0) and
by ⇡g0 the trace-free 2nd fundamental form of @M .

Proof. Similar to [1, Corollary 3.10].

Recall that we denote by Z@M the set of all points x0 2 @M such that

lim sup
x!x0

dg0(x, x0)
2�d |Wg0(x)| = lim sup

x!x0
dg0(x, x0)

1�d |⇡g0(x)| = 0 .

Proposition 3.12. The functions I(x0, ⇢) converge uniformly to a continuous func-
tion I : Z@M ! R as ⇢ ! 0.

Proof. As in [1, Proposition 3.11] we can prove that

sup
x02Z@M

|I(x0, ⇢) � I(x0, ⇢̃)| 

(
C⇢2d+4�n if n � 5
C⇢2d+4�n| log ⇢| if n = 3, 4,

for all 0 < ⇢̃ < ⇢. The result follows.
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The following proposition, which is [1, Proposition 3.12] 1, relates I(x0) with
the mass defined by (1.2):

Proposition 3.13. Let x0 2 Z@M and consider inverted coordinates y = x/|x |2,
where x = (x1, ..., xn) are Fermi coordinates centered at x0. If we define the metric

ḡ = G
4

n�2
x0 gx0 on M\{x0}, then the following statements hold:

(i) (M\{x0}, ḡ) is an asymptotically flat manifold with order p > n�2
2 (in the

sense of Definition 1.4), and satisfies Rḡ ⌘ 0 and Hḡ ⌘ 0;
(ii) We have

I(x0) = lim
R!1

(Z

@+B+
R (0)

ya
|y|

@ ḡ
@yb

✓
@

@ya
,
@

@yb

◆
d�R

�
Z

@+B+
R (0)

ya
|y|

@ ḡ
@ya

✓
@

@yb
,
@

@yb

◆
d�R

)

.

In particular, I(x0) is the mass m(ḡ) of (M\{x0}, ḡ).

Proof of Proposition 3.8. Once we have proved Corollary 3.11, and Propositions
3.12 and 3.13, this proof follows the same lines as [1, Proposition 3.7].

We now prove some further results for later use.

Proposition 3.14. 2 For x 2 M and ✏ < ⇢,
�
�
�
�
4(n � 1)
n � 2

1gx0 Ū(x0,✏) � Rgx0 Ū(x0,✏) + R1Ū
n+2
n�2
(x0,✏)

�
�
�
� (x)

 C
✓

✏

✏2 + |x |2

◆ n�2
2

(✏2 + |x |2)�
1
2 1B+

2⇢(0)
(x)

+ C

 
✏

✏2 + dgx0 (x, x0)
2

! n+2
2

1M\B+
⇢ (0)(x)

+ C(✏
n+2
2 ⇢�2�n + ✏

n�2
2 ⇢1�n| log ⇢|)1B+

2⇢(0)\B
+
⇢ (0)(x).

1 In [1, Propositions 3.11 and 3.12] a log ⇢ must be included in the arguments for dimensions 3
and 4, when the Green function has log in its expansion; see (3.21).
2 The (✏2 + |x |2)�

1
2 term in this proposition is necessary only in dimension 3, when d = 0 and

so H = 0. On the other hand, the | log ⇢| term is necessary only in dimensions 3 and 4, because
of (3.21). The same terms are also necessary in the first inequality of [1, Proposition 3.13], but
this does not affect any other results in that paper because weaker estimates similar to the ones
obtained in Subsection 3.5 are also enough to [1].
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Proof. Note that after scaling, we are assuming R1 = 4n(n � 1). Then

1gx0 Ū(x0,✏) �
n � 2
4(n � 1)

Rgx0 Ū(x0,✏) +
n � 2
4(n � 1)

R1Ū
n+2
n�2
(x0,✏)

= (1gx0�⇢)(U✏ + � � ✏
n�2
2 |x |2�n) + 2hd�⇢, d(U✏ + � � ✏

n�2
2 |x |2�n)igx0

� (1gx0�⇢)✏
n�2
2 (Gx0 � |x |2�n) � 2✏

n�2
2 hd�⇢, d(Gx0 � |x |2�n)igx0

+ �⇢

✓
1gx0 (U✏ + �) �

n � 2
4(n � 1)

Rgx0 (U✏ + �) + n(n � 2)(U✏ + �)
n+2
n�2

◆

+ n(n � 2)
✓⇣
�⇢(U✏ + �) + (1� �⇢)✏

n�2
2 Gx0

⌘ n+2
n�2

� �⇢(U✏ + �)
n+2
n�2

◆

= I1 + I2 + I3 + I4,

where Ii , i = 1, 2, 3, 4, denote the corresponding row.
To estimate I1, notice that for |x | � ⇢ > ✏ we have

�
�(✏2 + |x |2)

2�n
2 � |x |2�n

�
�  C✏2|x |�n (3.25)

and, equivalently, |U✏ � ✏
n�2
2 |x |2�n|  C✏

n+2
2 |x |�n . Then I1 can be estimated as

|I1|  C(✏
n+2
2 ⇢�2�n + ✏

n�2
2 ⇢1�n)1B+

2⇢(0)\B
+
⇢ (0).

Recall the properties (3.21) of Gx0 . Then |I2|  C✏
n�2
2 ⇢1�n| log ⇢|1B+

2⇢(0)\B
+
⇢ (0).

In order to estimate I3, first observe that

I3 =�⇢

✓
(1gx0 �1)U✏� @i (Hi j@ jU✏) �

n�2
4(n�1)

Rgx0U✏ +
n�2
4(n�1)

@i@ j Hi jU✏
◆

+ �⇢

✓
(1gx0 �1)� �

n � 2
4(n � 1)

Rgx0�
◆

+ �⇢

✓
n(n � 2)(U✏ + �)

n+2
n�2 � n(n � 2)U

n+2
n�2
✏ � n(n + 2)U

4
n�2
✏ �

◆
,

where we have used (3.2) and (3.13). Using [1, inequality (3.20)],

|(1gx0 �1)U✏ + @i (Hi j@ jU✏)| + |Rgx0U✏ � @i@ j Hi jU✏ |  C✏
n�2
2 (✏ + |x |)1�n,

|(1gx0 �1)� + @i (Hi j@ j�)| + |Rgx0� � @i@ j Hi j�|  C✏
n�2
2 (✏ + |x |)2�n

and
�
�
�(U✏ + �)

n+2
n�2 �U

n+2
n�2
✏ �

n + 2
n � 2

U
4

n�2
✏ �

�
�
�  CU

n+2
n�2
✏ (�U�1

✏ )2  C✏
n+2
2 (✏ + |x |)�n.
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This leads to

|I3|  C
✓

✏

✏2 + |x |2

◆ n�2
2

(✏2 + |x |2)�
1
2 1B+

2⇢(0)
.

Finally we consider I4, using the elementary inequality

|a
n+2
n�2 � b

n+2
n�2 |  Cb

4
n�2 |a � b| + C|a � b|

n+2
n�2 ,

which holds for any a, b > 0, and where C = C(n). Letting a = �⇢(U✏ + �) +

(1 � �⇢)✏
n�2
2 Gx0 and b = �

n�2
n+2
⇢ (U✏ + �), and applying the bound (3.21) for Gx0 ,

one gets the estimate

|I4|  C

 
✏

✏2 + dgx0 (x, x0)
2

! n+2
2

1M\B+
⇢ (0).

Combining all the estimates above, we get the conclusion.

Proposition 3.15. For x 2 @M ,

�
�
�
�
�
2(n � 1)
n � 2

@

@⌘gx0
Ū(x0,✏) � Hgx0 Ū(x0,✏)

�
�
�
�
�
(x)  C⇢

✓
✏

✏2 + |x̄ |2

◆ n�2
2
1D2⇢(0)(x).

Proof. Observe that

@

@⌘gx0
Ū(x0,✏) �

n � 2
2(n � 1)

Hgx0 Ū(x0,✏)

= �⇢
@

@⌘gx0
(U✏ + �) +

n � 2
2(n � 1)

�⇢Hgx0 (U✏ + �)

+ (1� �⇢)✏
n�2
2

 
@

@⌘gx0
Gx0 �

n � 2
2(n � 1)

Hgx0Gx0

!

.

Recall that we were using Fermi coordinates, thus ⌘gx0 = @n . The first and third
terms are zero by the equations (3.2) and (3.13) while the middle one can be
bounded as

|�⇢Hgx0 (U✏ + �)|  C⇢
✓

✏

✏2 + |x̄ |2

◆ n�2
2
1D2⇢(0).
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3.3. Type B test functions (ūB;(x0,✏))

In this case the test functions we use are essentially the same as in [9]. However,
when trying to control their energy by Y (Sn), due to the proximity to the boundary,
the argument in that paper cannot be directly applied. We are able to overcome
this difficulty by exploiting the sign of @nU✏(0) (see the definition in (3.1)). Since
all the argument is local, we do not make use of the positive mass theorem in this
subsection.

Fix x0 2 M2�0\@M and let  x0 : B̃x0,2⇢ ⇢ Rn ! M be normal coordinates
centered at x0 (see Definition 3.2) where 0 < ⇢  P0. We will sometimes omit the
symbols  x0 in order to simplify our notation, identifying  x0(x) 2 M with x 2
B̃x0,2⇢ . In those coordinates, we have the properties gab(0) = �ab and @cgab(0) = 0,
for a, b, c = 1, ..., n. If we write g = exp(h), where exp denotes the matrix
exponential, then the symmetric 2-tensor h satisfies the following properties:

8
><

>:

hab(0) = 0 for a, b = 1, ..., n
@chab(0) = 0 for a, b, c = 1, ..., n
Pn

b=1 xbhab(x) = 0 for x 2 B̃x0,⇢, a = 1, ..., n .

According to [20], we can find a conformal metric gx0 = f
4

n�2
x0 g0, with fx0(x0) = 1,

such that det(gx0)(x) = 1+O(|x |2d+2) in normal coordinates centered at x0, again
written  x0 : B̃x0,2⇢ ! M for simplicity. We can suppose that 1/2  fx0  3/2.

Notation. In order to simplify notation, in the coordinates above, we will write gab
and gab instead of (gx0)ab and (gx0)ab respectively, hab instead of (hx0)ab, and ⌘a

instead of (⌘gx0 )
a . We denote by ⌫ = ⌫x0 the unit normal vector to D̃x0,⇢ with

respect to the Euclidean metric �ab, pointing the same way as ⌘g0 and ⌘gx0 , and
write ⌫ = ⌫a@a and ⌘ = ⌘a@a .

Set � = dgx0 (x0, @M). If x̃0 2 @M is chosen such that dgx0 (x0, x̃0) = � then
we can assume that  x0 takes (��, 0, · · · , 0) 2 Rn to x̃0 and thus both ⌘gx0 and ⌫x0
coincide at x̃0 with the coordinate vector @n . So, there exists C0 = C0(M, g0) > 2
such that

|⌘a(x) � �an|  C0|x̄ |, and (3.26)

|⌫a(x) � �an|  C0|x̄ |, for all x 2 D̃x0,2⇢, (3.27)

where x = (x1, · · · , xn) = (x̄, xn) 2 Rn . We will also assume that D̃x0,2⇢ is the
graph of a smooth function � = �x0 so that

D̃x0,2⇢ = {x = (x̄, � (x̄)) | |x | < 2⇢}.

We can write � (x̄) = �� + O(|x̄ |2) and choose C0 larger if necessary such that

|� (x̄) + �|  C0|x̄ |2, for all x 2 D̃x0,2⇢ . (3.28)

See Figure 1.
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x̄

xnRn

−δ

B̃x0,ρ
∂+B̃x0,ρ

D̃x0,ρ
γ (x̄)

ψx0

∂M

M

x0
ηgx0

Figure 3.1. Some notation.

In this subsection, we denote by

Hab(x) =
X

2|↵|d
hab,↵x↵

the Taylor expansion of order d =
⇥n�2
2

⇤
associated with the function hab(x). Thus,

hab(x) = Hab(x) + O(|x |d+1). We define �, S, T and Qab,c as in Subsection 3.1
(see (3.12), (3.9) and (3.16)), except for the fact that, as in [9], the whole construc-
tion is done in Rn instead of Rn

+. Then the first equation of (3.13) and the estimates
(3.14) and (3.15) also hold, with 2  |↵|  d replacing 1  |↵|  d.

Lemma 3.16. There exists � = �(n) > 0 such that

�✏n�2
nX

a,b=1

dX

|↵|=2
|hab,↵|2

Z

B⇢(0)
(✏ + |x |)2|↵|+2�2ndx 

1
4

Z

B⇢(0)
Qab,cQab,c

for all ⇢ � 2✏.

Proof. See [9, Corollary 10].

Recall the definitions of U✏ in (3.1), �⇢ in (3.6), and R1 in (2.9). Set

Ū(x0,✏)(x) =

✓
4n(n � 1)

R1

◆ n�2
4
�⇢( 

�1
x0 (x))

�
U✏( �1

x0 (x)) + �( �1
x0 (x))

�

+

✓
4n(n � 1)

R1

◆ n�2
4
✏
n�2
2
�
1� �⇢( 

�1
x0 (x))

�
Gx0(x) ,
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for x 2 M . Here, Gx0 is the Green function of the conformal Laplacian Lgx0 with
pole at x0 2 M\@M , satisfying the boundary condition (3.20) and the normalization
lim|y|!0 |y|n�2Gx0( x0(y)) = 1/2. This function is obtained in Proposition B.4
and satisfies, for some C = C(M, g0),

|Gx0( x0(y)) � |y|2�n|

(
C|y|3�n + C�|y|1�n if n�4
C(1+ | log |y||) + C�|y|1�n if n=3,

(3.29)

�
�
�
@

@yb
(Gx0( x0(y)) � |y|2�n)

�
�
�  C|y|2�n + C�|y|�n ,

for all b = 1, ..., n and  x0(y) 2 M�̃ for some small �̃ = �̃(M, g0).
Define the test function

ū B;(x0,✏) = fx0Ū(x0,✏). (3.30)

Observe that this function also depends on the radius ⇢ above, which will be fixed
later in Section 4. Such a constant will also be referred to as ⇢B in order to avoid
confusion with test functions of the other subsections.

The main result of this subsection is the following:

Proposition 3.17. Under the hypothesis of Theorem 1.9, there exist positive P2 and
CB , depending only on (M, g0), such that for any ⇢B  P2 one can choose �0 <
CB⇢

2
B satisfying

R
M

n
4(n�1)
n�2 |dūB;(x0,✏)|

2
g0 + Rg0 ū2B;(x0,✏)

o
dvg0

✓
R
M ū

2n
n�2
B;(x0,✏)dvg0

◆ n�2
n

=

R
M

n
4(n�1)
n�2 |dŪ(x0,✏)|

2
gx0

+ Rgx0 Ū
2
(x0,✏)

o
dvgx0 +

R
@M 2Hgx0 Ū

2
(x0,✏)d�gx0

✓
R
M Ū

2n
n�2
(x0,✏)dvgx0

◆ n�2
n

 Y (Sn)

for all x0 2 M2�0\@M and 0 < ✏ < C�1
B dg0(x0, @M).

We will prove several lemmas before proceeding to the proof of Proposition 3.17.

Lemma 3.18. If |x̄ |  1/(2C0), then for ✏ > 0 and 0 < � < 1 we have

1
2C0

(✏2 + |x̄ |2 + �2) < ✏2 + |x̄ |2 + � (x̄)2 < 2(✏2 + |x̄ |2 + �2). (3.31)
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Proof. First assume � � C0|x̄ |2. Since |� (x̄)| � ��C0|x̄ |2 � 0 by (3.28), Cauchy’s
inequality implies

� (x̄)2 �
⇣
� � C0|x̄ |2

⌘2
� �2 � 2C0�|x̄ |2 �

1
2
�2 � 2C20 |x̄ |

4.

So,
✏2 + |x̄ |2 + � (x̄)2 � ✏2 + (1� 2C20 |x̄ |

2)|x̄ |2 +
1
2
�2,

and our assumption |x̄ |2  1/(4C20) gives

✏2 + |x̄ |2 + � (x̄)2 � ✏2 +
1
2
|x̄ |2 +

1
2
�2 >

1
2
(✏2 + |x̄ |2 + �2).

If � < C0|x̄ |2 we have

|x̄ |2 + � (x̄)2 + ✏2 >
�2

2C0
+

|x̄ |2

2
+ ✏2 >

1
2C0

(�2 + |x̄ |2 + ✏2).

so the left-hand side of (3.31) is proved.
As for the right-hand side, notice that

� (x̄)2  (� + C0|x̄ |2)2  2�2 + 2C20 |x̄ |
4.

Consequently,

✏2 + |x̄ |2 + � (x̄)2  ✏2 + (1+ 2C20 |x̄ |
2)|x̄ |2 + 2�2 < 2(✏2 + |x̄ |2 + �2),

because our assumption on |x̄ | implies 1+ 2C20 |x̄ |
2  2.

Lemma 3.19. If 0 < ⇢ < 1/C0 and 0 < �  ⇢/4 then
q

|x̄ |2 + � (x̄))2 < ⇢, for all |x̄ |  ⇢/2.

Proof. From our assumption it is easy to get �/⇢ + C0⇢/4 < 1/2. Since

|� (x̄)|  � + C0|x̄ |2  � + C0⇢2/4,

we have

|x̄ |2 + � (x̄)2 
⇢2

4
+

⇣
� +

C0⇢2

4

⌘2
<
⇢2

4
+

⇣⇢
2

⌘2
=
⇢2

2
.

Lemma 3.20. If 0 < ⇢  1/C0 and 0 < � < 1 then
q

|x̄ |2 + � (x̄)2 > �/
p
C0 , for all |x̄ | < ⇢ .
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Proof. First assume � � C0|x̄ |2. Then |� (x̄)| � � � C0|x̄ |2 � 0, which yields

� (x̄)2 � (� � C0|x̄ |2)2

� �2 � 2�C0|x̄ |2 + C20 |x̄ |
4 =

�2

2
� C20 |x̄ |

4.

Therefore, by the assumption |x̄ | < ⇢  1/C0, we have

|x̄ |2 + � (x̄)2 � (1� C20 |x̄ |
2)|x̄ |2 + �2/2 � �2/2 > �2/C0,

because C0 > 2.
If � < C0|x̄ |2, since 0 < � < 1, we have �2 < � < C0|x̄ |2. Obviously

|x̄ |2 + � (x̄)2 > �2/C0,

proving the result.

Lemma 3.21. There exists C = C(n) such that
Z

{x̄2Rn�1| |x̄ |⇢}
(✏2 + |x̄ |2 + �2)2�nd x̄  C⇢�2�n, for 0 < �  ⇢ .

Proof. Just observe that
Z

|x̄ |⇢
(✏2 + |x̄ |2 + �2)2�nd x̄ 

Z

|x̄ |⇢
(|x̄ |2 + �2)2�nd x̄


p
2⇢

Z

Rn�1
(|x̄ |2 + �2)

3�2n
2 dx̄

=
p
2⇢�2�n

Z

Rn�1
(|ȳ|2 + 1)

3�2n
2 d ȳ.

Lemma 3.22. There exist c̃, K , P2 > 0, depending only on (M, g0), such that

4(n � 1)
n � 2

Z

D̃x0,⇢
U✏@⌫U✏d� � c̃✏n�2�2�n

when 0 < ✏ < � < K⇢ and ⇢ < P2.

Proof. Observe that U✏@aU✏ = �(n � 2)✏n�2(✏2 + |x |2)1�nxa and, on D̃x0,⇢ ,

U✏@⌫U✏ = U✏⌫a@aU✏ = U✏@nU✏ +U✏(⌫a � �an)@aU✏ .

Using (3.27) and Lemma 3.18, we have

|U✏(⌫a � �an)@aU✏ |(x)  (n � 2)C✏n�2(✏2 + |x̄ |2 + � (x̄)2)2�n

 (2C0)n�2(n � 2)C✏n�2(✏2 + |x̄ |2 + �2)2�n
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when x = (x̄, � (x̄)) 2 D̃x0,⇢ with |x̄ |  (2C0)�1. Hence if ⇢  (2C0)�1 and
0 < �  ⇢, then

Z

D̃x0,⇢
U✏@⌫U✏d� �

Z

D̃x0,⇢
U✏@nU✏d� � C⇢

⇣✏
�

⌘n�2
,

where we used Lemma 3.21.
In order to estimate from below the right-hand side of this last inequality, we

see that

U✏@nU✏(x) = �(n � 2)✏n�2(✏2 + |x̄ |2 + � (x̄)2)1�n� (x̄)

� (n � 2)✏n�2(✏2 + |x̄ |2 + � (x̄)2)1�n(� � C0|x̄ |2)

� (n � 2)✏n�2�(✏2 + |x̄ |2 + � (x̄)2)1�n

� (n � 2)C0✏n�2(✏2 + |x̄ |2 + � (x̄)2)2�n

� (n � 2)21�n✏n�2�(✏2 + |x̄ |2 + �2)1�n � C✏n�2(✏2 + |x̄ |2 + �2)2�n

for x = (x̄, � (x̄)) 2 D̃x0,⇢ with |x̄ |  (2C0)�1, where we used Lemma 3.18 in the
last step.

Assume 0 < ⇢ < (2C0)�1 and 0 < �  ⇢/4. According to Lemma 3.19,
�
(x̄, � (x̄))

�
� |x̄ |  ⇢/2

 
⇢ D̃x0,⇢ .

Then
Z

D̃x0,⇢
U✏@nU✏d� � (n � 2)21�n✏n�2�

Z

|x̄ |⇢/2
(✏2 + |x̄ |2 + �2)1�nd x̄

� C✏n�2
Z

|x̄ |<⇢
(✏2 + |x̄ |2 + �2)2�nd x̄

= I � I I.

Notice that

�

Z

|x̄ |⇢/2
(✏2 + |x̄ |2 + �2)1�nd x̄ = �2�n

Z

|ȳ|⇢/2�

✓⇣✏
�

⌘2
+ |ȳ|2 + 1

◆1�n
d ȳ

� 21�n�2�n
Z

|ȳ|⇢/2�
(|ȳ|2 + 1)1�nd ȳ

for 0 < ✏ < �, because (✏/�)2 + |ȳ|2 + 1 < 2(|ȳ|2 + 1).
Set ↵(n) =

R
Rn�1(|ȳ|2 + 1)1�nd ȳ and observe that

Z

|ȳ|⇢/2�
(|ȳ|2 + 1)1�nd ȳ=↵(n) �

Z

|ȳ|>⇢/2�
(|ȳ|2 + 1)1�nd ȳ�↵(n) � C

✓
�

⇢

◆n�1
.
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Hence,

I � (n � 2)22�2n↵(n)
⇣✏
�

⌘n�2
� C

✓
�

⇢

◆n�1 ⇣✏
�

⌘n�2
.

On the other hand, II  C⇢ (✏/�)n�2, by Lemma 3.21.
Putting things together, we obtain
Z

D̃x0,⇢
U✏@⌫U✏d� � (n � 2)22�2n

�
↵(n) � C(�/⇢)n�1 � C⇢

�
(✏/�)n�2 ,

from which the result follows.

Proposition 3.23. There exists P2 = P2(M, g0) > 0 such that if 0 < �  ⇢  P2
Z

B̃x0⇢

⇢
4(n � 1)
n � 2

|d(U✏ + �)|2 + Rgx0 (U✏ + �)2
�
dx


4(n � 1)
n � 2

Z

B̃x0,⇢
|dU✏ |2dx +

Z

B̃x0,⇢

4(n � 1)
n � 2

n(n + 2)U
4

n�2
✏ �2dx

+
�

2

nX

a,b=1

dX

|↵|=2
|hab,↵|2✏n�2

Z

B̃x0,⇢
(✏ + |x |)2|↵|+2�2ndx

�
1
4

Z

B̃x0,⇢
Qab,cQab,c dx + C⇢

⇣✏
�

⌘n�2
+ C⇢

✓
✏

⇢

◆n�2

for all ✏ 2 (0, ⇢/2]. Here, � is the constant obtained in Lemma 3.16.

Proof. As in [10, Proposition 3.6], we can choose 0 < P2 < 1 such that
Z

B̃x0,⇢

⇢
4(n � 1)
n � 2

|d(U✏ + �)|2 + Rgx0 (U✏ + �)2
�
dx


4(n � 1)
n � 2

Z

B̃x0⇢
|dU✏ |2dx +

Z

B̃x0,⇢

4(n � 1)
n � 2

n(n + 2)U
4

n�2
✏ �2dx

+
Z

@+ B̃x0,⇢

⇣
U2✏ @bhab � @bU2✏ hab

⌘ xa
|x |

d�⇢ �
1
4

Z

B̃x0,⇢
Qab,cQab,cdx

+
�

2

nX

a,b=1

dX

|↵|=2
|hab,↵|2✏n�2

Z

B̃x0,⇢
(✏ + |x |)2|↵|+2�2ndx

+ C
nX

a,b=1

dX

|↵|=2
|hab,↵|✏n�2⇢|↵|+2�n + C✏n�2⇢2d+4�n +

Z

D̃x0,⇢
9d�
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holds for all 0 < 2✏  ⇢  P2, where

9 = �
8(n � 1)
n � 2

 

@aU✏� +
(n � 2)2

2
U

2n
n�2
✏ Va

!

⌫a

�U2✏ @bhab⌫
a + 2U✏(@bU✏)hab⌫a +U2✏Hab@cHab⌫

b � ⌫a⇠a

comes from integration by parts. Here, ⇠a is a 1-tensor controlled by

|⇠a(x)|  C
nX

a,b=1

dX

|↵|=2
|hab,↵|2✏n�2(✏ + |x |)3+2|↵|�2n.

It is easy to estimate the following term on D̃x0,⇢

|U
2n
n�2
✏ Va|(x)  C✏n(✏2+ |x̄ |2 + � (x̄)2)1�n

 C✏n�2(✏2 + |x̄ |2 + � (x̄)2)2�n,
(3.32)

and all the other terms in 9 can also be estimated by the right-hand side of (3.32).
Choosing P2 possibly smaller, from Lemmas 3.18 and 3.21 we get

Z

D̃x0,⇢
9d�  C

⇣✏
�

⌘n�2
⇢, (3.33)

for 0 < �  ⇢, from which the result follows.

Proposition 3.24. There exist P2,C > 0, depending only on (M, g0), such that

Z

B̃x0,⇢

⇢
4(n � 1)
n � 2

|d(U✏ + �)|2 + Rgx0 (U✏ + �)2
�
dx

 Y (Sn)

 Z

B̃x0,⇢
(U✏ + �)

2n
n�2 dx

! n�2
n

� (c̃ � C⇢ � C(�/⇢)n�2)
⇣✏
�

⌘n�2

�
�

4

nX

a,b=1

dX

|↵|=2
|hab,↵|2✏n�2

Z

B̃x0,⇢
(✏ + |x |)2|↵|+2�2ndx

for all 0 < ⇢  P2 and 0 < ✏ < � < K⇢, where K and c̃ are the constants
obtained in Lemma 3.22.
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Proof. This result is a consequenceofProposition 3.23andLemma 3.16. Observe that
4(n � 1)
n � 2

Z

B̃x0,⇢
|dU✏ |2dx +

Z

B̃x0,⇢

4(n � 1)
n � 2

n(n + 2)U
4

n�2
✏ �2dx

=
Z

B̃x0,⇢

4(n � 1)
n � 2

✓
n(n � 2)U

2n
n�2
✏ + n(n + 2)U

4
n�2
✏ �2

◆
dx

�
Z

D̃x0,⇢

4(n � 1)
n � 2

U✏@⌫U✏d� +
Z

@+ B̃x0,⇢

4(n � 1)
n � 2

U✏@aU✏
xa
|x |

d�


Z

B̃x0,⇢
4n(n � 1)U

4
n�2
✏ (U2✏ +

n + 2
n � 2

�2) dx

�
Z

D̃x0,⇢

4(n � 1)
n � 2

U✏@⌫U✏d� + C
✓
✏

⇢

◆n�2
.

(3.34)

We shall handle the first two terms of the right-hand side of (3.34) separately. As
in [9, Proposition 14], we have

⇣
U2✏ +

n + 2
n � 2

�2
⌘ n
n�2

� (U✏ + �)
2n
n�2 +

2n
n � 2

U
n+2
n�2
✏ �

 C
nX

a,b=1

dX

|↵|=2
|hab,↵|2✏n(✏ + |x |)2|↵|+2�2n

and Z

B̃x0,⇢

2n
n � 2

U
n+2
n�2
✏ � dx �

Z

B̃x0,⇢
@a(U

2n
n�2
✏ Va) dx

=
Z

@+ B̃x0,⇢
U

2n
n�2
✏ Va

xa
|x |

d� �
Z

D̃x0,⇢
U

2n
n�2
✏ Va⌫a d�

� �C⇢1�n✏n � C⇢
⇣✏
�

⌘n�2
.

Here, in the last step we estimated the integral on D̃x0,⇢ by (3.32) and Lemmas 3.18
and 3.21. So,

Z

B̃x0,⇢
4n(n � 1)U

4
n�2
✏ (U2✏ +

n + 2
n � 2

�2) dx

 Y (Sn)

 Z

B̃x0,⇢
(U2✏ +

n + 2
n � 2

�2)
n

n�2 dx

! n�2
n

 Y (Sn)

 Z

B̃x0,⇢
(U✏ + �)

2n
n�2 dx

! n�2
n

+ C⇢
✓
✏

⇢

◆n
+ C⇢

⇣✏
�

⌘n�2

+ C
nX

a,b=1

dX

|↵|=2
|hab,↵|2✏n

Z

B̃x0,⇢
(✏ + |x |)2|↵|+2�2ndx .

(3.35)
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Recall that Lemma 3.22 says

�
Z

D̃x0,⇢

4(n � 1)
n � 2

U✏@⌫U✏d�  �c̃
⇣✏
�

⌘n�2
(3.36)

if 0 < ✏ < � < K⇢ and 0 < ⇢ < P2, for P2 small enough.
Now it follows from Lemma 3.16 that

�✏n�2
nX

a,b=1

dX

|↵|=2
|hab,↵|2

Z

B̃x0,⇢(0)
(✏ + |x |)2|↵|+2�2ndx 

1
4

Z

B⇢(0)
Qab,cQab,c dx .

We claim that we can choose P2 > 0 possibly smaller such that
Z

B⇢(0)\B̃x0,⇢
Qab,cQab,c dx  C⇢2

⇣✏
�

⌘n�2

for all ⇢ < P2. In fact, from Lemma 3.20 we can choose P2 small such that

B⇢(0)\B̃x0,⇢ ⇢ B⇢(0)\B�/pC0(0)

for any ⇢ < P2. Then using Qab,cQab,c  C✏n�2(✏ + |x |)4�2n we get
Z

B⇢(0)\B̃x0,⇢
Qab,cQab,c dx  C✏n�2

Z

B⇢(0)\B̃x0,⇢
(✏ + |x |)4�2ndx

 C✏n�2⇢2
Z

Rn\B�/pC0

(✏ + |x |)2�2ndxC✏n�2⇢2�2�n.

In particular,

�✏n�2
nX

a,b=1

dX

|↵|=2
|hab,↵|2

Z

B̃x0,⇢
(✏ + |x |)2|↵|+2�2ndx


1
4

Z

B̃x0,⇢
Qab,cQab,cdx + C⇢2

⇣✏
�

⌘n�2
.

(3.37)

Now the result follows from Proposition 3.23 and estimates (3.34), (3.35), (3.36)
and (3.37).

Proposition 3.25. There exist P2 and K such that
Z

M

⇢
4(n � 1)
n � 2

|dŪ(x0,✏)|
2
gx0

+ Rgx0 Ū
2
(x0,✏)

�
dvgx0 +

Z

@M
2Hgx0 Ū

2
(x0,✏)d�gx0

Y (Sn)
✓Z

M
Ū

2n
n�2
(x0,✏)dvgx0

◆n�2
n

�
�

4

nX

a,b=1

dX

|↵|=2
|hab,↵|2✏n�2

Z

B̃x0,⇢
(✏+|x |)2|↵|+2�2ndx

�
c̃
2

⇣✏
�

⌘n�2
.

for all 0 < ✏ < � < K⇢ and 0 < ⇢ < P2.
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Proof. We have
Z

M\B̃x0,⇢

⇢
4(n � 1)
n � 2

|dŪ(x0,✏)|
2
gx0

+ Rgx0 Ū
2
(x0,✏)

�
dvgx0

+
Z

@M\D̃x0,⇢
2Hgx0 Ū

2
(x0,✏)d�gx0

 C
✓
✏

⇢

◆n�2
.

As in the proof of Proposition 3.23,
Z

D̃x0,⇢
2Hgx0 Ū

2
(x0,✏)d�gx0  C⇢

⇣✏
�

⌘n�2
.

The result now follows from Proposition 3.24 and the fact that det(gx0)(x) = 1 +
O(|x |2d+2).

Proof of Proposition 3.17. Let P2 and K be as in Proposition 3.25. Choose P2
maybe smaller such that P2 < K . Given ⇢B  P2 choose K 0  ⇢B and �00 2
(0, K 0⇢B). Observe that, in particular, one has �00 < ⇢2B and �

0
0 < K⇢B . By

Proposition 3.25, the inequality we want to prove holds for all 0 < ✏ < � < �00 and
0 < ⇢ = ⇢B  P2, where � = dgx0 (x0, @M).

Now choose CB = CB(M, g0) such that C�1
B �  dg0(x0, @M)  CB�, and

take any �0 < CB�
0
0. Then, because �

0
0 < ⇢2B , we have

�0 < CB⇢
2
B .

For any ✏ < C�1
B dg0(x0, @M) we have ✏ < C�1

B dg0(x0, @M) < � < �00 and the
inequality in Proposition 3.17 holds.

We finally prove some results for later use.

Proposition 3.26. For x 2 M , ✏ < ⇢ and �  C⇢2,
�
�
�
�
4(n � 1)
n � 2

1gx0 Ū(x0,✏) � Rgx0 Ū(x0,✏) + R1Ū
n+2
n�2
(x0,✏)

�
�
�
� (x)

 C⇢2
✓

✏

✏2 + |x |2

◆ n�2
2
1B̃x0,⇢ (x) + C

✓
✏

✏2 + |x |2

◆ n+2
2
1M\B̃x0,⇢

(x)

+ C(✏
n+2
2 ⇢�2�n + ✏

n�2
2 ⇢1�n| log ⇢|)1B̃x0,2⇢\B̃x0,⇢ (x).
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Proof. The proof goes like that of Proposition 3.14 with I1, I2, I3, I4 being the
same. Observing that we are using normal coordinates, we have

|I3|  C⇢2
✓

✏

✏2 + |x |2

◆ n�2
2
1B̃x0,2⇢ .

Using (3.29) we obtain

|I2|  C✏
n�2
2 ⇢1�n| log ⇢|1B̃x0,2⇢\B̃x0,⇢ + C✏

n�2
2 �⇢�1�n1B̃x0,2⇢\B̃x0,⇢ ,

the | log ⇢| being necessary only in dimension n = 3.
With the same estimate for I1 and I4 as in Proposition 3.14,we get the result.

Proposition 3.27. For x 2 @M , ✏ < ⇢ and �  C⇢2,
�
�
�
�
2(n � 1)
n � 2

@

@⌘gx0
Ū(x0,✏) � Hgx0 Ū(x0,✏)

�
�
�
�(x)

 C
�

✏

✓
✏

✏2 + |x |2

◆ n
2
1D̃x0,2⇢ (x) + C

✓
✏

✏2 + |x |2

◆ n�2
2
1D̃x0,2⇢ (x)

+ C(✏
n+2
2 ⇢�1�n + ✏

n�2
2 ⇢2�n| log ⇢|)1D̃x0,2⇢\D̃x0,⇢ (x).

Proof. Observe that, on @M ,

@Ū(x0,✏)

@⌘gx0
�

n � 2
2(n � 1)

Hgx0 Ū(x0,✏)

=
@�⇢

@⌘gx0
(U✏ + � � ✏

n�2
2 |x |2�n) +

@�⇢

@⌘gx0
✏
n�2
2 (|x |2�n � Gx0)

+ �⇢
@

@⌘gx0
(U✏ + �) �

n � 2
2(n � 1)

�⇢Hgx0 (U✏ + �)

+ (1� �⇢)✏
n�2
2

 
@Gx0
@⌘gx0

�
n � 2
2(n � 1)

Hgx0Gx0

!

,

where the last term is zero by the definition of Gx0 . Set

J1=
@�⇢

@⌘gx0
(U✏ + � � ✏

n�2
2 |x |2�n), J2=

@�⇢

@⌘gx0
✏
n�2
2 (|x |2�n � Gx0),

J3=�⇢
@U✏
@⌘gx0

, J4=�⇢

 
@�

@⌘gx0
�

n � 2
2(n � 1)

Hgx0 (U✏ + �)

!

.
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Recall (3.25) to bound

|J1|
�
�
�
@�⇢

@⌘gx0

�
�
�
�
|U✏� ✏

n�2
2 |x |2�n

�
�+|�|

�
C(✏

n+2
2 ⇢�1�n+ ✏

n�2
2 ⇢3�n)1D̃x0,2⇢\D̃x0,⇢ .

For J2, we use the properties (3.29) of the Green function and the hypothesis � 
C⇢2 to obtain

|J2|  ✏
n�2
2

�
�
�
@�⇢

@⌘gx0

�
�
�
�
�|x |2�n � Gx0

�
�  C✏

n�2
2 ⇢2�n| log ⇢|1D̃x0,2⇢\D̃x0,⇢ .

In order to estimate J3, let us calculate @U✏/@⌘gx0 . Suppose x = (x̄, � (x̄)) 2 D̃x0,⇢ ,
then

@U✏/@⌘gx0 (x) = �(n � 2)✏
n�2
2 (✏2 + |x |2)�

n
2 xa⌘a(x)

= �(n � 2)✏
n�2
2 (✏2 + |x |2)�

n
2 (� (x̄) + (⌘a(x) � �an)xa).

(3.38)

Recall the properties (3.28) and (3.26) of � and ⌘gx0 . So,

�
�@U✏/@⌘gx0

�
�(x)  C✏

n�2
2 (✏2 + |x |2)�

n
2 (� + C|x̄ |2)

 C
�

✏

✓
✏

✏2 + |x |2

◆ n
2

+ C
✓

✏

✏2 + |x |2

◆ n�2
2

for x 2 D̃x0,⇢ . Consequently,

|J3|  C
�

✏

✓
✏

✏2 + |x |2

◆ n
2
1D̃x0,2⇢ + C

✓
✏

✏2 + |x |2

◆ n�2
2
1D̃x0,2⇢ .

Easily we can get

|J4|  C�⇢
���
�
@�

@⌘gx0

�
�
� +U✏ + |�|

�
 C

✓
✏

✏2 + |x |2

◆ n�2
2
1D̃x0,2⇢ .

Combining all the results, we get the conclusion.

Proposition 3.28. For x 2 @M , ✏ < ⇢ and �  C⇢2,
⇣2(n � 1)

n � 2
@

@⌘gx0
Ū(x0,✏) � Hgx0 Ū(x0,✏)

⌘
(x)

� �C
✓

✏

✏2 + |x |2

◆ n�2
2
1D̃x0,2⇢ (x) � C(✏

n+2
2 ⇢�1�n

+ ✏
n�2
2 ⇢2�n| log ⇢|)1D̃x0,2⇢\D̃x0,⇢ (x).
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Proof. By (3.38) we have

�⇢@U✏/@⌘gx0 � �⇢(n � 2)(✏2 + |x |2)�
n
2 (� � C|x̄ |2)

� �C✏
n�2
2 (✏2 + |x |2)

2�n
2 1D̃x0,2⇢ .

Now the result follows as in Proposition 3.27.

3.4. Type C test functions (ūC;(x0,✏))

Our test functions in this case are the ones in [9], which are controlled by Y (Sn) the
same way as in that paper.

Recall that we assume that the background metric g0 on M satisfies Hg0 ⌘ 0
on @M . Fix x0 2 M\M�0 and let  x0 : B2⇢(0) ⇢ Rn ! B2⇢(x0) ⇢ M be
normal coordinates centered at x0, where ⇢ is small such that 0 < ⇢  �0/4.

As in Subsection 3.3, we choose a conformal metric gx0 = f
4

n�2
x0 g0 such that

det(gx0)(x) = 1 + O(|x |2d+2) in normal coordinates centered at x0, still denoted
by  x0 . We assume fx0 ⌘ 1 in M\B2⇢(x0), which implies Hgx0 ⌘ 0 on @M .

Define � as in Subsection 3.3 and set

Ū(x0,✏)(x) =

✓
4n(n � 1)

R1

◆ n�2
4
�⇢( 

�1
x0 (x))

�
U✏( �1

x0 (x)) + �( �1
x0 (x))

�

+

✓
4n(n � 1)

R1

◆ n�2
4
✏
n�2
2
�
1� �⇢( 

�1
x0 (x))

�
Gx0(x)

(3.39)

for x 2 M . Here, Gx0 is the Green’s function of the conformal Laplacian Lgx0 =

1gx0 � n�2
4(n�1) Rgx0 , with pole at x0 2 M\M�0 , boundary condition (3.20) and the

normalization lim|y|!0 |y|n�2Gx0( x0(y)) = 1. This function, obtained in Propo-
sition B.2, satisfies

|Gx0( x0(y)) � |y|2�n|  C
n�1X

i, j=1

dX

|↵|=1
|hi j,↵||y||↵|+2�n

+

(
C|y|d+3�n if n � 5
C(1+ | log |y||) if n = 3, 4,

�
�
�
�
@

@yb
(Gx0( x0(y)) � |y|2�n)

�
�
�
�C

n�1X

i, j=1

dX

|↵|=1
|hi j,↵||y||↵|+1�n+ C|y|d+2�n,

(3.40)

for some C = C(M, g0, �0) for all b = 1, ..., n and x0 2 M\M�0 .
We define the test function

ūC;(x0,✏) = fx0Ū(x0,✏). (3.41)
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Observe that this function also depends on the radius ⇢ above, which will be fixed
later in Section 4. Such constant will also be referred to as ⇢C in order to avoid
confusion with test functions of the other subsections.

For later use we observe that @
@⌘g0

Ū(x0,✏) = Bg0 ūC;(x0,✏) = Bgx0 Ū(x0,✏) = 0 on
@M .

Our main result in this subsection is the following:

Proposition 3.29. Under the hypothesis of Theorem 1.9, there exists P3 =
P3(M, g0, �0) such that

Z

M

⇢
4(n � 1)
n � 2

|dūC;(x0,✏)|
2
g0 + Rg0 ū

2
C;(x0,✏)

�
dvg0

✓Z

M
ū

2n
n�2
C;(x0,✏)dvg0

◆ n�2
n

=

Z

M

⇢
4(n � 1)
n � 2

|dŪ(x0,✏)|
2
gx0

+ Rgx0 Ū
2
(x0,✏)

�
dvgx0 +

Z

@M
2Hgx0 Ū

2
(x0,✏)d�gx0

✓Z

M
Ū

2n
n�2
(x0,✏)dvgx0

◆ n�2
n

 Y (Sn)

for all x0 2 M\M�0 and 0 < 2✏ < ⇢C < P3.

Proof. Choose P3 small such that for any x0 2 M\M�0 we have dgx0 (x0, @M) >
2P3. Choosing P3 smaller if necessary (also depending on �0 because of the above
estimates for Gx0) the result is Corollary 3 and Proposition 19 in [9] with some
obvious modifications, by making use of Theorem 1.6.

For later use we state the following result, which is proved as Proposition 3.26:

Proposition 3.30. We can choose P3 = P3(M, g0, �0) maybe smaller such that
there is C = C(M, g0) satisfying

�
�
�
�
4(n � 1)
n � 2

1gx0 Ū(x0,✏) � Rgx0 Ū(x0,✏) + R1Ū
n+2
n�2
(x0,✏)

�
�
�
�

 C⇢2
✓

✏

✏2 + |x |2

◆ n�2
2
1B2⇢(0) + C

 
✏

✏2 + dgx0 (x, x0)
2

! n+2
2

1M\B⇢(0)

+ C(✏
n+2
2 ⇢�2�n + ✏

n�2
2 ⇢3/4�n| log ⇢|)1B2⇢(0)\B⇢(0)

for all x0 2 M\M�0 and ✏ < ⇢  P3.

Proof. As in Proposition 3.26, the proof follows the lines of Proposition 3.14, but
the term I2 is estimated by |I2|  C✏

n�2
2 ⇢1�n| log ⇢|, where C depends on �0.

Choose P3 < C�4.
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3.5. Further estimates

The results of this subsection are consequences of what was proved in Subsec-
tions 3.2, 3.3 and 3.4.

In this subsection, unless otherwise stated, if x0 2 @M , x0 2 M�0\@M or
x0 2 M\M2�0 , ū(x0,✏) will stand for ū A;(x0,✏), ū B;(x0,✏) or ūC;(x0,✏), respectively.
If x0 2 M2�0\M�0 , ū(x0,✏) will stand for ū B;(x0,✏) and ūC;(x0,✏), the results below
holding for either. By the "radius" ⇢ of ū(x0,✏), we mean ⇢A, ⇢B or ⇢C , if ū(x0,✏) =
ū A;(x0,✏), ū(x0,✏) = ū B;(x0,✏) or ū(x0,✏) = ūC;(x0,✏), respectively.

We observe that whenever ū(x0,✏) = ū B;(x0,✏) we have dg0(x0, @M)  �0 
C⇢2, according to Proposition 3.17, because x0 2 M�0\@M in this case. Hence, we
can make use of Propositions 3.26, 3.27 and 3.28.

Corollary 3.31. There exists C = C(M, g0) such that, for ✏ < ⇢,
�
�
�
�
4(n � 1)
n � 2

1g0 ū(x0,✏) � Rg0 ū(x0,✏) + R1ū
n+2
n�2
(x0,✏)

�
�
�
�

 C⇢�1/2
✓

✏

✏2 + dg0(x, x0)2

◆ n�2
2

(✏2 + dg0(x, x0)
2)�

1
2 1B4⇢(x0)

+ C
✓

✏

✏2 + dg0(x, x0)2

◆ n+2
2
1M\B⇢/2(x0).

Proof. It is a consequence of Propositions 3.14, 3.26 and 3.30.

Corollary 3.32. 3 There exists C=C(M, g0) such that, if ⇢ is the radius of ū(x2,✏2)
and ✏1  ✏2 < ⇢, we have

Z

M
ū(x1,✏1)

�
�
�
�
4(n � 1)
n � 2

1g0 ū(x2,✏2) � Rg0 ū(x2,✏2) + R1ū
n+2
n�2
(x2,✏2)

�
�
�
� dvg0

 C

 

⇢1/2 +
✏22
⇢2

! 
✏1✏2

✏22 + dg0(x1, x2)2

! n�2
2

.

Proof. As in [8, Lemma B.5] we get

Z

{dg0 (y,x2)�⇢/2}

 
✏1

✏21 + dg0(x1, y)2

! n�2
2

 
✏2

✏22 + dg0(x2, y)2

! n+2
2

dvg0

 C
✏22
⇢2

 
✏1✏2

✏22 + dg0(x1, x2)2

! n�2
2

.

(3.42)

3 For types A and B test functions in dimensions n � 5, the coefficient ⇢1/2 in this inequality can
be improved to ⇢. Indeed, ⇢ was worsen to ⇢1/2 due to the log ⇢ terms in Propositions 3.14 and
3.26, which are necessary only for n = 3 or 4, as observed in the footnote in Proposition 3.14.
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We claim that
Z

{dg0 (y,x2)4⇢}

 
✏1

✏21+dg0(x1,y)2

!n�2
2
 

✏2

✏22+dg0(x2,y)2

!n�2
2

(✏22+dg0(x2, y)
2)�

1
2 dvg0

(3.43)

 C⇢

 
✏1✏2

✏22 + dg0(x1, x2)2

! n�2
2

.

Set
A = {2dg0(x1, y)  ✏2 + d12} \ {dg0(y, x2)  4⇢}

and
B = {2dg0(x1, y) � ✏2 + d12} \ {dg0(y, x2)  4⇢}

where d12 = dg0(x1, x2). Observe that on A we have

✏2 + dg0(y, x2) � ✏2 + d12 � dg0(y, x1) �
1
2
(✏2 + d12) � dg0(y, x1)

and dg0(y, x1) 
1
2
(✏2 + d12)  ✏2 + dg0(y, x2)  5⇢ .

Then
Z

A

 
✏1

✏21 + dg0(x1, y)2

! n�2
2

 
✏2

✏22 + dg0(x2, y)2

! n�2
2

(✏22 + dg0(x2, y)
2)�

1
2 dvg0

 C

 
✏1✏2

✏22 + d212

! n�2
2 Z

{dg0 (y,x1)5⇢}
(✏21 + dg0(x1, y)

2)
2�n
2 dg0(x1, y)

�1dvg0 (3.44)

 C

 
✏1✏2

✏22 + d212

! n�2
2 Z

{dg0 (y,x1)5⇢}
dg0(x1, y)

1�ndvg0

On the other hand,

Z

B

 
✏1

✏21 + dg0(x1, y)2

! n�2
2

 
✏2

✏22 + dg0(x2, y)2

! n�2
2

(✏22 + dg0(x2, y)
2)�

1
2 dvg0

(3.45)

 C

 
✏1✏2

✏22 + d212

! n�2
2 Z

{dg0 (y,x2)4⇢}
dg0(x2, y)

1�ndvg0 .

The estimate (3.43) follows from (3.44) and (3.45) observing that the integrals on
the right-hand sides of those inequalities are bounded by C⇢.

The result now follows from (3.42), (3.43) and Corollary 3.31.
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Corollary 3.33. 4 There exists C = C(M, g0) such that, if ⇢ is the radius of ū(x2,✏2)
and ✏1  ✏2 < ⇢,

Z

@M
ū(x1,✏1)

@

@⌘g0
ū(x2,✏2)d�g0 � �C

✓
⇢1/2 +

✏2
⇢

◆ 
✏1✏2

✏22 + dg0(x1, x2)2

! n�2
2

.

Proof. Observe that the above integral vanishes when ū(x2,✏2) is a type C test func-
tion. For type B test functions we obtain

@

@⌘gx2
Ū(x2,✏2) �

n � 2
2(n � 1)

Hgx2 Ū(x2,✏2)

� �C
✓

✏

✏2 + |x |2

◆ n�2
2
⇢�1/21D̃x2,2⇢ � C

✓
✏

✏2 + |x |2

◆ n
2
1D̃x2,2⇢\D̃x2,⇢

from Proposition 3.28. Then, using (2.3) and (3.30), we estimate

@

@⌘g0
ū(x2,✏2) � � C⇢�1/2

 
✏2

✏22 + dg0(x2, y)2

! n�2
2

1{dg0 (y,x2)4⇢}\@M

� C

 
✏2

✏22 + dg0(x2, y)2

! n
2

1{dg0 (y,x2)�⇢/2}\@M .

The same (actually a better) estimate as above can be obtained for type A test func-
tions by means of Proposition 3.15.

As in [8, p.274-275] we can prove

Z

{dg0 (y,x2)4⇢}\@M

 
✏1

✏21 + dg0(x1, y)2

! n�2
2

 
✏2

✏22 + dg0(x2, y)2

! n�2
2

d�g0

 C⇢

 
✏1✏2

✏22 + dg0(x1, x2)2

! n�2
2

and
Z

{dg0 (y,x2)�⇢/2}\@M

 
✏1

✏21 + dg0(x1, y)2

! n�2
2

 
✏2

✏22 + dg0(x2, y)2

! n
2

d�g0

 C
✏2
⇢

 
✏1✏2

✏22 + dg0(x1, x2)2

! n�2
2

.

The result now follows.

4 Similarly to the footnote in Corollary 3.32, for types A and B test functions the coefficient ⇢1/2
can be improved to ⇢ if n � 5.
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Corollary 3.34. For ✏ < ⇢ we have

✓Z

M

�
�
�
4(n � 1)
n � 2

1g0 ū(x0,✏) � Rg0 ū(x0,✏) + R1ū
n+2
n�2
(x0,✏)

�
�
�
2n
n+2 dvg0

◆ n+2
2n

 C
✓
✏

⇢

◆ n+2
2

+ C

8
><

>:

✏⇢�1/2 n � 5
✏⇢�1/2| log(⇢/✏)| n = 4
✏1/2 n = 3.

Proof. The result follows easily from Corollary 3.31.

Corollary 3.35. If ū(x0,✏) = ū B;(x0,✏) we have

 Z

@M

�
�
�
2(n � 1)
n � 2

@

@⌘g0
ū(x0,✏) � Hg0 ū(x0,✏)

�
�
�
2(n�1)

n d�g0

! n
2(n�1)



8
>>>>>><

>>>>>>:

C
⇣✏
�

⌘ n�2
2

| log ⇢| +
✏

⇢
n � 5

C
⇣✏
�

⌘
| log ⇢| +

✏

⇢
| log(⇢/✏)| n = 4

C
⇣✏
�

⌘1/2
| log ⇢| + C

✓
✏

⇢

◆1/2
n = 3,

for ✏ < ⇢, where � = dg0(x0, @M).

Proof. From Proposition 3.27, on @M we have
�
�
�
2(n�1)
n�2

@

@⌘g0
ū(x0,✏)�Hg0 ū(x0,✏)

�
�
�

C
�

✏

✓
✏

✏2 + dg0(x, x0)2

◆n
2
1{dg0 (x,x0)4⇢}

+C⇢�1
✓

✏

✏2+ dg0(x, x0)2

◆n�2
2
1{dg0 (x,x0)4⇢}.

Using �  C⇢2, which in particular implies �  C⇢, the first term on the right-hand
side above is estimated by C(�/✏)(n�2)/2(✏+dg0(x, x0))�n/21{dg0 (x,x0)4⇢}, and the
result follows easily.

4. Blow-up analysis

In this section, we carry out the blow-up analysis for sequences of solutions to the
equations (2.4) that will be necessary for the proof of Theorem 1.9. Although the
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analysis goes along the lines of [8, Sections 4, 5 and 6], here we have to consider
the possibility of both interior and boundary blow-up points, thus differing from
the situation in [1, Section 4]. As we will see in Proposition 4.2 below, type A
test functions are used to approximate solutions near boundary blow-up points. As
for interior blow-up points, we make use of type B test functions if those points
accumulate on the boundary, and type C ones otherwise.

Remark 4.1. Before proceeding to the blow-up analysis, we observe that one can
choose ⇢A, ⇢B and ⇢C in Propositions 3.8, 3.17 and 3.29 in such a way that the in-
equalities of those propositions hold the three at the same time. To that end, choose
�0 according to a small ⇢B in Proposition 3.17 and then ⇢C according to �0 in Propo-
sition 3.29. Moreover, observe that given C = C(M, g0) one can always assume
⇢A, ⇢B, ⇢C  C . This last remark will be used in the proofs of Propositions 4.10
and 4.22 below.

Let u(t), t � 0, be the solution of (2.4) obtained in Section 2, and let {t⌫}1⌫=1
be any sequence satisfying lim⌫!1 t⌫ = 1. We set u⌫ = u(t⌫) and g⌫ = g(t⌫) =

u
4

n�2
⌫ g0. Then Z

M
u

2n
n�2
⌫ dvg0 =

Z

M
dvg⌫ = 1 , for all ⌫ .

It follows from Corollary 2.3 that

Z

M

�
�
�
�
4(n � 1)
n � 2

1g0u⌫ � Rg0u⌫ + R1u
n+2
n�2
⌫

�
�
�
�

2n
n+2

dvg0 =
Z

M
|Rg⌫ �R1|

2n
n+2 dvg⌫ ! 0

as ⌫ ! 1.
The next proposition is an application of the decomposition result in [24],

which plays the same role here as [30] did in [8, Proposition 4.1].

Proposition 4.2. After passing to a subsequence, there exist an integer m � 0, a
smooth function u1 � 0, and a sequence of m-tuplets {(x⇤

k,⌫, ✏
⇤
k,⌫)1km}1⌫=1, such

that:

(i) The function u1 satisfies

(
4(n�1)
n�2 1g0u1 � Rg0u1 + R1u

n+2
n�2
1 = 0 , in M

@u1/@⌘g0 = 0 , on @M ;

(ii) For all i 6= j ,

lim
⌫!1

(
✏⇤i,⌫
✏⇤j,⌫

+
✏⇤j,⌫

✏⇤i,⌫
+
dg0(x⇤

i,⌫, x
⇤
j,⌫)

2

✏⇤i,⌫✏
⇤
j,⌫

)

= 1 ;
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(iii) There are integers m1,m2, with 0  m1  m2  m, such that x⇤
k,⌫ 2 @M for

1  k  m1, x⇤
k,⌫ 2 M3�0/2\@M for m1 + 1  k  m2, x⇤

k,⌫ 2 M\M3�0/2 for
m2 + 1  k  m, and

lim
⌫!1

dg0(x
⇤
k,⌫, @M)/✏⇤k,⌫ = 1 if k � m1 + 1 ;

(iv) If

ū(x⇤
k,⌫ ,✏

⇤
k,⌫)

=

8
><

>:

ū A;(x⇤
k,⌫ ,✏

⇤
k,⌫)

if k  m1
ū B;(x⇤

k,⌫ ,✏
⇤
k,⌫)

if m1 + 1  k  m2
ūC;(x⇤

k,⌫ ,✏
⇤
k,⌫)

if k � m2 + 1,
(4.1)

(see equations (3.22) , (3.30) and (3.41)) then

lim
⌫!1

�
�u⌫ � u1 �

mX

k=1
ū(x⇤

k,⌫ ,✏
⇤
k,⌫)

�
�
H1(M)

= 0 .

Proof. By modifying the arguments in [24, Section 3] to the case of Riemannian
manifolds, we can prove the existence of u1 and ū(x⇤

k,⌫ ,✏
⇤
k,⌫)

satisfying (i) and (iv)
except for, instead of using equations (4.1), the ū(x⇤

k,⌫ ,✏
⇤
k,⌫)
are defined by

ū(x⇤
k,⌫ ,✏

⇤
k,⌫)

(x) =

✓
4n(n � 1)

R1

◆ n�2
4

(✏⇤k,⌫)
� n�2

2 �⇢
�
 �1
x⇤
k,⌫

(x)
�
u
�
(✏⇤k,⌫)

�1 �1
x⇤
k,⌫

(x)
�
.

Here,  x⇤
k,⌫
are coordinates centered at x⇤

k,⌫ and u satisfies

1u + n(n � 2)u
n+2
n�2 = 0 inRn (4.2)

if lim⌫!1 dg0(x⇤
k,⌫, @M)/✏⇤k,⌫ = 1, and

(
1u + n(n � 2)u

n+2
n�2 = 0 in {y = (y1, ..., yn) | yn � t}

@
@yn u = 0 on {y = (y1, ..., yn�1, t)},

(4.3)

for some t 2 R if dg0(x⇤
k,⌫, @M)/✏⇤k,⌫ is bounded.

Rearrange the indices and choose m1 such that k � m1 + 1 should (4.2) holds
and k  m1 should (4.3) holds.

As in [14, Lemma 3.3], we can prove that u � 0 and also that (ii) holds.
The classification results in [11, 21] (regularity was established in [12]) imply that
u(y) = U✏(y � z) (see (3.1)), for some z = (z1, ..., zn) 2 Rn (with zn = t if
k  m1).
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The points x⇤
k,⌫ are now redefined as  x⇤

k,⌫
(z).5 This establishes (iii).

For each pair (x⇤
k,⌫, ✏

⇤
k,⌫), one can check that the difference between each func-

tion obtained above and the corresponding one defined by (4.1) converges to zero
in H1(M). This proves (iv).

Proposition 4.3. If u1(x) = 0 for some x 2 M , then u1 ⌘ 0.

Proof. This is just a consequence of the maximum principle.

Define the functionals

E(u) =
4(n�1)
n�2

R
M |du|2g0dvg0 +

R
M Rg0u2dvg0

⇣R
M u

2n
n�2 dvg0

⌘ n�2
n

and

F(u) =
4(n�1)
n�2

R
M |du|2g0dvg0 +

R
M Rg0u2dvg0

R
M u

2n
n�2 dvg0

.

Observe that R1 = F(u1). Hence,

1 = lim
⌫!1

Z

M
u

2n
n�2
⌫ dvg0 = lim

⌫!1

(Z

M
u

2n
n�2
1 dvg0 +

mX

k=1

Z

M
ū

2n
n�2
(x⇤
k,⌫ ,✏

⇤
k,⌫)
dvg0

)

.

The right-hand side of this equation is (E(u1)/R1)
n
2 + m1(Q(Sn+)/R1)

n
2 +

(m�m1)(Y (Sn)/R1)
n
2 if u1 > 0 andm1(Q(Sn+)/R1)

n
2 +(m�m1)(Y (Sn)/R1)

n
2

if u1 ⌘ 0. Thus,

R1 =
⇣
E(u1)n/2+m1Q(Sn+)n/2+ (m�m1)Y (Sn)n/2

⌘2/n
if u1 >0, (4.4)

and R1 =
⇣
m1Q(Sn+)n/2 + (m � m1)Y (Sn)n/2

⌘2/n
if u1 ⌘ 0.

5 To see that changing the centers x⇤
j,⌫ as above does not change the limit in (ii), we consider,

for fixed j , new centers x̄⇤
j,⌫ satisfying dg0(x

⇤
j,⌫ , x̄

⇤
j,⌫)/✏

⇤
j,⌫  C (the term ✏⇤j,⌫ in the quotient

comes from the rescaling). If the limit in (ii) holds with ✏⇤j,⌫/✏
⇤
i,⌫ ! 1, that relation does not

change after replacing the centers. So, let us assume ✏⇤j,⌫/✏
⇤
i,⌫  C without loss of generality.

The triangle inequality gives

dg0(x
⇤
i,⌫ , x̄

⇤
j,⌫)

2�
⇣
dg0(x

⇤
i,⌫ , x

⇤
j,⌫) � dg0(x

⇤
j,⌫ , x̄

⇤
j,⌫)

⌘2
�
1
2
dg0(x

⇤
i,⌫ , x

⇤
j,⌫)

2� Cdg0(x
⇤
j,⌫ , x̄

⇤
j,⌫)

2.

Hence,

dg0(x
⇤
i,⌫ , x̄

⇤
j,⌫)

2

✏⇤i,⌫✏
⇤
j,⌫

�
1
2

dg0(x
⇤
i,⌫ , x

⇤
j,⌫)

2

✏⇤i,⌫✏
⇤
j,⌫

� C
✏⇤j,⌫
✏⇤i,⌫

 
dg0(x

⇤
j,⌫ , x̄

⇤
j,⌫)

✏⇤j,⌫

!2
�
1
2

dg0(x
⇤
i,⌫ , x

⇤
j,⌫)

2

✏⇤i,⌫✏
⇤
j,⌫

� C ,

so that (ii) still holds with x̄⇤
j,⌫ replacing x

⇤
j,⌫ .
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4.1. The case u1 ⌘ 0

We set

A⌫ =

⇢
(xk, ✏k,↵k)k=1,...,m 2 (M ⇥ R+ ⇥ R+)m , such that

xk 2 @M if k  m1 , xk 2 M\@M if k � m1 + 1,

dg0(xk, x
⇤
k,⌫)  ✏⇤k,⌫ ,

1
2


✏k

✏⇤k,⌫
 2 ,

1
2

 ↵k  2
�

.

(4.5)

For each ⌫, we can choose a triplet (xk,⌫, ✏k,⌫,↵k,⌫)k=1,...,m 2 A⌫ such that
Z

M

4(n � 1)
n � 2

�
�d(u⌫ �

mX

k=1
↵k,⌫ ū(xk,⌫ ,✏k,⌫))

�
�2
g0
dvg0

+
Z

M
Rg0

�
u⌫ �

mX

k=1
↵k,⌫ ū(xk,⌫ ,✏k,⌫)

�2dvg0


Z

M

4(n � 1)
n � 2

�
�d(u⌫ �

mX

k=1
↵k ū(xk ,✏k))

�
�2
g0
dvg0

+
Z

M
Rg0

�
u⌫ �

mX

k=1
↵k ū(xk ,✏k)

�2dvg0

for all (xk, ✏k,↵k)k=1,...,m 2 A⌫ . Here, ū(xk,⌫ ,✏k,⌫) = ū A;(xk,⌫ ,✏k,⌫) and ū(xk ,✏k) =
ū A;(xk ,✏k) if k  m1, ū(xk,⌫ ,✏k,⌫) = ū B;(xk,⌫ ,✏k,⌫) and ū(xk ,✏k) = ū B;(xk ,✏k) if m1 + 1 
k  m2, and ū(xk,⌫ ,✏k,⌫) = ūC;(xk,⌫ ,✏k,⌫) and ū(xk ,✏k) = ūC;(xk ,✏k) if k � m2 + 1; see
(3.22), (3.30) and (3.41).

Proposition 4.4. If k � m1 + 1, then lim⌫!1 dg0(xk,⌫, @M)/✏k,⌫ = 1.

Proof. It follows from the triangle inequality and (4.5) that

dg0(xk,⌫, @M)

✏k,⌫
�
dg0(xk,⌫, @M)

2✏⇤k,⌫
�
dg0(x⇤

k,⌫, @M)

2✏⇤k,⌫
�
1
2
.

Now the right-hand side goes to infinity as ⌫ ! 1 by (iii) of Proposition 4.2.

Proposition 4.5. We have:

(i) For all i 6= j ,

lim
⌫!1

(
✏i,⌫

✏ j,⌫
+
✏ j,⌫

✏i,⌫
+
dg0(xi,⌫, x j,⌫)2

✏i,⌫✏ j,⌫

)

= 1 .
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(ii) We have

lim
⌫!1

�
�u⌫ �

mX

k=1
↵k,⌫ ū(xk,⌫ ,✏k,⌫)

�
�
H1(M)

= 0 .

Proof. This is a simple consequence of Proposition 4.2 and the definition of
(xk,⌫, ✏k,⌫,↵k,⌫); see [8, Propostion 5.1] for details.

Proposition 4.6. We have

dg0(xk,⌫, x
⇤
k,⌫)  o(1)✏⇤k,⌫ ,

✏k,⌫

✏⇤k,⌫
= 1+ o(1) , and ↵k,⌫ = 1+ o(1) ,

for all k = 1, ...,m. In particular, (xk,⌫, ✏k,⌫,↵k,⌫)k=1,...,m is an interior point of
A⌫ for ⌫ sufficiently large.

Proof. It follows from Propositions 4.2 and 4.5 that
�
�
�
�

mX

k=1
↵k,⌫ ū(xk,⌫ ,✏k,⌫) �

mX

k=1
ū(x⇤

k,⌫ ,✏
⇤
k,⌫)

�
�
�
�
H1(M)



�
�
�
�u⌫ �

mX

k=1
ū(x⇤

k,⌫ ,✏
⇤
k,⌫)

�
�
�
�
H1(M)

+

�
�
�
�u⌫ �

mX

k=1
↵k,⌫ ū(xk,⌫ ,✏k,⌫)

�
�
�
�
H1(M)

= o(1).

Now the result follows.

Notation. We write u⌫ = v⌫ + w⌫ , where

v⌫ =
mX

k=1
↵k,⌫ ū(xk,⌫ ,✏k,⌫) and w⌫ = u⌫ �

mX

k=1
↵k,⌫ ū(xk,⌫ ,✏k,⌫) . (4.6)

Observe that by Proposition 4.5 we have
Z

M

4(n � 1)
n � 2

|dw⌫ |
2
g0dvg0 +

Z

M
Rg0w

2
⌫dvg0 = o(1) . (4.7)

Set

C⌫ =

✓Z

@M
|w⌫ |

2(n�1)
n�2 d�g0

◆ n�2
2(n�1)

+

✓Z

M
|w⌫ |

2n
n�2 dvg0

◆ n�2
2n

.

Proposition 4.7. Fix ⇢  P0. Let  k,⌫ : �k,⌫ = B+
⇢ (0) ⇢ Rn

+ ! M be Fermi
coordinates centered at xk,⌫ if 1  k  m1, and let  k,⌫ : �k,⌫ = B̃xk,⌫ ,⇢ ⇢ Rn !
M be normal coordinates centered at xk,⌫ if m1 + 1  k  m (see Definitions 3.1
and 3.2). We have:

(i)
�
�
�
�

Z

M
ū
n+2
n�2
(xk,⌫ ,✏k,⌫) w⌫ dvg0

�
�
�
�  o(1)C⌫ ;
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(ii)
�
�
�
�

Z

�k,⌫

ū
n+2
n�2
(xk,⌫ ,✏k,⌫)

✏2k,⌫ � | �1
k,⌫ (x)|

2

✏2k,⌫ + | �1
k,⌫ (x)|2

w⌫ dvg0

�
�
�
�  o(1)C⌫ ;

(iii)
�
�
�
�

Z

�k,⌫

ū
n+2
n�2
(xk,⌫ ,✏k,⌫)

✏k,⌫ 
�1
k,⌫ (x)

✏2k,⌫ + | �1
k,⌫ (x)|2

w⌫ dvg0

�
�
�
�  o(1)C⌫, if m1 + 1  k  m,

and
�
�
�
�

Z

�k,⌫

ū
n+2
n�2
(xk,⌫ ,✏k,⌫)

✏k,⌫ 
�1
k,⌫ (x)

✏2k,⌫ + | �1
k,⌫ (x)|2

w⌫ dvg0

�
�
�
�  o(1)C⌫, if k  m1,

where we are denoting ȳ = (y1, ..., yn�1) for any y = (y1, ..., yn) 2 Rn .

Proof. It follows from the definition of (xk,⌫, ✏k,⌫,↵k,⌫) that
Z

M

✓
4(n � 1)
n � 2

hdū(xk,⌫ ,✏k,⌫), dw⌫ig0 + Rg0 ū(xk,⌫ ,✏k,⌫)w⌫

◆
dvg0 = 0 .

Integrating by parts, we obtain
Z

M

✓
4(n � 1)
n � 2

1g0 ū(xk,⌫ ,✏k,⌫) � Rg0 ū(xk,⌫ ,✏k,⌫)

◆
w⌫dvg0

+
Z

@M

4(n � 1)
n � 2

@

@⌘g0
ū(xk,⌫ ,✏k,⌫)w⌫ d�g0 = 0.

We claim that
�
�
�
4(n � 1)
n � 2

1g0 ū(xk,⌫ ,✏k,⌫) � Rg0 ū(xk,⌫ ,✏k,⌫) + R1ū
n+2
n�2
(xk,⌫ ,✏k,⌫)

�
�
�
L
2n
n+2 (M)

= o(1),

and �
�
�
@

@⌘g0
ū(xk,⌫ ,✏k,⌫)

�
�
�
L
2(n�1)

n (@M)
= o(1).

The first statement follows from Corollary 3.34. As for the second one, observe
first that

@ ū(xk,⌫ ,✏k,⌫)/@⌘g0 = 0
on @M if ū(xk,⌫ ,✏k,⌫) = ūC;(xk,⌫ ,✏k,⌫). If ū(xk,⌫ ,✏k,⌫) = ū A;(xk,⌫ ,✏k,⌫) this statement
follows easily from Proposition 3.15 and (2.1), and if ū(xk,⌫ ,✏k,⌫) = ū B;(xk,⌫ ,✏k,⌫) this
is Corollary 3.35, also making use of Proposition 4.4.

This proves (i). The remaining statements follow similarly.

Proposition 4.8. There exists c > 0 such that

n + 2
n � 2

R1

Z

M

mX

k=1
ū

4
n�2
(xk,⌫ ,✏k,⌫)w

2
⌫ dvg0

 (1� c)
⇢Z

M

4(n � 1)
n � 2

|dw⌫ |
2
g0dvg0 +

Z

M
Rg0w

2
⌫ dvg0

�

for all ⌫ sufficiently large.



CONVERGENCE OF THE YAMABE FLOW ON MANIFOLDS WITH MINIMAL BOUNDARY 1243

Proof. Once we have proved Proposition 4.7, this proof is a contradiction argument
similar to [8, Propostion 5.4] and [1, Proposition 4.6] and we will omit the details.
Assume by contradiction that there is a sequence {w̃⌫} satisfying

Z

M

4(n � 1)
n � 2

|dw̃⌫ |
2
g0dvg0 +

Z

M
Rg0w̃

2
⌫ dvg0 = 1

and

lim
⌫!1

n + 2
n � 2

R1

Z

M

mX

k=1
ū

4
n�2
(xk,⌫ ,✏k,⌫)w̃

2
⌫ dvg0 � 1 .

After rescaling around xk,⌫ , the new sequence obtained converges (weakly in
H1loc(Rn

+) if k  m1 and in H1loc(Rn) if k � m1 + 1) to a certain ŵ. It turns
out that one can choose k 2 {1, ...,m} in such way that ŵ satisfies

Z

Rn
+

✓
1

1+ |y|2

◆2
ŵ2(y) dy > 0

and Z

Rn
+

|dŵ(y)|2dy  n(n + 2)
Z

Rn
+

✓
1

1+ |y|2

◆2
ŵ2(y) dy

if k  m1, or the same two inequalities with Rn
+ replaced by Rn if k � m1 + 1.

On the other hand, if k  m1, due to Proposition 4.7, ŵ satisfies
Z

Rn
+

✓
1

1+ |y|2

◆ n+2
2

ŵ(y) dy = 0 ,

Z

Rn
+

✓
1

1+ |y|2

◆ n+2
2 1� |y|2

1+ |y|2
ŵ(y) dy = 0 ,

Z

Rn
+

✓
1

1+ |y|2

◆ n+2
2 y j
1+ |y|2

ŵ(y) dy = 0 ,

where y = (y1, ..., yn), and j = 1, ..., n � 1. By considering the corresponding
equations on the round hemisphere we obtain a contradiction as in [1, Proposi-
tion 4.6]. If k � m1 + 1, ŵ satisfies the same last three equations (with j =
1, ..., n for the last), but with Rn

+ replaced by Rn , and the same contradiction is
reached by considering corresponding equations on the round sphere instead of the
hemisphere.

Corollary 4.9. There exists c > 0 such that

n + 2
n � 2

R1

Z

M
v

4
n�2
⌫ w2⌫ dvg0 (1� c)

⇢Z

M

4(n � 1)
n � 2

|dw⌫ |
2
g0dvg0 +

Z

M
Rg0w

2
⌫ dvg0

�

for all ⌫ sufficiently large.
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Proof. By the definition of v⌫ (equation (4.6)), we have

lim
⌫!1

Z

M

�
�v

4
n�2
⌫ �

mX

k=1
ū

4
n�2
(xk,⌫ ,✏k,⌫)

�
�n/2dvg0 = 0 .

Hence, the assertion follows from Proposition 4.8.

Proposition 4.10. For all ⌫ sufficiently large, we have

E(v⌫) 

 
mX

k=1
E(ū(xk ,✏k))

n/2

!2/n
.

Proof. Choose a permutation � : {1, ...,m} such that ✏� (i),⌫  ✏� ( j),⌫ for all i < j .
During this proof we will omit the symbol � , writing ✏i,⌫ instead of ✏� (i),⌫ , so that
✏i,⌫  ✏ j,⌫ for all i < j . After calculations similar to the ones in [8, Proposition
5.6] we obtain

E(v⌫)

✓Z

M
v

2n
n�2
⌫ dvg0

◆ n�2
n



 
mX

k=1
E(ū(xk,⌫ ,✏k,⌫))

n
2

!2
n ✓Z

M
v

2n
n�2
⌫ dvg0

◆n�2
n

� c
X

i< j

 
✏i,⌫✏ j,⌫

✏2j,⌫ + dg0(xi,⌫, x j,⌫)2

!n�2
2

� 2
Z

M

X

i< j
↵i,⌫↵ j,⌫ ū(xi,⌫ ,✏i,⌫)

✓
4(n � 1)
n � 2

1g0 ū(x j,⌫ ,✏ j,⌫) � Rg0 ū(x j,⌫ ,✏ j,⌫)

+ R1ū
n+2
n�2
(x j,⌫ ,✏ j,⌫)

◆
dvg0

�
8(n � 1)
n � 2

Z

@M

X

i< j
↵i,⌫↵ j,⌫ ū(xi,⌫ ,✏i,⌫)

@ ū(x j,⌫ ,✏ j,⌫)

@⌘g0
d�g0

� 2
X

i< j
↵i,⌫↵ j,⌫(F(ū(x j,⌫ ,✏ j,⌫)) � R1)

Z

M
ū(xi,⌫ ,✏i,⌫)ū

n+2
n�2
(x j,⌫ ,✏ j,⌫)dvg0 .

It is not difficult to see that F(ū(x j,⌫ ,✏ j,⌫)) = R1 + o(1). This is more subtle
in the case ū(x j,⌫ ,✏ j,⌫) = ū B;(x j,⌫ ,✏ j,⌫), when we make use of Proposition 4.4 and
Lemma 3.20. Then, because of [8, Lemma B.4], we have

|F(ū(x j,⌫ ,✏ j,⌫))� R1|
Z

M
ū(xi,⌫ ,✏i,⌫)ū

n+2
n�2
(x j,⌫ ,✏ j,⌫)dvg0 o(1)

 
✏i,⌫✏ j,⌫

✏2j,⌫+ dg0(xi,⌫, x j,⌫)2

!n�2
2

.
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Then, using Corollaries 3.32 and 3.33,

E(v⌫)

✓Z

M
v

2n
n�2
⌫ dvg0

◆ n�2
n



 
mX

k=1
E(ū(xk,⌫ ,✏k,⌫))

n
2

! 2
n ✓Z

M
v

2n
n�2
⌫

◆ n�2
n

�
X

i< j
(c � C max{⇢A, ⇢B, ⇢C }1/2 � o(1))

 
✏i,⌫✏ j,⌫

✏2j,⌫ + dg0(xi,⌫, x j,⌫)2

! n�2
2

.

Hence, the assertion follows by choosing ⇢A, ⇢B and ⇢C smaller if necessary (see
Remark 4.1).

Corollary 4.11. Under the hypothesis of Theorem 1.9, we have

E(v⌫)  R1, for all ⌫ sufficiently large.

Proof. Using Propositions 3.8, 3.17 and 3.29, we obtain E(ū(xk,⌫ ,✏k,⌫))  Q(Sn+)
for k  m1, and E(ū(xk,⌫ ,✏k,⌫))  Y (Sn) for k � m1 + 1. Then the result follows
from Proposition 4.10 and (4.4).

4.2. The case u1 > 0

Proposition 4.12. There exist sequences { a}a2N ⇢ C1(M) and {�a}a2N ⇢ R,
with �a > 0, satisfying:

(i) For all a 2 N,
8
<

:

4(n�1)
n�2 1g0 a � Rg0 a + �au

4
n�2
1  a = 0 in M

@
@⌘g0

 a = 0 on @M ;

(ii) For all a, b 2 N,
Z

M
 a bu

4
n�2
1 dvg0 =

(
1 if a = b
0 if a 6= b ;

(iii) The span of { a}a2N is dense in L2(M);
(iv) We have lima!1 �a = 1.

Proof. Since we are assuming Rg0 > 0, for each f 2 L2(M)we can define T ( f ) =
u, where u 2 H1(M) is the unique solution of

8
<

:

4(n�1)
n�2 1g0u � Rg0u = f u

4
n�2
1 in M

@
@⌘g0

u = 0 on @M .
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Since H1(M) is compactly embedded in L2(M), the operator T : L2(M) !
L2(M) is compact. Integrating by parts, we see that T is symmetric with respect to

the inner product ( 1, 2) 7!
R
M  1 2u

4
n�2
1 dvg0 . Then the result follows from the

spectral theorem for compact operators.

Let A ⇢ N be a finite set such that �a > n+2
n�2 R1 for all a /2 A, and define the

projection

0( f ) =
X

a /2A

✓Z

M
 a f dvg0

◆
 au

4
n�2
1 = f �

X

a2A

✓Z

M
 a f dvg0

◆
 au

4
n�2
1 .

Lemma 4.13. There exists ⇣ > 0 with the following significance: for all z 2 RA

with |z|  ⇣ , there exists a smooth function ūz satisfying @ ūz/@⌘g0 = 0 on @M ,
Z

M
u

4
n�2
1 (ūz � u1) advg0 = za for all a 2 A , (4.8)

and
0

✓
4(n � 1)
n � 2

1g0 ūz � Rg0 ūz + R1ū
n+2
n�2
z

◆
= 0 . (4.9)

Moreover, the mapping z 7! ūz is real analytic.

Proof. This is just an application of the implicit function theorem.

Lemma 4.14. There exists 0 < � < 1 such that

E(ūz)�E(u1)C sup
a2A

�
�
�
�

Z

M
 a

✓
4(n � 1)
n � 2

1g0 ūz � Rg0 ūz + R1ū
n+2
n�2
z

◆
dvg0

�
�
�
�

1+�
,

if |z| is sufficiently small.

Proof. Observe that the function z 7! E(ūz) is real analytic. According to results
of Lojasiewicz (see equation (2.4) in [29, page 538]), there exists 0 < � < 1 such
that

|E(ūz) � E(u1)|  sup
a2A

�
�
�
�
@

@za
E(ūz)

�
�
�
�

1+�
,

if |z| is sufficiently small. Now we can follow the lines in [8, Lemma 6.5] to obtain
the result.

We set

A⌫ =
n
(z, (xk, ✏k,↵k)k=1,...,m) 2 RA ⇥ (M ⇥ R+ ⇥ R+)m , such that

xk 2 @M if k  m1 , xk 2 M\@M if k � m1 + 1,

|z|  ⇣, dg0(xk, x
⇤
k,⌫)  ✏⇤k,⌫ ,

1
2


✏k

✏⇤k,⌫
 2 ,

1
2

 ↵k  2
o

.



CONVERGENCE OF THE YAMABE FLOW ON MANIFOLDS WITH MINIMAL BOUNDARY 1247

For each ⌫, we can choose a pair (z⌫, (xk,⌫, ✏k,⌫,↵k,⌫)k=1,...,m) 2 A⌫ such that
Z

M

4(n � 1)
n � 2

�
�d(u⌫ � ūz⌫ �

mX

k=1
↵k,⌫ ū(xk,⌫ ,✏k,⌫))

�
�2
g0
dvg0

+
Z

M
Rg0

�
u⌫ � ūz⌫ �

mX

k=1
↵k,⌫ ū(xk,⌫ ,✏k,⌫)

�2dvg0


Z

M

4(n � 1)
n � 2

�
�d(u⌫ � ūz �

mX

k=1
↵k ū(xk ,✏k))

�
�2
g0
dvg0

+
Z

M
Rg0

�
u⌫ � ūz �

mX

k=1
↵k ū(xk ,✏k)

�2dvg0

for all (z, (xk, ✏k,↵k)k=1,...,m) 2 A⌫ . Here, ū(xk,⌫ ,✏k,⌫) = ū A;(xk,⌫ ,✏k,⌫) and ū(xk ,✏k) =
ū A;(xk ,✏k) if k  m1, ū(xk,⌫ ,✏k,⌫) = ū B;(xk,⌫ ,✏k,⌫) and ū(xk ,✏k) = ū B;(xk ,✏k) if m1 + 1 
k  m2, and ū(xk,⌫ ,✏k,⌫) = ūC;(xk,⌫ ,✏k,⌫) and ū(xk ,✏k) = ūC;(xk ,✏k) if k � m2 + 1; see
(3.22), (3.30) and (3.41).

The proofs of the next three propositions are similar to Propositions 4.4, 4.5
and 4.6.

Proposition 4.15. If k � m1 + 1, then lim⌫!1 dg0(xk,⌫, @M)/✏k,⌫ = 1.

Proposition 4.16. We have:

(i) For all i 6= j ,

lim
⌫!1

(
✏i,⌫

✏ j,⌫
+
✏ j,⌫

✏i,⌫
+
dg0(xi,⌫, x j,⌫)2

✏i,⌫✏ j,⌫

)

= 1 ;

(ii) We have

lim
⌫!1

�
�u⌫ � ūz⌫ �

mX

k=1
↵k,⌫ ū(xk,⌫ ,✏k,⌫)

�
�
H1(M)

= 0 .

Proposition 4.17. We have |z⌫ | = o(1), and

dg0(xk,⌫, x
⇤
k,⌫)  o(1) ✏⇤k,⌫ ,

✏k,⌫

✏⇤k,⌫
= 1+ o(1) , and ↵k,⌫ = 1+ o(1) ,

for all k = 1, ...,m. In particular, (z⌫, (xk,⌫, ✏k,⌫,↵k,⌫)k=1,...,m) is an interior point
ofA⌫ for ⌫ sufficiently large.

Notation. We write u⌫ = v⌫ + w⌫ , where

v⌫ = ūz⌫ +
mX

k=1
↵k,⌫ ū(xk,⌫ ,✏k,⌫) and w⌫ = u⌫ � ūz⌫ �

mX

k=1
↵k,⌫ ū(xk,⌫ ,✏k,⌫) . (4.10)
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Observe that by Proposition 4.16 we have
Z

M

4(n � 1)
n � 2

|dw⌫ |
2
g0dvg0 +

Z

M
Rg0w

2
⌫dvg0 = o(1) . (4.11)

Set

C⌫ =

✓Z

@M
|w⌫ |

2(n�1)
n�2 d�g0

◆ n�2
2(n�1)

+

✓Z

M
|w⌫ |

2n
n�2 dvg0

◆ n�2
2n

.

Proposition 4.18. Fix ⇢  P0. Let  k,⌫ : �k,⌫ = B+
⇢ (0) ⇢ Rn

+ ! M be Fermi
coordinates centered at xk,⌫ if 1  k  m1, and let  k,⌫ : �k,⌫ = B̃xk,⌫⇢ ⇢ Rn !
M be normal coordinates centered at xk,⌫ if m1 + 1  k  m (see Definitions 3.1
and 3.2). We have:

(i)
�
�
�
�

Z

M
u

4
n�2
1  a w⌫ dvg0

�
�
�
�  o(1)

Z

M
|w⌫ |dvg0, for a 2 A;

(ii)
�
�
�
�

Z

M
ū
n+2
n�2
(xk,⌫ ,✏k,⌫) w⌫ dvg0

�
�
�
�  o(1)C⌫ ;

(iii)
�
�
�
�

Z

�k,⌫

ū
n+2
n�2
(xk,⌫ ,✏k,⌫)

✏2k,⌫ � | �1
k,⌫ (x)|

2

✏2k,⌫ + | �1
k,⌫ (x)|2

w⌫ dvg0

�
�
�
�  o(1)C⌫ ;

(iv)
�
�
�
�

Z

�k,⌫

ū
n+2
n�2
(xk,⌫ ,✏k,⌫)

✏k,⌫ 
�1
k,⌫ (x)

✏2k,⌫ + | �1
k,⌫ (x)|2

w⌫ dvg0

�
�
�
�  o(1)C⌫, if m1 + 1  k  m,

and
�
�
�
�

Z

�k,⌫

ū
n+2
n�2
(xk,⌫ ,✏k,⌫)

✏k,⌫ 
�1
k,⌫ (x)

✏2k,⌫ + | �1
k,⌫ (x)|2

w⌫ dvg0

�
�
�
�  o(1)C⌫, if k  m1,

where we are denoting ȳ = (y1, ..., yn�1) for any y = (y1, ..., yn) 2 Rn .

Proof. (i) Set  ̃a,z = @ ūz/@za . It follows from the identities (4.8) and (4.9) that
 ̃a,0 =  a for all a 2 A. By the definition of (z⌫, (xk,⌫, ✏k,⌫,↵k,⌫)1km), we have

Z

M

4(n � 1)
n � 2

hd ̃a,z⌫ , w⌫ig0dvg0 +
Z

M
Rg0 ̃a,z⌫w⌫ dvg0 = 0 .

Hence,

�a

Z

M
u

4
n�2
1  aw⌫ dvg0 = �

Z

M

✓
4(n � 1)
n � 2

1g0 a � Rg0 a
◆

w⌫ dvg0

=
Z

M

✓
4(n � 1)
n � 2

1g0( ̃a,z⌫� a) �Rg0( ̃a,z⌫� a)
◆

w⌫dvg0

+
Z

@M

@ ̃a,z⌫
@⌘g0

w⌫d�g0 .

However, we know that @ ̃a,z⌫/@⌘g0 = 0 on @M . Then, since �a > 0 and |z⌫ | ! 0
as ⌫ ! 1, we conclude that the assertion (i) follows.

The proofs of (ii), (iii), and (iv) are similar to Proposition 4.7.
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Proposition 4.19. There exists c > 0 such that

n + 2
n � 2

R1

Z

M

⇣
u

4
n�2
1 +

mX

k=1
ū

4
n�2
(xk,⌫ ,✏k,⌫)

⌘
w2⌫ dvg0

 (1� c)
Z

M

⇣4(n � 1)
n � 2

|dw⌫ |
2
g0 + Rg0w

2
⌫

⌘
dvg0

for all ⌫ sufficiently large.

Proof. As in Proposition 4.8, once Proposition 4.18 is established, this proof is a
contradiction argument similar to [8, Proposition 6.8] and [1, Proposition 4.18].

Corollary 4.20. There exists c > 0 such that

n + 2
n � 2

R1

Z

M
v

4
n�2
⌫ w2⌫ dvg0  (1� c)

Z

M

⇣4(n � 1)
n � 2

|dw⌫ |
2
g0 + Rg0w

2
⌫

⌘
dvg0

for all ⌫ sufficiently large.

Proof. By the definition of v⌫ (see (4.10)), we have

lim
⌫!1

Z

M

�
�v

4
n�2
⌫ � u

4
n�2
1 �

mX

k=1
ū

4
n�2
(xk,⌫ ,✏k,⌫)

�
�
n
2 dvg0 = 0 .

Hence, the assertion follows from Proposition 4.19.

The next two propositions are similar to Propositions 6.14 and 6.15 of [8] and we
will just outline their proofs.

Proposition 4.21. There exist C > 0 and 0 < � < 1 such that

E(ūz⌫ ) � E(u1)  C
⇢Z

M
u

2n
n�2
⌫ |Rg⌫ � R1|

2n
n+2 dvg0

� n+2
2n (1+� )

+ C
mX

k=1
✏
n�2
2 (1+� )

k,⌫

if ⌫ is sufficiently large.

Proof. As in [8, Lemmas 6.11 and 6.12], because @u⌫/@⌘g0 = @ ūz⌫/@⌘g0 = 0 on
@M , we can show that there exists C > 0 such that

ku⌫ � ūz⌫k
n+2
n�2

L
n+2
n�2 (M)

 Cku
n+2
n�2
⌫ (Rg⌫ � R1)k

n+2
n�2

L
2n
n+2 (M)

+ C
mX

k=1
✏
n�2
2

k,⌫ (4.12)

and

ku⌫ � ūz⌫kL1(M)  Cku
n+2
n�2
⌫ (Rg⌫ � R1)k

L
2n
n+2 (M)

+ C
mX

k=1
✏
n�2
2

k,⌫ , (4.13)

for ⌫ sufficiently large.
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We will prove the estimate

sup
a2A

�
�
�
�

Z

M
 a

✓
4(n � 1)
n � 2

1g0 ūz⌫ � Rg0 ūz⌫ + R1ū
n+2
n�2
z⌫

◆
dvg0

�
�
�
�

 C
⇢Z

M
u

2n
n�2
⌫ |Rg⌫ � R1|

2n
n+2 dvg0

� n+2
2n

+ C
mX

k=1
✏
n�2
2

k,⌫

(4.14)

for ⌫ is sufficiently large.
Integrating by parts, we obtain
Z

M
 a

✓
4(n � 1)
n � 2

1g0 ūz⌫ � Rg0 ūz⌫ + R1ū
n+2
n�2
z⌫

◆
dvg0

=
Z

M
 a

✓
4(n � 1)
n � 2

1g0u⌫ � Rg0u⌫ + R1u
n+2
n�2
⌫

◆
dvg0

+ �a

Z

M
u

4
n�2
1  a(u⌫ � ūz⌫ ) dvg0 � R1

Z

M
 a(u

n+2
n�2
⌫ � ū

n+2
n�2
z⌫ ) dvg0 .

Using the fact that 4(n�1)n�2 1g0u⌫ � Rg0u⌫ + R1u
n+2
n�2
⌫ = �(Rg⌫ � R1)u

n+2
n�2
⌫ and the

pointwise estimate

|u
n+2
n�2
⌫ � ū

n+2
n�2
z⌫ |  Cū

4
n�2
z⌫ |u⌫ � ūz⌫ | + C|u⌫ � ūz⌫ |

n+2
n�2 ,

we obtain

sup
a2A

�
�
�
�

Z

M
 a

✓
4(n � 1)
n � 2

1g0 ūz⌫ � Rg0 ūz⌫ + R1ū
n+2
n�2
z⌫

◆
dvg0

�
�
�
�

 Cku
n+2
n�2
⌫ (Rg⌫ � R1)k

L
2n
n+2 (M)

+ Cku⌫ � ūz⌫kL1(M) + Cku⌫ � ūz⌫k
n+2
n�2

L
n+2
n�2 (M)

.

Then it follows from (4.12) and (4.13) that

sup
a2A

�
�
�
�

Z

M
 a

✓
4(n � 1)
n � 2

1g0 ūz⌫ � Rg0 ūz⌫ + R1ū
n+2
n�2
z⌫

◆
dvg0

�
�
�
�

 Cku
n+2
n�2
⌫ (Rg⌫ � R1)k

n+2
n�2

L
2n
n+2 (M)

+ Cku
n+2
n�2
⌫ (Rg⌫ � R1)k

L
2n
n+2 (M)

+ C
mX

k=1
✏
n�2
2

k,⌫ .

(4.15)

On the other hand, by Corollary 2.3 we can assume

ku
n+2
n�2
⌫ (Rg⌫ � R1)k

L
2n
n+2 (M)

=

✓Z

M
|Rg⌫ � R1|

2n
n+2 dvg⌫

◆ n+2
2n

< 1. (4.16)
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The estimate (4.14) now follows using the inequality (4.16) in (4.15). Proposition
4.21 is a consequence of Lemma 4.14 and the estimate (4.14).

Proposition 4.22. There exists c > 0 such that

E(v⌫) 

 

E(ūz⌫ )
n
2 +

mX

k=1
E(ūxk ,✏k,⌫ )

n
2

! 2
n

� c
mX

k=1
✏
n�2
2

k,⌫

if ⌫ is sufficiently large.

Proof. Choose a permutation � : {1, ...,m} such that ✏� (i),⌫  ✏� ( j),⌫ for all i < j .
During this proof we will omit the symbol � , writing ✏i,⌫ instead of ✏� (i),⌫ , so that
✏i,⌫  ✏ j,⌫ for all i < j . After calculations similar to the ones in [8, Proposition
6.15], we obtain

E(v⌫)

✓Z

M
v

2n
n�2
⌫ dvg0

◆ n�2
n



 

E(ūz⌫ )
n
2 +

mX

k=1
E(ū(xk,⌫ ,✏k,⌫))

n
2

! 2
n ✓Z

M
v

2n
n�2
⌫ dvg0

◆ n�2
n

�
mX

k=1
2↵k,⌫

Z

M

⇣4(n � 1)
n � 2

1g0 ūz⌫ � Rg0 ūz⌫ + F(ūz⌫ )ū
n+2
n�2
z⌫

⌘
ū(xk,⌫ ,✏k,⌫)dvg0

�
X

i< j
2↵i,⌫↵ j,⌫

Z

M

4(n � 1)
n � 2

@ ū(x j,⌫ ,✏ j,⌫)

@⌘g0
ū(xi,⌫ ,✏i,⌫)dvg0

�
X

i< j
2↵i,⌫↵ j,⌫

Z

M

⇣4(n � 1)
n � 2

1g0 ū(x j,⌫ ,✏ j,⌫) � Rg0 ū(x j,⌫ ,✏ j,⌫)

+ F(ū(x j,⌫ ,✏ j,⌫))ū
n+2
n�2
(x j,⌫ ,✏ j,⌫)

⌘
ū(xi,⌫ ,✏i,⌫)dvg0

� c
mX

k=1
✏
n�2
2

k,⌫ � c
X

i< j

 
✏i,⌫✏ j,⌫

✏2j,⌫ + dg0(xi,⌫, x j,⌫)2

!n�2
2

.

Since F(ūz⌫ ) ! F(u1) = R1 as ⌫ ! 1, we have the estimate

Z

M

�
�
�
�
4(n � 1)
n � 2

1g0 ūz⌫ � Rg0 ūz⌫ + F(ūz⌫ )ū
n+2
n�2
z⌫

�
�
�
� ū(xk,⌫ ,✏k,⌫)dvg0  o(1)✏

n�2
2

k,⌫ .

Now the assertion follows as in the proof of Proposition 4.10.



1252 SÉRGIO ALMARAZ AND LIMING SUN

Corollary 4.23. Under the hypothesis of Theorem 1.9, there exist C > 0 and 0 <
� < 1 such that

E(v⌫)  R1 + C
✓Z

M
u

2n
n�2
⌫ |Rg⌫ � R1|

2n
n+2 dvg0

◆ n+2
2n (1+� )

,

if ⌫ is sufficiently large.

Proof. Using Propositions 3.8, 3.17 and 3.29, we obtain E(ū(xk,⌫ ,✏k,⌫))  Q(Sn+)
for all k = 1, ...,m1 and E(ū(xk,⌫ ,✏k,⌫))  Y (Sn) for all k = m1 + 1, ...,m. Then
the result follows from Propositions 4.21 and 4.22 and (4.4).

5. Proof of the main theorem

As in [8, Sections 3 and 7], the proof of Theorem 1.9 is carried out in several
propositions, whose proofs will be only sketched in what follows.

Let u(t), t � 0, be the solution of (2.4) obtained in Section 2. The next propo-
sition, which is analogous to [8, Proposition 3.3], is a crucial step in the argument.

Proposition 5.1. Let {t⌫}1⌫=1 be a sequence such that lim⌫!1 t⌫ = 1. Then we
can choose 0 < � < 1 and C > 0 such that, after passing to a subsequence, we
have

Rg(t⌫) � R1  C
⇢Z

M
u(t⌫)

2n
n�2 |Rg(t⌫) � R1|

2n
n+2 dvg0

� n+2
2n (1+� )

for all ⌫.

Proof. It is a long computation using Corollaries 4.9, 4.11, 4.20 and 4.23; see [8,
Section 7].

Proposition 5.2. There exists C > 0 such that

Z 1

0

⇢Z

M
u(t)

2n
n�2 (Rg(t) � Rg(t))2dvg0

� 1
2
dt  C

for all t � 0.

Proof. A simple contradiction argument using Corollary 2.3 and Proposition 5.1
(see [8, Proposition 3.4]) shows that there exist 0 < � < 1 and t0 > 0 such that

Rg(t) � R1  C
⇢Z

M
u(t)

2n
n�2 |Rg(t) � R1|

2n
n+2 dvg0

� n+2
2n (1+� )
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for all t � t0. Then it follows that

Rg(t) � R1  C
⇢Z

M
u(t)

2n
n�2 |Rg(t) � Rg(t)|

2n
n+2 dvg0

� n+2
2n (1+� )

+ C(Rg(t) � R1)1+� ,

hence

Rg(t) � R1  C
⇢Z

M
u(t)

2n
n�2 |Rg(t) � Rg(t)|

2n
n+2 dvg0

� n+2
2n (1+� )

(5.1)

for t > 0 sufficiently large. By (2.7) and (5.1), there exists c > 0 such that

d
dt

(Rg(t) � R1) = �
n � 2
2

Z

M
(Rg(t) � Rg(t))2 u(t)

2n
n�2 dvg0

 �
n � 2
2

⇢Z

M

�
�Rg(t) � Rg(t)

�
�
2n
n+2 u(t)

2n
n�2 dvg0

� n+2
n

 �c(Rg(t) � R1)
2
1+�

for t > 0 sufficiently large. Hence, ddt (Rg(t) � R1)
� 1��
1+� � c, which implies

Rg(t) � R1  Ct�
1+�
1�� , for t > 0 sufficiently large.

Then using Hölder’s inequality and the equation (2.7) we obtain

Z 2T

T

✓Z

M
(Rg(t) � Rg(t))2u(t)

2n
n�2 dvg0

◆ 1
2
dt



 Z 2T

T
dt

! 1
2
 Z 2T

T

Z

M
(Rg(t) � Rg(t))2u(t)

2n
n�2 dvg0 dt

! 1
2

=

⇢
2

n � 2
T (Rg(T ) � Rg(2T ))

� 1
2

 CT� �
1��
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for T sufficiently large. This implies
Z 1

0

✓Z

M
(Rg(t) � Rg(t))2u(t)

2n
n�2 dvg0

◆ 1
2
dt

=
Z 1

0

✓Z

M
(Rg(t) � Rg(t))2u(t)

2n
n�2 dvg0

◆ 1
2
dt

+
1X

k=0

Z 2k+1

2k

✓Z

M
(Rg(t) � Rg(t))2u(t)

2n
n�2 dvg0

◆ 1
2
dt

 C
1X

k=0
2� �

1�� k  C ,

which concludes the proof.

Proposition 5.3. There exist C, c > 0 such that

sup
M
u(t)  C and inf

M
u(t) � c , for all t � 0 . (5.2)

Proof. We first claim that, given �0 > 0, there exists r > 0 such that
Z

Br (x)
u(t)

2n
n�2 dvg0  �0, for all t � 0, x 2 M . (5.3)

Indeed, we can make use of Proposition 5.2 as in [8, Proposition 3.6] to obtain the
above inequality.

Fix n/2 < q < p < (n + 2)/2. According to Corollary 2.3 there is C2 > 0
such that Z

M
|Rg(t)|pdvg(t)  C2 , for all t � 0 .

Set �0 = �
p

p�q
1 C

� q
p�q

2 , where �1 is the constant obtained in Proposition A.3. By
(5.3), there is r > 0 such that

Z

Br (x)
dvg(t)  �0 , for all t � 0, x 2 M .

Then
Z

Br (x)
|Rg(t)|qdvg(t) 

⇢Z

Br (x)
dvg(t)

� p�q
p

⇢Z

Br (x)
|Rg(t)|pdvg(t)

� q
p

 �1 .

Hence, the first assertion of (5.2) follows from Proposition A.3. The second one
follows exactly as in the proof of the second estimate of (2.8).

Proof of Theorem 1.9. Once we have proved Proposition 5.3, it follows as in [8,
p.229] that all higher order derivatives of u are uniformly bounded. The uniqueness
of the asymptotic limit of Rg(t) follows from Proposition 5.2.
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Appendix

A. Some elliptic estimates

Let (Mn, g) be a complete Riemannian manifold with boundary @M and dimension
n � 3, and let ⌘g be its unit normal vector pointing inwards.

Definition A.1. We say that u 2 H1(M) is a subsolution (resp. supersolution) of
(
1gu + Pu = f in M
@u/@⌘g + P̄u = f̄ on @M

(A.1)

if, for all 0  v 2 C1c (M), the following quantity is nonpositive (resp. nonnegative)
Z

M
(hdu, dvig � Puv + f v)dvg +

Z

@M
(�P̄uv + f̄ v)d�g.

The next proposition is similar to [17, Theorems 8.17 and 8.18]; see also [19,
Lemma A.1].

Proposition A.2. Let q > n, s > n � 1 and P 2 Lq/2(M), P̄ 2 Ls(@M) with
||P||Lq/2(M) + ||P̄||Ls (@M)  3.

(a) For any p > 1, there exists C = C(n, p, q, s, g,3) and r0 = r0(M, g) such
that

sup
B+
r (x)

u  Cr� n
p ||u||L p(B+

2r (x))
+ Cr2�

2n
q || f ||Lq/2(B+

4r (x))

+ Cr1�
n�1
s || f̄ ||Ls(D4r (x))

for any x 2 @M , r < r0 and 0  u 2 H1(M) subsolution of (A.1).
(b) If 1  p < n

n�2 , there exists C = C(n, p, q, s, g,3) and r0 = r0(M, g) such
that

r� n
p ||u||L p(B+

2r (x))
 C inf

B+
r (x)

u + Cr2�
2n
q || f ||Lq/2(B+

4r (x))

+ Cr1�
n�1
s || f̄ ||Ls(D4r (x))

for any x 2 @M , r < r0 and 0  u 2 H1(M) supersolution of (A.1).

Proof. After rescaling we can assume r = 1. Let � 6= 0, k = || f ||Lq/2(B+
4 ) +

|| f̄ ||Ls(D4) and 0  � 2 C1c (B
+
4 ). We will assume that k > 0. The general case

will follow by tending k to zero. Set ū = u + k.
If u is a subsolution, by definition we have

Z

M
hdu, d(�2ū�)igdvg 

Z

M
(Pu � f )�2ū�dvg +

Z

@M
(P̄u � f̄ )�2ū�d�g,
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and we have the opposite inequality in case u is a supersolution. Choosing � > 0
should u be a subsolution and � < 0 should u be a supersolution, in both cases we
obtain

Z

M
�2ū��1|dū|2gdvg  |�|�1

Z

M
2� ū� |d� |g|dū|g dvg

+ |�|�1
Z

M
�2(|P| + k�1| f |)ū�+1dvg

+ |�|�1
Z

@M
�2(|P̄| + k�1| f̄ |)ū�+1d�g

(A.2)

by means of hdu, d(�2ū�)ig=2� ū�hd�, dūig+��2ū��1|dū|2g. Applying Young’s
inequality to the last term of (A.2) we arrive at

Z

M
�2ū��1|dū|2gdvg  C|�|�2

Z

M
|d� |2gū

�+1 dvg

+ C|�|�1
Z

M
�2(|P| + k�1| f |)ū�+1dvg

+ C|�|�1
Z

@M
�2(|P̄| + k�1| f̄ |)ū�+1d�g.

(A.3)

Set h = |P| + k�1| f |, h̄ = |P̄| + k�1| f̄ | and

w =

(
ū
�+1
2 if � 6= �1

log ū if � = �1.

Then (A.3) can be rewritten as
Z

M
�2|dw|2gdvg  C

(� + 1)2

|�|2

Z

M
|d� |2gw

2 dvg

+ C
(� + 1)2

|�|

Z

M
�2hw2dvg

+ C
(� + 1)2

|�|

Z

@M
�2h̄w2d�g

(A.4)

if � 6= �1 and
Z

M
�2|dw|2gdvg  C

Z

M
|d� |2g dvg + C

Z

M
�2hdvg + C

Z

@M
�2h̄d�g (A.5)

if � = �1. It follows from �2|dw|2g � 1
2 |d(�w)|2g�w2|d� |2g and Sobolev inequal-

ities that
✓Z

M
(�w)

2n
n�2 dvg

◆ n�2
n

� C
Z

M
|d� |2gw

2dvg  C
Z

M
�2|dw|2gdvg (A.6)
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In order to handle the right-hand side of (A.4) we use Hölder’s and interpolation
inequalities to get
Z

M
�2hw2dvg  khkLq/2(B+

4 )k�wk2L2q/(q�2)(B+
4 )

khkLq/2(B+
4 )(✏

1/2k�wkL2n/(n�2)(B+
4 )+✏

�µ1/2k�wkL2(B+
4 ))

2

 2khkLq/2(B+
4 )(✏k�wk2L2n/(n�2)(B+

4 )
+ ✏�µ1k�wk2L2(B+

4 )
)

(A.7)

where µ1 = n/(q � n), and
Z

@M
�2h̄w2d�g kh̄kLs(D4)k�wk2L2s/(s�1)(D4)

kh̄kLs(D4)(✏
1/2k�wkL2(n�1)/(n�2)(D4)+✏

�µ2/2k�wkL2(D4))
2

2kh̄kLs(D4)(✏k�wk2L2(n�1)/(n�2)(D4) + ✏�µ2k�wk2L2(D4))

(A.8)

where µ2 = (n� 1)/(s + 1� n). It follows from the Sobolev embedding theorems
that

✏�µ2

Z

D4
(�w)2d�g  ✏

Z

B+
4

|d(�w)|2gdvg + ✏�2µ2�1
Z

B+
4

(�w)2dvg

and ⇣ Z

D4
(�w)

2(n�1)
n�2 d�g

⌘ n�2
n�1

 C
Z

B+
4

|d(�w)|2gdvg.

Then the inequality (A.8) becomes
Z

@M
�2h̄w2d�g  C✏kh̄kLs(D4)

Z

B+
4

|d(�w)|2gdvg

+ C✏�2µ2�1kh̄kLs(D4)
Z

B+
4

(�w)2dvg.

(A.9)

Choosing ✏ = c|�|(� + 1)�23�1 with c > 0 small, we can make use of the
inequalities (A.6), (A.7), (A.8) and (A.9) in (A.4) to obtain

⇣ Z

B+
4

(�w)
2n
n�2 dvg

⌘ n�2
n

 C(1+ |� |)2µ
Z

B+
4

(|d� |2g + �2)w2dvg. (A.10)

Here, � = �+ 1, µ = max{µ1+ 1, 2µ2+ 2}, and C depends on3 and is bounded
when |�| is bounded away from zero.

For any 1  ra  rb  3 we choose � as a cut-off function satisfying 0  � 
1, |d� |  2/(rb � ra) and

(
� ⌘ 1 in B+

ra
� ⌘ 0 in B+

4 \B+
rb .
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Using this in (A.10) we obtain

 Z

B+
ra

ū
� n
n�2 dvg

! n�2
n


C(1+ |� |)2µ

rb � ra

Z

B+
rb

ū� dvg. (A.11)

If we set 8(e, r) =
⇣ R

B+
r
ūedvg

⌘1/e
and � = n/(n � 2), the estimate (A.11)

becomes
8
>>><

>>>:

8(�� , ra) 

✓
C(1+ |� |)µ

rb � ra

◆ 2
|� |

8(� , rb) if � > 0

8(� , rb) 

✓
C(1+ |� |)µ

rb � ra

◆ 2
|� |

8(�� , ra) if � < 0.
(A.12)

It is well known that lime!18(e, r) = supB+
r
ū and lime!�18(e, r) = infB+

r
ū.

The rest of the proof follows as in [17, p.197-198] by iterating the first inequality in
(A.12) to prove (a), and by using (A.5) and iterating the second inequality in (A.12)
to prove (b).

Once we have established Proposition A.2(a), the proof of the next proposition
is similar to [1, Proposition A.3].

Proposition A.3. Let (Mn, g0) be a compact Riemannian manifold with boundary
@M and with dimension n � 3. For each q > n/2 we can find positive constants
�1 = �1(M, g0, q) and C = C(M, g0, q) with the following significance: if g =

u
4

n�2 g0 is a conformal metric satisfying
Z

M
dvg  1 and

Z

Br (x)
|Rg|q dvg  �1

for x 2 M , then we have

u(x)  Cr� n�2
2

✓Z

Br (x)
dvg

◆ n�2
2n

.

Using Proposition A.2(b) and interior Harnack estimates for elliptic linear equa-
tions (see [17, Theorem 8.18]), one can prove the next proposition by adapting the
arguments in [8, Proposition A.2].

Proposition A.4. Let (M, g0) be a Riemannian manifold with boundary @M , P a
smooth function on M , and suppose u that satisfies

8
<

:

�1g0u(t) + Pu � 0 in M
@

@⌘g0
u = 0 on @M .
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Then there exists C = C(P, g0) such that

C inf
M
u �

Z

M
udvg0 .

In particular,
Z

M
u

2n
n�2 dvg0  C inf

M
u
✓
sup
M
u
◆ n+2

n�2
.

B. Construction of the Green function on manifolds with boundary

In this section we prove the existence of the Green function used in this paper
and some of its properties. The construction performed here extends the one in
[1, Proposition B-2]; see also [14, page 201] and [5, page 106].

Lemma B.1. Let (M, g) be a connected Riemannian manifold of dimension n � 2
and fix x 2 M and ↵ 2 R. Let u : M\{x} ! R be a function satisfying

|u(y)|  C0dg(x, y)↵ and |rgu(y)|g  C0dg(x, y)↵�1 ,

for any y 2 M , with x 6= y. Then, for any 0 < ✓  1, there exists C1 =
C1(M, g,C0,↵) such that

|u(y) � u(z)|  C1dg(y, z)✓ (dg(x, y)↵�✓ + dg(x, z)↵�✓ )

for any y, z 2 M , with y 6= x 6= z.

This is [1, Lemma B.1]. For the reader’s convenience, we provide the proof here.

Proof. Let y 6= x and z 6= x .
1st case: dg(y, z)  1

2dg(x, y). Let � : [0, 1] ! M be a smooth curve such that
� (0) = y, � (1) = z, and

R 1
0 |� 0(t)|gdt  3

2dg(y, z).

Claim. We have 14dg(x, y)  dg(� (t), x)  7
4dg(x, y).

Indeed, since dg(y, � (t))  3
2dg(y, z)  3

4dg(x, y), we have

dg(x, � (t)) � dg(x, y) � dg(� (t), y) � dg(x, y) �
3
4
dg(x, y) =

1
4
dg(x, y) .

Moreover,

dg(� (t), x)  dg(� (t), y) + dg(y, x) 
3
4
dg(x, y) + dg(x, y) =

7
4
dg(x, y) .

This proves the claim.
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Observe that u(z) � u(y) =
R 1
0 g(rgu(� (t)), � 0(t)) dt . Thus,

|u(y) � u(z)|  sup
t2[0,1]

|rgu(� (t))|g
Z 1

0
|� 0(t)|gdt

 C sup
t2[0,1]

dg(� (t), x)↵�1 3
2
dg(y, z)

 C(↵)dg(x, y)↵�1dg(y, z)  C(↵)dg(x, y)↵�✓dg(y, z)✓ .

2nd case: dg(y, z) > 1
2dg(x, y). In this case, we have

|u(y) � u(z)|  |u(y)| + |u(z)|  Cdg(y, x)↵ + Cdg(z, x)↵

 Cdg(y, x)↵�✓dg(z, y)✓ + Cdg(z, x)↵�✓ (dg(x, y) + dg(y, z))✓

 Cdg(y, z)✓ (dg(x, y)↵�✓ + dg(x, z)↵�✓ ) .

Let (M, g) be a compact Riemannian manifold with boundary @M , dimension
n � 3, and positive Sobolev quotient Q(M).

Notation. We denote by Lg the conformal Laplacian1g�
n�2
4(n�1) Rg, and by Bg the

boundary conformal operator @
@⌘g

� n�2
2(n�1)Hg, where ⌘g is the inward unit normal

vector to @M .
Set d(x) = dg(x, @M) for x 2 M , and M⇢ = {x 2 M ; d(x) < ⇢} for ⇢ > 0.

Choose ⇢̃0 = ⇢̃0(M, g) > 0 small such that the function

M2⇢̃0 ! @M
x 7! x̄

is well defined and smooth, where x̄ is defined by dg(x, x̄) = dg(x, @M), and ⇢̃0/4
is smaller than the injectivity radius of M . Then, for any 0 < t < 2⇢̃0, the set
@t M = {x 2 M ; d(x) = t} is a smooth embedded (n � 1)-submanifold of M . For
each x 2 M⇢̃0 , define the function

M2⇢̃0 ! @d(x)M
y 7! yx ,

where yx is defined by dg(y, yx ) = dg(y, @d(x)M).
For any x 2 M⇢0 and ⇢0 2 (0, ⇢̃0), we define the local coordinates  x (y) =

(y1, ..., yn) on M2⇢0 , where yn = d(y), and (y1, ..., yn�1) are normal coordinates of
yx , centered at x , with respect to the submanifold @d(x)M . Then (x, y) 7!  x (y) is
locally defined and smooth. Observe that x (x) = (0, ..., 0, d(x)) for any x 2 M⇢0 ,
and that  x are Fermi coordinates if x 2 @M . Moreover, in those coordinates we
have gan ⌘ �an and gab(x) = �ab, for a, b = 1, ..., n, and the inward normal unit
vector to @M is d �1

x (@/@yn), see Figure B.1. Choosing ⇢̃0 possibly smaller, we
can assume that, for any x 2 M⇢̃0 ,  x (y) = (y1, ..., yn) is defined for 0  yn < 2⇢̃0
and |(y1, ..., yn�1)| < ⇢̃0.
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yx

ȳ

y

x

x̄

∂d(x)M

∂M

d(x)d(y)

Figure B.1. Illustration of the notation.

Proposition B.2. Let ⇢0 2 (0, ⇢̃0), x0 2 M and d =
h
n�2
2

i
. Suppose that one of

the following conditions holds:

(a) x0 2 @M and there exist C = C(M, g) and N sufficiently large such that

Hg(y)  Cdg(x0, y)N , for all y 2 @M ; (B.1)

(b) x0 2 M⇢0/2 and Hg ⌘ 0 on @M;
(c) x0 2 M\M2⇢0 .

Then there exists a positive Gx0 2 C1(M\{x0}) satisfying

(
LgGx0 = 0 in M\{x0}
BgGx0 = 0 on @M\{x0} ,

(B.2)

�(x0) = �
Z

M
Gx0(y)Lg�(y)dvg(y) �

Z

@M
Gx0(y)Bg�(y)d�g(y) (B.3)

for any � 2 C2(M). Moreover, the following properties hold:

(P1) There exists C = C(M, g) such that, for any y 2 M with y 6= x0,

|Gx0(y)|  Cdg(x0, y)2�n and |rgGx0(y)|  Cdg(x0, y)1�n ;

(P2) If x0 2 @M consider Fermi coordinates y = (y1, ..., yn) centered at that point.
In those coordinates, write gab = exp(hab), a, b = 1, ..., n, where

�
�
�hab(y) �

dX

|↵|=1
hab,↵ y↵

�
�
�  C(M, g)|y|d+1, (B.4)
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where hab,↵ 2 R and each ↵ stands for a multi-index. Then there exists C =
C(M, g, ⇢0) such that 6

�
�
�
�
�
Gx0(y)�

2|y|2�n

(n�2)�n�1

�
�
�
�
�
 C

n�1X

a,b=1

dX

|↵|=1
|hab,↵|dg(x0, y)|↵|+2�n

+

(
Cdg(x0, y)d+3�n if n�5
C(1+ | log dg(x0, y)|) if n=3, 4

�
�
�
�
�
rg

 

Gx0(y)�
2|y|2�n

(n�2)�n�1

!��
�
�
�
 C

n�1X

a,b=1

dX

|↵|=1
|hab,↵|dg(x0, y)|↵|+1�n

+ Cdg(x0, y)d+2�n;

(B.5)

(P3) If x0 2 M⇢0/2 consider the coordinate system  x0 defined above. Then there
exists C = C(M, g, ⇢0) such that

�
�
�
�Gx0(y) �

1
(n � 2)�n�1

[|(y1, . . . , yn�1, yn � d(x0))|2�n

+ |(y1, . . . , yn�1, yn + d(x0))|2�n]
�
�
�
�  Cdg(x0, y)3�n,

�
�
�
�rg

�
Gx0(y) �

1
(n � 2)�n�1

[|(y1, ..., yn�1, yn � d(x0)))|2�n

+ |(y1, ..., yn�1, yn + d(x0))|2�n]
�
�
�
�
�  Cdg(x0, y)2�n,

if n � 4 and
�
�
�
�Gx0(y) �

1
(n � 2)�n�1

[|(y1, ..., yn�1, yn � d(x0))|2�n

+ |(y1, ..., yn�1, yn + d(x0))|2�n]
�
�
�
�  C(1+ | log dg(x0, y)|) ,

�
�
�
�rg

�
Gx0(y) �

1
(n � 2)�n�1

[|(y1, . . . , yn�1, yn � d(x0))|2�n

+ |(y1, . . . , yn�1, yn + d(x0))|2�n]
�
�
�
�
�  Cdg(x0, y)�1 ,

if n = 3;

6 The log term in dimensions 3 and 4 should also be included in [1, Proposition B-1]. However,
that term does not affect the results in [1] as observed in the footnote in Proposition 3.14 above.



CONVERGENCE OF THE YAMABE FLOW ON MANIFOLDS WITH MINIMAL BOUNDARY 1263

(P4) If x0 2 M\M2⇢0 consider normal coordinates y = (y1, ..., yn) centered at that
point. As in (P2), write gab = exp(hab) where hab satisfies (B.4). Then there
exists C = C(M, g, ⇢0) such that the estimates (B.5) hold. (Observe that in
this case the sums range from |↵| = 2 to d instead of from |↵| = 1 to d.)

Remark B.3. The indentity (B.3) and the estimates in (P2) and (P3) may change
according to the normalization chosen for Gx0 . Notice that different ones have been
used in the rest of the paper.

Proof. Let � : R+ ! [0, 1] be a smooth cutoff function satisfying �(t) = 1 for
t < ⇢0/2, and �(t) = 0 for t � ⇢0. For each x 2 M⇢0 , set

K1(x, y) =
�(yn/2)�(|(y1, . . . , yn�1)|)

(n � 2)�n�1
·
n
|(y1, . . . ,yn�1, yn � d(x))|2�n + |(y1, . . . ,yn�1, yn + d(x))|2�n

o
,

where we are using the coordinates  x (y) = (y1, . . . , yn). Observe that

nX

a=1

@2

@y2a
K1(x, y) = 0 , for |(y1, . . . , yn�1)| < ⇢0/2 , 0  yn < ⇢0 , and x 6= y .

Moreover, @K1/@yn(x, y) = 0 if y 2 @M with x 6= y.
For each x 2 M\M⇢0/2, set

K2(x, y) =
�(4dg(y, x))
(n � 2)�n�1

dg(y, x)2�n , if 0 < dg(y, x) < ⇢0/4 .

If we express y 7! K2(x, y) in normal coordinates (y1, ..., yn) centered at x , we
have K2(x, y) = �(4|(y1, ..., yn)|)|(y1, ..., yn)|2�n , and thus

nX

a=1

@2

@y2a
K2(x, y) = 0 , for 0 < dg(y, x) < ⇢0/8 .

Define K : M ⇥ M\DM ! R by the expression

K (x, y) = �(d(x))K1(x, y) + (1� �(d(x)))K2(x, y) ,

where DM = {(x, x) 2 M⇥M ; x 2 M}. Thus, K (x, y) = K1(x, y) if x 2 M⇢0/2,
and K (x, y) = K2(x, y) if x 2 M\M⇢0 . Observe that @K/@⌘g,y(x, y) = 0 if
y 2 @M with y 6= x .

Expressing y 7! K1(x, y) and y 7! K2(x, y) in their respective coordinate
systems (as described above) one can check that there exists C = C(M, g, ⇢0) such
that

|Lg,yK (x, y)|  Cdg(x, y)1�n .



1264 SÉRGIO ALMARAZ AND LIMING SUN

For any � 2 C2(M) and x 2 M , we have

�(x) =
Z

M

�
1g,yK (x, y)�(y) � K (x, y)1g�(y)

⌘
dvg(y)

�
Z

@M
K (x, y)

@

@⌘g
�(y)d�g(y) .

(B.6)

Indeed, this expression holds with K1(x, y) replacing K (x, y) when x 2 M⇢0/2,
and with K2(x, y) replacing K (x, y) when x 2 M\M⇢0 .

We define 0k : M ⇥ M\DM ! R inductively by setting

01(x, y) = Lg,yK (x, y)

and
0k+1(x, y) =

Z

M
0k(x, z)01(z, y)dvg(z) .

According to [5, Proposition 4.12], which is a result due to Giraud ( [18, p.50]), we
have

|0k(x, y)| 

8
><

>:

Cdg(x, y)k�n if k < n
C(1+ | log dg(x, y)|) if k = n
C if k > n ,

(B.7)

for some C = C(M, g, ⇢0). Moreover, 0k is continuous on M ⇥ M for k > n, and
on M ⇥ M\DM for k  n.

If (a) or (b) holds we can refine the estimate (B.7) around the point x0, using
the expansion gab = exp(hab). Since K (x, y) = K1(x, y) for x 2 M⇢0/2 and
K (x, y) = K2(x, y) for x 2 M\M⇢0 , one can see that

|Lg,yK (x0, y)|  C
nX

a,b=1

dX

|↵|=1
|hab,↵|dg(x0, y)|↵|�n + Cdg(x0, y)d+1�n,

for some C = C(M, g, ⇢0), if (a) or (b) holds. Then Giraud’s result implies

|0k(x0, y)|  C
nX

a,b=1

dX

|↵|=1
|hab,↵|dg(x0, y)k�1+|↵|�n

+ dg(x0, y)k+d�n , if k < n � d .

(B.8)

Claim 1. Given 0 < ✓ < 1, there exists C = C(M, g, ⇢0, ✓) such that

|0n+1(x, y) � 0n+1(x, y0)|  Cdg(y, y0)✓ , for any y 6= x 6= y0 . (B.9)

In particular, 0n+1(x0, ·) 2 C0,✓ (M).
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Indeed, observe that |01(x, y) � 01(x, y0)|  Cdg(y, y0)✓ (dg(x, y)1�✓�n +
dg(x, y0)1�✓�n) , according to Lemma B.1. So, Claim 1 follows from the estimates
(B.7) and Giraud’s result.

Set

Fk(x, y) = K (x, y) +
kX

j=1

Z

M
0 j (x, z)K (z, y)dvg(z) .

Claim 2. For any � 2 C2(M) and x 2 M , and for all k = 1, 2, ..., we have

�(x) = �
Z

M
Fk(x, y)Lg�(y)dvg(y) �

Z

@M
Fk(x, y)Bg�(y)d�g(y)

+
Z

M
0k+1(x, y)�(y)dvg(y)

�
Z

@M

n � 2
2(n � 1)

Hg(y)Fk(x, y)�(y)d�g(y) .

(B.10)

Claim 2 can be proved by induction on k.

Claim 3. For any x 2 M and 0 < ✓ < 1, the function y 7! Fn(x, y) is in
C1,✓ (M\{x}) and satisfies

|Fn(x, y)|  Cdg(x, y)2�n , |rg,y Fn(x, y)|g  Cdg(x, y)1�n , (B.11)

and

|rg,y Fn(x, y) � rg,y0Fn(x, y0)|g
dg(y, y0)✓

 Cdg(x, y)1�✓�n+Cdg(x, y0)1�✓�n , (B.12)

for some C = C(M, g, ⇢0). In particular, for any x 2 @M , y 7! @Fn/@⌘g,y(x, y)
defines a continuous function on @M\{x}.

As a consequence of Claim 3, if x0 2 @M we can choose N large enough in
the hypothesis (a) such that y 7! Hg(y)Fn(x0, y) is in C1,✓ (@M) for 0 < ✓ < 1
and satisfies

kHg(·)Fn(x0, ·)kC1,✓ (@M)  C(M, g, ⇢0, ✓) . (B.13)

It is clear that (B.13) also holds if x0 2 M\M⇢0 with no assumptions on Hg, and
that its left-hand side vanishes under the hypothesis (b). In particular (B.13) holds
should (a), (b) or (c) holds.

Let us prove Claim 3. Choose y 6= x and a smooth curve yt such that y0 = y.
Then, for any r > 0,

d
dt

Z

M\Br (y)
0 j (x, z)K (z, yt )dvg(z) =

Z

M\Br (y)
0 j (x, z)

d
dt
K (z, yt )dvg(z)
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For any r > 0 such that 2r < dg(x, y) and t small, we have
Z

Br (y)
0 j (x, z)

�
�
�
K (z, yt ) � K (z, y)

t

�
�
�dvg(z)

 C
Z

Br (y)
dg(x, z)1�n(dg(z, yt )1�n + dg(z, y)1�n)dvg(z)

 C2n�1dg(x, y)1�n
Z

Br (y)
(dg(z, yt )1�n + dg(z, y)1�n)dvg(z)

and the right-hand side goes to 0 as r ! 0. Here, Br (y) stands for the geodesic
ball centered at y. Hence,

d
dt

Z

M
0 j (x, z)K (z, yt )dvg(z) =

Z

M
0 j (x, z)

d
dt
K (z, yt )dvg(z) (B.14)

and the estimates in (B.11) follow from Giraud’s result.
Now,

1
dg(y, y0)✓

�
�
�
�

Z

M
0 j (x, z)

@

@yi
K (z, y)dvg(z) �

Z

M
0 j (x, z)

@

@yi
K (z, y0)dvg(z)

�
�
�
�


Z

M
0 j (x, z)

�
�
�
�
�

@
@yi K (z, y) � @

@yi K (z, y0)

dg(y, y0)✓

�
�
�
�
�
dvg(z)

 C
Z

M
dg(x, z)1�n(dg(z, y)1�✓�n + dg(z, y0)1�✓�n)dvg(z)

 C(dg(x, y)2�✓�n + dg(x, y0)2�✓�n) ,

where we used Lemma B.1 in the second inequality, and Giraud’s result in the last
one.

This proves Claim 3.
Using the hypothesis Q(M) > 0, we define ux0 2 C2,✓ (M) as the unique

solution of
(
Lgux0(y) = �0n+1(x0, y) in M
Bgux0(y) = n�2

2(n�1)Hg(y)Fn(x0, y) on @M .
(B.15)

It satisfies

kux0kC2,✓ (M)  Ckux0kC0(M) + Ck0n+1(x0, ·)kC0,✓ (M)

+ CkHg(·)Fn(x0, ·)kC1,✓ (@M)

(B.16)

where C = C(M, g, ⇢0, ✓) (see [17, Theorems 6.30 and 6.31].
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Claim 4. There exists C = C(M, g, ⇢0, ✓) such that kux0kC2,✓ (M)  C .
Indeed, using (B.10) with k = n and any � 2 C2(M), one can see that

sup
M

|�|  C sup
M

|Lg�| + C sup
@M

|Bg�| + Ck�kL2(M) + Ck�kL2(@M) .

Since Q(M) > 0, there exists C = C(M, g) such that

Z

M
�2dvg +

Z

@M
�2d�g  C

Z

M
|Lg(�)�|dvg + C

Z

@M
|Bg(�)�|d�g .

Thus, Young’s inequality implies

Z

M
�2dvg +

Z

@M
�2d�g  C

Z

M
Lg(�)2dvg + C

Z

@M
Bg(�)2d�g .

Hence, k�kC0(M)  CkLg�kC0(M) + CkBg�kC0(@M) . Setting � = ux0 and using
the equations (B.15), we see that

kux0kC0(M)  Ck0n+1(x0, ·)kC0(M) + CkHg(·)Fn(x0, ·)kC0(@M) . (B.17)

Claim 4 follows from the estimates (B.7), (B.9), (B.13), (B.16), and (B.17).
We define the function Gx0 2 C1,✓ (M\{x0}) by

Gx0(y) = K (x0, y) +
nX

k=1

Z

M
0i (x0, z)K (z, y)dvg(z) + ux0(y) .

One can check that the formula (B.3) holds.

Claim 5. We have Gx0 2 C1(M\{x0}) and (B.2).
In order to prove Claim 5, we rewrite (B.6) as

Z

M
K (x, y)Lg�(y)dvg(y) +

Z

@M
K (x, y)Bg�(y)d�g(y)

=
Z

M
Lg,yK (x, y)�(y)dvg(y) � �(x)

�
Z

@M

n � 2
2(n � 1)

Hg(y)K (x, y)�(y)d�g(y) .

(B.18)
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Thus,
Z

M

⇢Z

M
0 j (x, z)K (z, y)dvg(z)

�
Lg�(y)dvg(y)

+
Z

@M

⇢Z

M
0 j (x, z)K (z, y)dvg(z)

�
Bg�(y)d�g(y)

=
Z

M
0 j (x, z)

⇢Z

M
K (z, y)Lg�(y)dvg(y) +

Z

@M
K (z, y)Bg�(y)d�g(y)

�
dvg(z)

=
Z

M
0 j (x, z)

Z

M
Lg,yK (z, y)�(y)dvg(y)dvg(z)

�
Z

M
0 j (x, z)

⇢Z

@M

n � 2
2(n � 1)

Hg(y)K (z, y)�(y)d�g(y) + �(z)
�
dvg(z)

=
Z

M

⇢Z

M
0 j (x, z)Lg,yK (z, y)dvg(z) � 0 j (x, y)

�
�(y)dvg(y)

�
Z

@M

⇢Z

M
0 j (x, z)K (z, y)dvg(z)

�
n � 2
2(n � 1)

Hg(y)�(y)d�g(y) ,

where we used (B.18) in the second equality. Hence, we proved that the equations
8
>>><

>>>:

Lg,y
R
M 0 j (x, z)K (z, y)dvg(z)

=0 j+1(x, y) � 0 j (x, y) in M
Bg,y

R
M 0 j (x, z)K (z, y)dvg(z)

=� n�2
2(n�1)Hg(y)

R
M 0 j (x, z)K (z, y)dvg(z) on @M ,

hold in the sense of distributions. Then it is easy to check that the equations (B.2)
hold in the sense of distributions. Since Gx0 2 C1,✓ (M\{x0}), elliptic regularity
arguments imply that Gx0 2 C1(M\{x0}). This proves Claim 5.

The property (P1) follows from (B.11) and Claim 4. In order to prove (P2),(P3)
and (P4), we use (B.7), (B.8), (B.14) and Claim 4.

Claim 6. The function Gx0 is positive on M\{x0}.
Let us prove Claim 6. Let

G�
x0 =

(
�Gx0 if Gx0 < 0
0 if Gx0 � 0 .

Since G�
x0 has support in M\{x0}, one has

0 = �
Z

M
G�
x0LgGx0dvg �

Z

@M
G�
x0BgGx0d�g

=
Z

M

✓
|rgG�

x0 |
2
g +

n � 2
4(n � 1)

Rg(G�
x0)

2
◆
dvg +

Z

@M

n � 2
2(n � 1)

Hg(G�
x0)

2d�g .
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By the hypothesis Q(M) > 0, we have G�
x0 ⌘ 0 which implies Gx0 � 0.

We now change the metric by a conformal positive factor u 2 C1(M) such
that g̃ = u

4
n�2 g satisfies Rg̃ > 0 in M and Hg̃ ⌘ 0 on @M (see [16]). Observing

the conformal properties (2.2) and (2.3), we see that G̃ = u�1Gx0 � 0 satisfies
Lg̃G̃ = 0 in M\{x0} and Bg̃G̃ = 0 on @M\{x0}. Then the strong maximum
principle implies G̃ > 0, proving Claim 6.

This finishes the proof of Proposition B.2.

Let (M, g0) be a Riemannian manifold with Q(M) > 0 and Hg0 ⌘ 0. Let

gx0 = f
4

n�2
x0 g0 be a conformal metric satisfying

| fx0(x) � 1|  C(M, g0)dg0(x, x0).

Notation. For a Riemannian metric g we set Mt,g = {x 2 M : dg(x, @M) < t}
and @t,gM = {x 2 M : dg(x, @M) = t}.

Proposition B.4. If ⇢0 is sufficiently small and x0 2 M⇢0,gx0\@M , then there exists
a positive Gx0 2 C1(M\{x0}) satisfying

(
Lgx0Gx0 = 0 in M\{x0}
Bgx0Gx0 = 0 on @M,

(B.19)

and there exists C = C(M, g0, ⇢0) such that

|Gx0(y) � |�0(y)|2�n|



(
C|�0(y)|3�n + Cdgx0 (x0, @M)|�0(y)|1�n n � 4
C(1+ | log(|�0(y)|)|) + Cdgx0 (x0, @M)|�0(y)|1�n n = 3,

(B.20)

|rgx0 (Gx0(y) � |�0(y)|2�n)|  C|�0(y)|1�n + Cdgx0 (x0, @M)|�0(y)|�n, (B.21)

where �0(y) = (y1, ..., yn) are gx0- normal coordinates centered at x0.

Proof. We will use the notation d(x) = dg0(x, @M). Let us define the coordinate
system  0(y) = (y1, ..., yn) on M⇢0,g0 where (y1, · · · , yn�1) are normal coordi-
nates of yx0 on @d(x0),g0M centered at x0, with respect to the metric induced by
g0, and yn = d(y) � d(x0). Here, yx0 2 @d(x0),g0M is such that dg0(y, yx0) =
dg0(y, @d(x0),g0M). This differs from  x0 defined above by a translation in the last
coordinate.
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According to Proposition B.2, multiplying it by some constant, one can con-
struct a function G0, satisfying

(
Lg0G0 = 0 in M\{x0}
Bg0G0 = 0 on @M ,

�
�
�G0(y)�

1
2
�
|(y1, ..., yn)|2�n + |(y1, ..., yn�1, yn + 2d(x0))|2�n

���
�



(
Cdg0(y, x0)3�n n � 4
C(1+ | log dg0(y, x0)|) n = 3,

and
�
�
�rg0

�
G0(y) �

1
2
�
|(y1, ..., yn)|2�n + |(y1, ..., yn�1, yn + 2d(x0))|2�n

����
�

 Cdg0(y, x0)
2�n.

for some C = C(M, g0, ⇢0). Using |(y1, . . . ,yn�1, yn+2d(x0))| � |(y1, . . . ,yn)|
and Lemma B.1 we have
�
�
�|(y1, . . . ,yn)|2�n �|(y1, . . . ,yn�1, yn+2d(x0))|2�n

�
�
�Cd(x0)|(y1,. . . ,yn)|1�n,

�
�
�r|(y1,. . . ,yn)|2�n� r|(y1,. . . ,yn�1, yn+2d(x0))|2�n

�
�
�Cd(x0)|(y1, . . . , yn)|�n.

Then

|G0(y) � | 0(y)|2�n|



(
Cdg0(y, x0)3�n + Cd(x0)dg0(y, x0)1�n n � 4
C(1+ | log dg0(y, x0)|) + Cd(x0)dg0(y, x0)1�n n = 3,

(B.22)

|rg0(G0(y) � | 0(y)|2�n)|  Cdg0(y, x0)
2�n + Cd(x0)dg0(y, x0)

�n. (B.23)

Now we change this to the conformal metric gx0 . Let �0(y) = (y1, ..., yn) be gx0-
conformal normal coordinates centered at x0. By the definition of �0 and  0 one
can check that ⇠ = �0 �  �1

0 satisfies ⇠(0) = 0 and d⇠(0) = idRn . Since M is
compact, one can find C = C(M, g0) uniform in x0 such that

|⇠(y1, ..., yn) � (y1, ..., yn)|  C|(y1, ..., yn)|2. (B.24)

The function Gx0 = f �1
x0 G0 satisfies (B.19), so we shall prove (B.20) and (B.21).

Observe that

|Gx0(y) � G0(y)|  Cdg0(y, x0)|Gx0(y)|  Cdg0(y, x0)
3�n. (B.25)
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Combining (B.22), (B.24) and (B.25), one gets (B.20) from the following steps:

|Gx0(y) � |�0(y)|2�n|  |Gx0(y) � G0(y)| + |G0(y) � | 0(y)|2�n|

+
�
�| 0(y)|2�n � |⇠ �  0(y)|2�n

�
�

 Cdg0(y, x0)
3�n + Cd(x0)dg0(y, x0)

1�n + C| 0(y)|3�n

 Cdg0(y, x0)
3�n + Cdgx0 (x0, @M)(x0)dg0(y, x0)

1�n

for n � 4 and with obvious modifications for n = 3. Similarly, using (B.23), (B.24)
and (B.25), one gets (B.21).
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