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Convergence of the Yamabe flow on manifolds
with minimal boundary

SERGIO ALMARAZ AND LIMING SUN

Abstract. We study the Yamabe flow on compact Riemannian manifolds of
dimensions greater than two with minimal boundary. Convergence to a metric
with constant scalar curvature and minimal boundary is established in dimensions
up to seven, and in any dimensions if the manifold is spin.
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1. Introduction

Let M" be a closed manifold with dimension » > 3. In order to solve the Yam-
abe problem (see [33]), R. Hamilton introduced the Yamabe flow, which evolves
Riemannian metrics on M according to the equation

3 _
Eg(t) = —(Rg(r) — Rg(1))8(®),
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where R, denotes the scalar curvature of the metric g and Eg stands for the average

() [ man,

Here, dvy is the volume form of (M, g). Although the Yamabe problem was solved
using a different approach in [4,25,31], the Yamabe flow is a natural geometric
deformation to metrics of constant scalar curvature. The convergence of the Yamabe
flow on closed manifolds was studied in [13,28,34]. This question was solved
in [8,9] under the hypotheses of the positive mass theorem.

In this work, we study the convergence of the Yamabe flow on compact n-
dimensional manifolds with boundary, when n > 3. For those manifolds, J. Escobar
raised the question of existence of conformal metrics with constant scalar curvature
which have the boundary as a minimal hypersurface. This problem was studied
in [10,15,23]; see also [3,19].

Let (M", go) be a compact Riemannian manifold with boundary 9 M and di-
mension n > 3. We consider the following conformal invariant defined in [15]:

Jus Redvg +2 [y, Hedog

O(M) = inf =
g<lgol (jM dvg)T
4(n—1
- fM (%W”@O + Rgo”2> dvg, + faM 2Hg0”‘2d‘7g0
= inf — ,
{ueC(M),uz0} 2n_ =
<fM |u|n72dvg0)

where H, and do, denote respectively the trace of the 2" fundamental form and the
volume form of d M, with respect to the metric g, and [go] stands for the conformal
class of the metric gg.

We are interested in a formulation of the Yamabe flow for compact manifolds
with minimal boundary proposed by S. Brendle in [7]. This flow evolves a confor-
mal family of metrics g(¢), ¢ > 0, according to the equations

d — )
Eg(t) = —(Rgt) — Rgr))g(t) inM
Hery =0 ondM .

(1.1)

Theorem 1.1 ([7]). Suppose that:

i) QM) =<0, or
(il)) Q(M) > 0 and M is locally conformally flat with umbilic boundary.

Then, for every initial metric g(0) on M with minimal boundary, the flow (1.1) exists
for all time t > 0 and converges to a constant scalar curvature metric with minimal
boundary.
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Inspired by the ideas in [8,9], we handle the remaining cases of this problem. Define

Zy = {xo € M\OM ; limsup dg, (x, x0)*~¢| Wy, (x)| = 0},

xX—>X0

Zym = {x0 € IM; lim sup dg, (x,x0)* | Wy, (¥) | =lim sup di, (x,x0) ' |74, (x)| =0},

X— X0 X—X0

and Z=ZyUZyuy,
where W, denotes the Weyl tensor of M, 7, the trace-free second fundamental
form of 0M,and d = [%] Our first result is the following:

Theorem 1.2. Suppose that (M", go) is not conformally diffeomorphic to the hemi-
sphere '} and satisfies Q(M) > 0. If

(a) Z2=40, or
by n<7, or
(c) M is spin,

then, for any initial metric g(0) on M with minimal boundary, the flow (1.1) exists
for all time t > 0 and converges to a metric with constant scalar curvature and
minimal boundary.

Since the round sphere S” minus a point is diffeomorphic to R”, which is spin, the
following is an immediate consequence of Theorems 1.1 and 1.2:

Corollary 1.3. If M C S" is a compact domain with smooth boundary, then the
Sflow (1.1), starting with any metric with minimal boundary, exists for all time t > 0
and converges to a metric with constant scalar curvature and minimal boundary.

Condition (a) in Theorem 1.2 is particularly satisfied if the Weyl tensor and the
trace-free second fundamental form are nonzero everywhere on M\dM and oM
respectively. Conditions (b) and (c) allow us to make use of the positive mass
theorem in [26,27,32] and its corresponding version for manifolds with a non-
compact boundary in [2].

Before stating our main result, from which Theorem 1.2 follows, we will
briefly discuss those positive mass theorems.

Definition 1.4. Let (N, g) be a Riemannian manifold with a (possibly empty)
boundary dN. We say that N is asymptotically flat with order p > 0, if there
is a compact set K C N and a diffeomorphism f : N\K — R"\B;(0) or
f : N\K — ]Rf’F\BlJr (0) such that, in the coordinate chart defined by f (which
we call the asymptotic coordinates of N), we have

18ab () = 8an| + 1118ab.c )] + 131 18ab.ca)| = O(y|P), as |y| — oo,

where a,b,c,d = 1,...,n. Here, R, = {(y1,...,y») € R"; y, > 0}, B1(0) =
{y € R"; |y| < 1} and By (0) = B1(0) N R
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Suppose the manifold N, with dimension n > 3, is asymptotically flat with
order p > %, as defined above. Assume also that R, is integrable on N, and
H, is integrable on 0N if dN is noncompact. Let (y1, ..., y,) be the asymptotic
coordinates induced by the diffeomorphism f.

If f takes values in R\ B; (0) then O N is compact (or empty) and the limit

n
. Ya
mapu(g) = lim Y / (8ab.b — 8bb.a) T dOR
R—oo0 4= Jyern, |y|=R [yl
exists and is called the ADM mass of (N, g). Moreover, m spp(g) is a geometric
invariant in the sense that it does not depend on the asymptotic coordinates; see [6].

Conjecture 1.5 (Positive mass). If R,, H, > 0, then we have m spp(g) > 0 and
the equality holds if and only if N is isometric to R”. In particular, 0N = @ when
the equality holds.

As a consequence of [26,27,32] we have:
Theorem 1.6. Conjecture 1.5 holds true if n <7 or if N is spin.

The proof for n < 7 was obtained by Schoen and Yau in [26,27], and the one for
spin manifolds by Witten in [32] when M = (J. The boundary condition used in [2]
can be used to extend Witten’s result to the case dM # .

If f takes values in ]Ri\BlJr(O) then the limit

n
: y
m(g) = lim { >~ / (8ab.b — 8bb.a)— doR
R G2 yer ly=R Iyl

— 00

(12)
n—1 Vi
Y| gni 2 dorg
= Jyeorn jy=k |Vl

exists, and we call it the mass of (M, g). Moreover, m(g) is a geometric invariant
in the sense that it does not depend on the asymptotic coordinates; see [2].

Conjecture 1.7 (Positive mass with a noncompact boundary). If R,, H, > 0,
then we have m(g) > 0 and the equality holds if and only if N is isometric to R"} .

In [2], this conjecture is reduced to Conjecture 1.5, so we have the following
result:

Theorem 1.8. Conjecture 1.7 holds true if n <7 or if N is spin.

The asymptotically flat manifolds used in this paper are obtained as the gener-
alized stereographic projections of the compact Riemannian manifold (M, go) with
nonempty boundary. Those stereographic projections are performed around points
Xo € M by means of Green functions Gy, with singularity at xo. After choosing
a new background metric gy, € [go] with better coordinates expansion around xg
(see Section 3), we consider the asymptotically flat manifold (M\{xo}, gx,), where
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4
v = Gxy gx, satisfies Rz, =0and Hg, =0.If xo € 2y, according to Propo-

sition 3.13 below, this manifold has asymptotic order p > %, so Conjecture 1.7

claims that m(gy,) > O unless M is conformally equivalent to the unit hemisphere.
If xo € Z), this manifold has asymptotic order p > ”—52 (see [9, Proposition 19]),
so Conjecture 1.5 claims that m App(8x,) > 0.

Our main result, which implies Theorem 1.2, is the following:

Theorem 1.9. Suppose that (M", go) is not conformally diffeomorphic to the unit
hemisphere S and satisfies Q(M) > 0. Assume that mappy(gx,) > 0 for all
X0 € Zy and m(gx,) > 0 for all xo € Zyp. Then, for any initial metric g(0) with
minimal boundary, the flow (1.1) exists for all t > 0 and converges to a constant
scalar curvature metric with minimal boundary.

The proof of Theorem 1.9 follows the arguments in [8]; see also [1]. An es-
sential step is the construction of a family of test functions around each point
X0 € M, whose energies are uniformly bounded by the Yamabe quotient Y (S")
if xp € M\dM, and by Q(Si) if xo € dM. If xo € M\dM, the test functions
used are essentially the ones introduced by S. Brendle in [9] for the case of closed
manifolds. If xo € M, the functions used here were obtained in [10] in the case
of umbilic boundary, where the authors address the existence of solutions to the
Yamabe problem for manifolds with boundary. In this paper, however, we estimate
their energies without any assumption on the boundary.

An additional difficulty in controlling the energy of interior test functions by
Y (S™) arises when their centers get close to the boundary (see Subsection 3.3).
In this case, the techniques in [9] cannot be directly adapted because the standard
(and symmetric) bubble in R”, which represents the sphere metric and is essential
in the construction of the test functions, does not satisfy the Neumann boundary
condition unless it is centered on dR’, . However, here we are able to exploit the
sign of this Neumann derivative, when centered in R’} \0IR’} , to obtain the necessary
estimates.

This paper is organized as follows. In Section 2, we establish some prelim-
inaries and prove the long-time existence of the flow. In Section 3, we construct
the necessary test functions and estimate their energy. In Section 4, we make use
of the decomposition theorem in [24] to carry out a blow-up analysis using the test
functions. In Section 5, first we use the blow-up analysis to prove a result which is
analogous to Proposition 3.3 of [8]. Then we use it to prove our main theorem by
estimating the solution to the flow uniformly in # > 0.

ACKNOWLEDGEMENTS. The first author is grateful to the Princeton University
Mathematics Department, where this work began during his short visit in 2015, and
the hospitality of Professor F. Marques. The second author would like to thank Pro-
fessor YanYan Li for his continuous support, encouragement and motivation. Both
authors thank the anonymous referee for the thorough review and highly appreciate
his/her comments and suggestions.
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2. Preliminary results and long-time existence

Notation. In the rest of this paper, M" will denote a compact manifold of dimen-
sion n > 3 with boundary d M, and go will denote a background Riemannian metric
on M. We will denote by B, (x) the metric ball in M of radius r with center x € M
(observe that B, (x) intersects d M when gg, (x, M) < r).

For any Riemannian metric g on M, n, will denote the inward unit normal
vector to d M with respect to g and A, the Laplace-Beltrami operator.

If zo € R", we set B (z0) = {z € R"; |z — z0| < 1},

Dy(z0) = B (zo) NOR":, and 98" B(z0) = 3B, (z0) N R% .

Finally, for any z = (z1, ..., z,) € R" we set Z = (21, ..., zy—1,0) € IR" = R"~ 1.

Convention. We assume that (M, go) satisfies Q(M) > 0. According to [15,
Lemma 1.1], we can also assume that R,, > 0 and Hg, = 0, after a conformal
change of the metric. Multiplying go by a positive constant, we can suppose that
[y dvg, = 1. We will adopt the summation convention whenever confusion is not
possible, and use indices a, b, c,d = 1, ...,n,and i, j, k, [ =1, ....,n — 1.

4
If g = un=2 go for some positive smooth function u on M, we know that

_n2 [ 4(n—1) .
Ry =u n2 | —————Agu+ Rgu inM
n—2 2.1)
_n 2m—1) 0 )
Hy =u nm2 | ——— u+ Hgyu onoM,
n—2 0dng,
and the operators L, = A, 4(”n 21)R and B, E 2(n 1)H satisfy
-1 _nt2
L 4 (u ¢)=u n2Lg, 2.2)
un=2go
B 4 w'g)y=u" (23)
un—2

280
for any smooth function ¢.
If u(¢) = u(-,t) is a l-parameter family of positive smooth functions on M

and g(¢) = u(t)ﬁgo with Hg, = 0, then (1.1) can be written as

a —= .
gu(t) = Rg(t))u(t)7 m M?

u(t) =0, on oM.

(2.4)

9 Ngo

The first equation of (2.4) can also be written as

n+2 I’l + 2 4(n — 1) — n+2
1\ Ty =7 et~ Rett + Rgiyur

—u( )2
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Short-time existence of solutions to the equations (2.4) can be obtained by stan-
dard theory for quasilinear parabolic equations. Hence, the equations (2.4) have a
solution u(t) defined for all 7 in the maximal interval [0, Tinax).

Taking 9/d7ng, on both sides of the first equation of (2.4) and using the second
one, one gets dRg(1)/dng, = 0 on dM. Hence the scalar curvature has evolution
equations

9 _ .

a7 Rew = (1 = DAgy Rery + Ry = Re)Rery in M 03
a .

P Rey =0 onoM ,
0

8(1)

where the first equation comes from the well known first variation formula of scalar
scalar curvature.
Observe that for all + > 0 we have

d n _
gdvga) = —E(Rgm — Rg() dvg( (2.6)
and 5 5
— n— —
3 Ry =——5 /M (Ro(ry — Rg0)*dvgan. 27

In particular, Eg(,) is decreasing and one can easily derive that (1.1) preserves the
volume which we can normalize to

/ dvgy =1, forallz € [0, Tiyax)-
M

S0, Rg(ry > Q(M) > O forallt > 0.
Proposition 2.1. We have Rg(;) > min {infy; Rg(0), 0}, for all t € [0, Tinax).
Proof. Following (2.5), this is an application of maximum principle. O

Proposition 2.2. For each T € (0, Trax), there exist C(T), c¢(T) > 0 such that

supu(t) < C(T) and i/r‘l/lfu(t) >c(T), forallt €[0,T]. (2.8)
M

In particular, Tyax = 00.

Proof. Set 0 = 1 — min {infy; Rg(0), 0} = max{sup,, (1 — Re)), 1}. Then, by
Proposition 2.1, Re(;) + 0 > 1 forall ¢t € [0, Tinax). It follows from (2.4) and (2.7)
that

d n—2 — n—2 _
glog u(t) = T(Rg(t) — Rg(ry) < T(Rg(O) +o0).

Then there exists C(T') > 0 such that sup,, u(¢t) < C(T) forallt € [0, T].
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4
Defining P = Ry, + 0 (SUPosth sup u(z‘))m we obtain

A p - 4(n—-1)
g()u(t)+ u(t) = _ﬁ

n+2
= (Ry(ry + 0)u(t)n2 >0

4 -1

n+2
— Agou(t) + Royu(t) + ou(t)n=2

forall 0 <t < T. Then it follows from Proposition A .4 in the appendix that

n+2

inf u(r) <sup u(t))"2 > o(T) / ()2 dvg, = c(T),
M M M

by our volume normalization. This proves the second equation of (2.8).
Now we can follow [8, Proposition 2.6] to prove that if 0 < « < min{4/n, 1}
then there is C(T') such that

u(xr, 1) — u(xz, )| < C(T)((t — )% + dgy (x1, x2)%)

for all x1,x, € M and t1, 1, € [0, T] satisfying 0 < #; — #» < 1. Then standard
regularity theory for parabolic equations can be used to prove that all higher order
derivatives of u are uniformly bounded on every fixed interval [0, T']. This implies
the long-time existence of u. O

Set . .
R = tl_l)rgo Reiry > 0. 29

Because d Rg(r)/dng(r) = 0 holds on d M, we can follow the proof of Corollary 3.2
in [8] line by line, making use of (2.5), (2.6) and (2.7), to obtain

Corollary 2.3. Forany 1 < p < n/2+ 1 we have

lim / |Rg(r) — Roo|"dvg(y = 0.
M

t—00

3. The test functions

In this section we construct the test functions to be used in the blow-up analysis of
Section 4. Those functions are perturbations of the symmetric functions U (see
(3.1) below), which represent the spherical metric on R” and have maximum at the
origin.
We will make use of the following coordinate systems:

Definition 3.1. Fix xo € dM and geodesic normal coordinates for 0 M centered at
xo. Let (y1, ..., yn—1) be the coordinates of x € dM and 7n(x) be the inward unit
vector normal to d M at x. For small y, > 0, the point exp, (y,n(x)) € M is said to
have Fermi coordinates (y1, ..., y,) (centered at xg).
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Definition 3.2. Let g be any (smooth) Riemannian metric on M. Consider M the
double of M along its boundary and extend g to a (smooth) Riemannian metric

g on M. Fix xo € M and let on B,(0) c R" — M be normal coordinates

(with respect to g) centered at xq. If on,r = glfx()l (1//;6O (B-(0)) N M), we define the
extended normal coordinates (centered at xg)

Yo : By CR" > M

as the restriction of ¥, to By, .

Observe that this definition depends on the metric g chosen, but this does not
harm our arguments in this section because we can fix the extension to M of the
background metric go.

Convention. We will refer to extended normal coordinates as normal coordinates
for short.
Notation. We set Dy, = /5! (Vo (Bxyr) NOM) and 8% By = 8By -\ Dxy.r C
0B, (0).

Set My = {x € M; dg,(x,dM) <t} and let §p > O be a small constant to be
chosen later (see Remark 4.1 below). In the next subsections we will define three
types of test functions:

e Type A test functions (i 4 (x,,¢)): defined in Subsection 3.2 using Fermi coordi-
nates centered at any xo € d M and with energy to be controlled by Q(S"});

o Type B test functions (i . (x,,¢)): defined in Subsection 3.3 using normal co-
ordinates centered at any xo € M>s,\0M and with energy to be controlled by
Y(8");

o Type C test functions (itc;(x,,¢)): defined in Subsection 3.4 using normal coor-
dinates centered at any xo € M\ Ms, and with energy to be controlled by Y (5").

We fix Py = Po(M, go) > 0 small such that (extended) normal coordinates with
center xo are defined in Bx0 2p, for all xo € M\0M, and Fermi coordinates with
center at xq are defined in B (O) for all xy € dM.

Convention. In this section we will use the normalization Rs, = 4n(n—1), without
loss of generality.
3.1. The auxiliary function ¢ and some algebraic preliminaries

Firstly we fix some notation. If ¢ > 0, we define

n—2

€ 2
U =——— for y e R". 3.1
e(}’) <€2+|y|2> y ( )
It is well known that U, satisfies
n+2
AUe +n(n =2)US7 =0 inRY (32)
0, Uc =0 on dR",
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and
U. (y)n%dy) = 0(s"). (3.3)

4dn(n — 1) (/
RI’I

+

In this subsection H will denote a symmetric trace-free 2-tensor on R’} with com-
ponents Hgp,a, b =1, ..., n, satistying

Hap(0) =0 fora,b=1,...,n
Han(x) =0 forxeR", a=1,..,n (3.4)
BkHU(O)_O fori, j,k=1,..,n—1 ’
Z 1)c]'Hlj()c)_O forx68R+,l_l —1.
We will also assume that those components are of the form
Hap(X) = > hapax® forx e R}, (3.5)

1<|a|<d

n—2

where d = [ 5 ] and each « stands for a multi-index. Obviously, the constants

hap.o € R satisty hg, o = 0 for any o, and hgp o = 0 for any « # (0, ..., 0, 1) with
|| = 1,wherea,b=1,....,n

Let x : R — R be a non-negative smooth function such that x |j0,4/3) = 1 and
X|[5/3,00) =0. If,O > 0, we define

Xp(X) = x (|p|) forx € R". (3.6)

Notice that 9, x, = 0 on IR’} .
Let V = V(e, p, H) be the smooth vector field on R”, obtained in [10, Theo-
rem A.4], which satisfies

Zb 1ab{U€ (Xp ab_aavb_abva+%(divv)3ab)}:0 Hle_
9,Vi=V,=0 on dR" ,

(3.7)

fora=1,...,n,andi =1,...,n— 1, and

n—1 d
0PVl < Co, 1BD) D D hijal(e + xH1=1A] (338)

i,j=1 la|=1

for any multi-index 8. Here 6,5, = 1 ifa = b and §,5 =0 if a # b.
We define symmetric trace-free 2-tensors S and T on R’ by

2
Sab = 0aVp + Ve — —0:Vedan and T=H-S. (3.9)
n
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(Recall that we are adopting the summation convention.) Observe that 7;, = S;, =0
on dR" fori=1,...,n — 1. It follows from (3.7) that T" satisfies

UeopTyp +

2n . +
28;,U6Tab =0, in Bp ©), fora=1,..,n. (3.10)
n_

In particular,

n—2

———— U040 Tup + 0a(0pUcTap) =0, in BF(0), (3.11)
4(n —1)

where we have used Uc0,0pUe — 50, Uc0pUe = %(UGAU6 — n"Tz|dU€|2)8ab in
R% foralla,b =1, ..., n.
Next we define the auxiliary function ¢ = ¢ , # by

n—2
¢=8aU€Va+7U€8aVa. (3.12)

By a direct computation, we have

4
AP +nn+2U ¢ = %Ueabaa']'lab + (0 UcHap) in B;—(O) (3.13)
8n¢ =0 on 8]Ri .

By the estimate (3.8), ¢ satisfies

n—1 d
n—2
B < Ce T Y > hijal(e + [xHE" (3.14)
i,j=1|a|=1

and

n—1 d
<Ce'T 30 Y Jhijalle + XD, (3.15)

i,j=1|a|=1

4
A@(x) +n(n+ 22U p(x)

forall x € R”..
Observe that if n = 3 then d = 0, in which case H = 0 and ¢ = 0.

Convention. In the rest of Subsection 3.1 we will assume that n > 4.

We define algebraic Schouten tensor and algebraic Weyl tensor by
1
Age = acaeHae + 8aaeHce - 8686Hac - maeafHefaac

and
Zabed = 8bad?—(ac - abac,’—(ad + aa 8c,}—[db - aaadec

1
+ p—) (Aacbpd — Aaddbe + Apabac — Apcdap) -
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We also set

2 2
Qab,c = UeacTab - fzaaUeTbc - fzabUeTac
n n (3.16)
+

2
5 04U Taadpe +

2
5 0qUcTpadac -

Lemma 3.3. If the tensor 'H satisfies
Zabed =0 in Rﬁ_
0nHij =0 ondRL,
then H =0 in R’.

Proof. Observe that the hypothesis 9,H;; = 0 on dR’} implies that 4;; , = 0 for
o = (0, ...,0, 1). In this case, the expression (3.5) can be written as

d
Hap(x) = Z hub,axa .
=2

Now the result is just in [10, Proposition 2.3]. O

Proposition 3.4. Set U, =B, 4(0, ..., 0, 3y CR',.. Then there exists C=C(n) > 0
such that

n=1 d

> |hi_1‘,a|2”2a|_4+n§C/ Zabcdzabcd+cr_1/ OnHijonHij »
i,j=1la|=1 f DSTr(O)\DétTr(O)

forallr > 0.

Proof. If r = 1, observe that the square roots of both sides of the inequality are
norms in H, due to Lemma 3.3. The general case follows by scaling. O

Lemma 3.5. There exists C = C(n) > 0 such that

o C
" 2”6 2”/ ZabcdLabed < — Qab,c Qab,c
: 0 B (0\B/(0)

n—1 d
+96n72 Z Z |hij,a 2r2\a|+27n
i,j=1|a|=1
forall0 <0 < landallr > €.

Proof. This follows from the third formula in the proof of in [10, Proposition 2.5],
by means of Young’s inequality. Observe that, in our calculations, we are using the
range 1 < || < d in the summation formulas, instead of the range 2 < |a| < d
used in [10]. ]
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Lemma 3.6. There exists C = C(n) > 0 such that

n—1 d
671—2,_5—2’1/ 8nH1]8nH1] S Ceel’l—Q Z Z |hij,0[|2r2‘a|+2_n
D%(O)\D%(O) i,j=1|a|=1

C

Qi',nQi',n
0 Jotonsro

forall0 <0 < landallr > €.

Proof. Let x : R — R be a non-negative smooth function such that x (#) = 1 for
t € [4/3,5/3] and x(t) = O fort ¢ [1,2]. Forr > 0 and x € R’} we define
xr(x) = x(lx|/r). Observe that 9,S;; = —ﬁans,maij on dR’} . On the other
hand, (3.10) gives 9,S,, = —0,Ty, = 0. Thus, 9,S;; = 0 and 9, H;; = 9,T;; =
u-'o; j,n on AR’ . Integration by parts gives

2(n—1) 2
-2 n=2
/ . Ue" anHz‘janHinr :/ ) ¢ Qij,nQij,an
oR", oR

+

2
= _/n Bn(Ueni2 Qij,nQij,an)

+

5 (3.17)
= —/ 3 (US™ Qijinxr) Qijn
R
2
_/ Ueniz O Qij,n Qij,an .
R]
Using Young’s inequality, the result now follows from the inequalities
= | _n—1,2-2
Uc"™ arzll_{ijarz?—(ij)(r >C " nanHijanHinr
and
2 2 R n—1 d
|00 (UZ Qi x| + 1UE2 05 Qijontr| < Ced Y D7 Jhijalr® =271 0

i,j=1 la|=1
Proposition 3.7. There exists A = L(n) > 0 such that
n—1 d 1
22NN hyjal? / (€ + D222y < o / Qub.c Qab.cdx
i,j=1la|=1 B (0) B; (0)
forall p > 2e.

Proof. This follows from Proposition 3.4, Lemma 3.5, and Lemma 3.6. O
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3.2. Type A test functions (u 4;(x,,¢))

In this subsection we use the same test functions as in [10] but we need to do some
changes when estimating their energy by Q(S’}) because the boundary does not
need to be umbilical in our case.

For p € (0, Py/2], the Fermi coordinates centered at xo € d M define a smooth
map ¥, @ Bf(0) C R} — M. We will sometimes omit the symbols ¥y, in
order to simplify our notation, identifying ¥, (x) € M with x € B; (0). In those
coordinates, we have the properties g,5(0) = 45 and gup(x) = Syp, for any x €
B;L(O) anda,b =1, ..., n. If we write g = exp(h), where exp denotes the matrix
exponential, then the symmetric 2-tensor 4 satisfies the following properties:

hap(0) =0 fora,b=1,...n
han(x) =0 for x € B;(O) a=1,..n
0khij(0) =0 fori, j,k=1,...,n—1

Y xjhij(x) =0 forx € Dp(0), i =1,...n—1.

The last two properties follow from the fact that Fermi coordinates are normal on
the boundary.

According to [22, Proposition 3.1], for each xg € 9 M we can find a conformal

4
metric gy, = x’(’;z 8o, with fy,(xo) = 1, and Fermi coordinates centered at xp such
that det(gy,)(x) = 1 4+ O(|x|***2), where d = [“5%]. In particular, if we write

8xo = €xp(hy,), we have tr(hy,)(x) = O(|x|2d+2). Moreover, Hgm’ the trace of
the second fundamental form of d M, satisfies

1 .. 1
Hy,, (x) = =888 (x) = —= B (log det(gy)) () = O(x ). (3.18)

Since M is compact, we can assume that 1/2 < f5, < 3/2 for any xo € M,
choosing Py smaller if necessary.

Notation. In order to simplify our notation, in the coordinates above, we will write
gap and g"b instead of (gy,)ap and (gx())“b respectively, and A, instead of (fy,)qp-

In this subsection we denote by

Hap(x) = Z hab,(xxa

1<|e|<d

the Taylor expansion of order d associated with the function A, (x). Thus, we
have A (x) = Hap(x) + O(|x|¢T1). Observe that H is a symmetric trace-free
2-tensor on R’ , which satisfies the properties (3.4) and has the form (3.5). Then
we can use the function ¢ = ¢ , 1 (see formula (3.12)) and the results obtained in
Subsection 3.1.
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Recall the definitions of U, in (3.1), x,, in (3.6), and R in (2.9). Define

_ dn(n — DH\'T » » »
Oty (x) = (_—) 1o W N (U () + o (1))
* (3.19)
n 2
4 —1 2
+ <7n(;oo )) T(1 - Xp(lﬁxol(x)))Gxo(x)

for x € M. Here, G, is the Green’s function of the conformal Laplacian L 8 =

Agy, 481 21) Ry, » With pole at xg € M, satisfying the boundary condition

0 n—2

—0G —H, G,, =0, 3.20
By 02— 1) B0 (320

on dM\{xp}, and the normalization limy|_o |y|”_2Gx0 (¥xo () = 1. This func-
tion, obtained in Proposition B.2, satisfies

n—1 d
Gy (U 0) = PP 1= C Y0 > Nhijallyl®2"

ij=1la|=1
C|y|¢t3—n ifn>5
+ (3.21)
C(1+|loglyl]) ifn=34
—1 d
—(Gxowxo(y))—w n=c Z D lhijally @ Cly R,
i,j=1|a|=1
forallb=1,...n
We define the test function
i A; (xo.0) = FroUtxpse) - (3.22)

Observe that this function depends also on the radius p above, which will be fixed
later in Section 4. Such constant will also be referred to as p4 in order to avoid
confusion with test functions of the other subsections.

Our main result in this subsection is the following estimate for the energy of
U A; (xo,¢)
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Proposition 3.8. Under the hypotheses of Theorem 1.9, there exists P =
P (M, go) > 0 such that

4n—1) _ ) I
/M {4n > |dit 4 (xo.e) [gy T Reola: (xg,6) [ V30

4(}’l - 1) — 2 —2 2
/M {ﬁ'dU(xo,G)lgxo + Rg, Uiye) [ dVgyy T faM 2H,, UG, 049,

< 0(Sh)
forall xo € OM and 0 < 2€ < py < Py.
Let A be the constant obtained in Proposition 3.7.

Proposition 3.9. There exist C, P| > 0, depending only on (M, go), such that

/ {Mu(mwn +Rng<U€+¢>2}dx
B (0)

n—2

+ / 2H,, (Ue + ) do
D, (0)

4 2
<4n(n—1) U (U? + 2E 282 ax
B:{(O) n—2
4(n —1
+/ {MUGEJ U. +U Ophap — U hab} —do,

atero) L n— x|
A n—1 d

2 _n-2 2|a|+2—2n
Py ij, Ol| / (6 + |X|) dx
2 sz=:1 |2=: B (0)

+C Z Z |hlj " 2 |oz|+2 n+C6n—2p2d+4—n
i,j=1|a|=1

forall0 <2e < p < Py.
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Proof. Following the steps in [10, Proposition 3.6] we obtain

n—2

/ {4(” M D4+ $)R, + Ry U+ ¢>)2} dx
BS (0)
+ / 2H,, (Ue + ¢)’do

D, (0)

4 4(n —1 4
< [ e v [ S e 2002
Bfo n—2 Bf© n—2

1
+ / (Uzabhab - abUzhab> _dU / Qab,c Qab,cdx
9t B} (0) x| 74 B} (0)

1

M&

n

+

| >

hijal "™ / (€ + a2
B3 (0)

~
[
N

g
[
N

<
|
-

M&

n—2 _|a|+2—n + Cen—2p2d+4—n .

+ |hij,oz|6 1Y

The result follows by making use of Proposition 3.7 and

Il
]

i,j

2n

n—

1dU|? = 3,(Uc,Ue) — Uc AUe = 3,(Ucd,Ue) +n(n —2)US 2 . O
As in [10, p. 1006], we define the flux integral

An— 1
fn—1) (X2 "3,G g — ol Gng)
- 9+ B (0) |x]

— / P20 (|x 2phap — 2nxphap) ~do, |
9t B (0) x|

I(x0, p) = dop

(3.23)

for p > 0 sufficiently small.
Proposition 3.10. There exists Py = P1(M, go) > 0 such that

4(n — 1) 2
" n— |dU(x0 6)|g;c + g\OU(xO €) dvgx + BMZngOU(xO,é)dngO

n=2
< Q" ){/M U(ﬁcoze)dvgxo} — " *(x0, p)

i, j=1la|=1

hlj(x|2 n— 2/ (6+|x|)2\a|+2—2ndx
B (0)

n—1 d
4+C Z |h" e~ 2p|a|+2—n + Cén_2p2d+4_n + CE”,O_n
1 |a|=1

J=
forall0 < 2e < p < Py.

i
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Proof. As in [9, Proposition 15], we get

4 2
4n(n — 1) Ui <U2 n iqﬂ) dx
B;)*'(O) n—2
n—2

n n—1 d
<0 ( /B +(0)(Ue+¢>fi2dx) + ) Hhijalp e (324)

ij=1lal=1
+C Zl;‘l i ol f Dy
i,j=1|a

forall 0 < 2¢ < p < P; and P; sufficiently small. Now, with Proposition 3.9 at
hand, our proof is analogous to the one in [10, Proposition 4.1]. O

Corollary 3.11. There exist Py, 0, Co > 0, depending only on (M, go), such that

4(n —1) 2
/M{ n— |dU(XO €)|gx + gxoU(xo e)}dvgx +/{; 2ng0U(x0,e)ngx0

n—2

_ 2n n
<osv| /[ U&;,i)dvgxo} (50, p)

— g2 / | Weo (X)[%(€ + |x)® " dx
B (0)

P

_ een—Z/ |7Tg0()C)|2(E + |x|)5—2ndo, + C0€n_2,02d+4_n
D, (0)

L (s)’”;
"\p) Tlog(p/e)]

for all0 < 2e < p < Py. Here, we denote by Wy, the Weyl tensor of (M, go) and
by g, the trace-free 2nd fundamental form of M.

Proof. Similar to [1, Corollary 3.10]. Ll
Recall that we denote by Zj,, the set of all points xo € M such that

lim sup dg, (x, x0)* 4| Wy, (x)| = limsup dg, (x, x0)' ™74, (x)| = 0.
X— X0 X— X0

Proposition 3.12. The functions I (xo, p) converge uniformly to a continuous func-
tion I : Zyyy — Ras p — 0.

Proof. As in [1, Proposition 3.11] we can prove that
2d+4—n ifn>5
Sup |I(X0, p)_I('x()? ﬁ)l S _ . B
X0€Zom Cp2d+i—| logp| ifn =34,

forall 0 < p < p. The result follows. O
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The following proposition, which is [1, Proposition 3.12] I relates Z(xq) with
the mass defined by (1.2):

Proposition 3.13. Let xo € 23y and consider inverted coordinates y = x/|x|?,
where x = (x1, ..., Xp) are Fermi coordinates centered at xo. If we define the metric
4
g=Gy, 2 8xo 0n M\{xo}, then the following statements hold:
(i) (M\{xo}, &) is an asymptotically flat manifold with order p > % (in the

sense of Definition 1.4), and satisfies Rz = 0 and Hz = 0;
(i1) We have

g a a
T(x) = lim f y—“—g< —> dor
R—o0 | Jot+ o) [¥10ys \0ya 0y
/ Ya 08 ( a d )
- — —,— |dog; .
a+B5©0) |y 9ya \9yp yp

In particular, I (xg) is the mass m(g) of (M\{xo}, g).

Proof of Proposition 3.8. Once we have proved Corollary 3.11, and Propositions
3.12 and 3.13, this proof follows the same lines as [1, Proposition 3.7]. O

We now prove some further results for later use.

Proposition 3.14. 2Forx e Mande < 0,

4n—1) - - — -2
njAg*‘O Uto.e) = Rey Utp.e) + RooUfy )| ()
n—2
€ L 2y-14
=C 21l (e” + 1x[9) B;p(O)(x)
2
€ 2
+C (62 +dg,, (x,xo)z) Lings @)

—2—n

+CE T p T 4T p " log o)1 (x)

Un 1, Propositions 3.11 and 3.12] a log p must be included in the arguments for dimensions 3
and 4, when the Green function has log in its expansion; see (3.21).

2 The (¢ + |x|2)_% term in this proposition is necessary only in dimension 3, when d = 0 and
so H = 0. On the other hand, the | log p| term is necessary only in dimensions 3 and 4, because
of (3.21). The same terms are also necessary in the first inequality of [1, Proposition 3.13], but
this does not affect any other results in that paper because weaker estimates similar to the ones
obtained in Subsection 3.5 are also enough to [1].
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Proof. Note that after scaling, we are assuming Roo, = 4n(n — 1). Then

— — 2
n—-2

ﬁRgm Utxg,e) + mRooU(xo o

(Agjoxpxuew—e T x> ">+2<dxp,d<Ue+¢—e P,
— (B X)€" T (Gixy — 127 — 26" T (d . d(Giy — 1x[7)

Ay Utxg.e) —

8x

+ Xxp (AgXO(U€+¢)— (Ue + ¢) +n(n — 2)(Ue + ¢) -2 2)

n+2

+n(n —2) ((xpwe +0)+ (1= e’ T Gy, )"

=h+h+5+1,

2 — 1) 8o

nt2
- Xp(Ué + (P)”z)

where I;,i = 1, 2, 3, 4, denote the corresponding row.
To estimate 1, notice that for |[x| > p > € we have

€2+ x)77" = [x2"| < CeXx|™ (3.25)

. n—2 n+2 .
and, equivalently, U — € 2 |x|>7"| < Ce's |x|~". Then I; can be estimated as
nt2 _2_ n=2 q_
Il = Ce> p™ " +e 7 p gt opsi 0

Recall the properties (3.21) of G,. Then || < Cen_zzpl_"| log p| 13;11(0)\33(0)-

In order to estimate I3, first observe that

-2
I3 =x, ((Agxo_ AU, — ai(Hijaer) - ———0;0; Hl]Ue)

— % R, U +
4n—1) #07° ( —1)
n—2
+ Xp | (Bgy, — D)9 — ﬁRgmqb
+ Xp <"(ﬂ —2)(Ue +¢)" = n(n — 2)Ue = n(n+2)Ue™ 2¢>
where we have used (3.2) and (3.13). Using [1, inequality (3.20)],

n—2 _
[(Agyy — MVUe + 0;(H;j0;U)| + | Ry, Ue — 00, HijUe| < Ce 7 (e + |x' ™,

8xq

n=2 _
[(Agy, — D)@ + 0i(Hijdjp)| + |Rg, ¢ — 0i0Hijp| < Ce 2 (e + Ix[)2"
and

on+2 o4 142 _ nt2 _
(Ue + ¢ — U SUET| < CUT (QUT') < Ce Ple+xh™"
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This leads to

n—2

I < € R 2y-31
3] = C 21 R (€” + xI%) B, (0)°
Finally we consider 14, using the elementary inequality
n+2 n+2 4 n+2
lan—2 — bn—2| < Cbn-2Z|a — b| 4+ Cla — b|»-2,
which holds for any a, b > 0, and where C = C(n). Letting a = x,(Uc + ¢) +

_ n=2
1 - Xp)eT2GxO and b = X,S’” (Ue + ¢), and applying the bound (3.21) for G,
one gets the estimate

n+2
Iy < C € i
+0) -
4= €2 +dg,, (x, x0)? M\B; (0)
Combining all the estimates above, we get the conclusion. O

Proposition 3.15. For x € oM,

2m—1) 9 - -
—— o U.e) = Hg, Uixg o)

n—=2
€ 2
<Cp|—-——— 1 .
n_2 877gx0 (x) <Cp (62 + |/g|2> D, 0)(X)

Proof. Observe that

a - n—2 H
WU(xo,e) T 2 =1 e Utxo.e)

8xg

d n—2
= Xp—— —x,H,

Xpan ‘ (Ue +¢)+2(n_1))(p gXO(Ue + @)
8xq

n=2 0 n—2
L e T e T &

8xo

Recall that we were using Fermi coordinates, thus g = 9,. The first and third
terms are zero by the equations (3.2) and (3.13) while the middle one can be

bounded as

n—2
2

€
|XpHgXO(Ue +¢)| <Cp (m) Ip,, - O
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3.3. Type B test functions (up; (x,,¢))

In this case the test functions we use are essentially the same as in [9]. However,
when trying to control their energy by Y (S"), due to the proximity to the boundary,
the argument in that paper cannot be directly applied. We are able to overcome
this difficulty by exploiting the sign of 9, U, (0) (see the definition in (3.1)). Since
all the argument is local, we do not make use of the positive mass theorem in this
subsection. B

Fix xo € Mps,\oM and let Y, : By, 2, C R" — M be normal coordinates
centered at xg (see Definition 3.2) where 0 < p < Py. We will sometimes omit the
symbols vy, in order to simplify our notation, identifying v, (x) € M with x €

By, 2. In those coordinates, we have the properties gq5(0) = 8,5 and 9¢g45(0) = 0,

for a,b,c = 1,...,n. If we write g = exp(h), where exp denotes the matrix
exponential, then the symmetric 2-tensor 4 satisfies the following properties:
hep(0) =0 fora,b=1,...,n
0chap(0) =0 fora,b,c=1,...,n

Y bt Xphap(x) =0 forx € B}Co,pa a=1,..,n.

4
According to [20], we can find a conformal metric g, = f; x'(’fz 8o, with fy,(x0) =1,
such that det(g,,)(x) = 14+ O(|x |2¢+2) in normal coordinates centered at xq, again
written ¥y, : By,,2p — M for simplicity. We can suppose that 1/2 < fy, < 3/2.

Notation. In order to simplify notation, in the coordinates above, we will write g,p
and g instead of (gx,)ap» and (gx,)*? respectively, hp instead of (fyy)ap, and n°
instead of (g, )*. We denote by v = vy, the unit normal vector to Dy, p With
respect to the Euclidean metric 8,5, pointing the same way as 71y, and Mgxy » and
write v = v49, and n = n%9,.

Set§ = dgxo (x0, 0M). If Xy € 0M is chosen such that dgx0 (x0, Xo) = & then
we can assume that ¥, takes (=6, 0, --- , 0) € R" to Xy and thus both Mgx, and vy,
coincide at Xo with the coordinate vector d,. So, there exists Co = Co(M, gg) > 2
such that

In“(x) = 8an| < Colx|, and (3.26)
[V (x) — 8an| < Col%|, forallx € Dy, 2p, (3.27)
where x = (x1,---,x,) = (X, x,) € R". We will also assume that Dx()’zp is the

graph of a smooth function y = yy, so that

Dyy20 = {x = (x, y(X)) | x| <2p}.
We can write y (¥) = —8 + O(|x|?) and choose Cy larger if necessary such that
ly(X) + 8| < Colx|?, forallx € [)xO,zp. (3.28)
See Figure 1.
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Rn xn ’:‘
M
0" By, ,
' Mgy, oM
— 0.p
y(x)
Figure 3.1. Some notatién.
In this subsection, we denote by
Hap(x) = Z hab,axa
2<|al=d
the Taylor expansion of order d = ["T_z] associated with the function A, (x). Thus,

hap(x) = Hap(x) + 0(|x|d+1). We define ¢, S, T and Qgp, . as in Subsection 3.1
(see (3.12), (3.9) and (3.16)), except for the fact that, as in [9], the whole construc-
tion is done in R" instead of R’} . Then the first equation of (3.13) and the estimates
(3.14) and (3.15) also hold, with 2 < |a| < d replacing 1 < |a| <d.

Lemma 3.16. There exists . = A(n) > 0 such that
2 e 2 20al+2-2n 1
A€ a;; |(;::2 [nab,al LP(O)(E + |x]) dx < Z /Bp(o) Qab.cQab.c
forall p > 2e.
Proof. See [9, Corollary 10]. O

Recall the definitions of U in (3.1), x,, in (3.6), and R in (2.9). Set

n—2
_ dntn— D\ 7
Urg.e) () = (M) 2o Wi ) (U@ ) + (Wi ()
n—2
4 —1 -
+ <”%)) " (1= xp (Wi (00)) Gy (),
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for x € M. Here, Gy, is the Green function of the conformal Laplacian L 8% with
pole at xo € M\0 M, satisfying the boundary condition (3.20) and the normalization
lim}y|0 |y|"’2GxO(1pXO (y)) = 1/2. This function is obtained in Proposition B.4
and satisfies, for some C = C(M, go),

_ ClyPP~" + Cs|y|'™ ifn>4

G — |y < 3.29

|Gy (Yxg (¥)) — Y] |_{C(1+|log|y||)+C8|y|1—” ifn—3, (3.29)
i _ 2—n 2—n —n
8yb(Gx0(1/fxo(y)) IO = Clyl7" +Cslyl™",

forall b =1, ..., n and ¥, (y) € Mj for some small § (M 20)-
Define the test function
lzB;(xo,e) = fxoﬁ(xo,e)' (330)

Observe that this function also depends on the radius p above, which will be fixed
later in Section 4. Such a constant will also be referred to as pp in order to avoid
confusion with test functions of the other subsections.

The main result of this subsection is the following:

Proposition 3.17. Under the hypothesis of Theorem 1.9, there exist positive P, and
Cp, depending only on (M, go), such that for any pp < P, one can choose &y <
Cp ,0]_2,3 satisfying

4n=1) | ;- 2 )
Ju { 51"—2)|d”3;(m6)|g0 + RgOMB;(x(),é)} dvg,

n=2

(fM Ug. (xo e)dvgo)

4n=1 | 1717 2 72
fM{ =2 14Ul + Rey U(xo,e)} dvg,, + [yn 2He Ul 4%,

n—2

(fM (X() E)dvg )

for all xg € M5, \oM and 0 < € < Cgldgo(xo, oM).

<Y(S8"

We will prove several lemmas before proceeding to the proof of Proposition 3.17.

Lemma 3.18. If|x| < 1/(2Cy), then for ¢ > 0and 0 < § < 1 we have

1
F(62 +1X2 +8%) < 2+ X7+ y (@) < 2(e® + x> + 87). (331)
0
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Proof. Firstassume § > Co|x|?. Since |y (¥)| > §—Co|X|*> > 0 by (3.28), Cauchy’s
inequality implies

2
y(®)? > (5 - Co|32|2> > 82— 2008152 > 8% — 2C2|%|%.

N —

So,
1
e2+wﬁ+y@ﬁZe?+u—m£wﬁwﬁ+§ﬁ,

and our assumption |¥|2 < 1/ (4C§) gives
2 172 =2 I AT R S I S SR
€ HIXIT+y(E)7 z e+ SIXT + 587 > S(e" + X7+ 8.

If § < Co|x|? we have

W+m%¥»£#ﬁ
v 20, " 2

so the left-hand side of (3.31) is proved.
As for the right-hand side, notice that

2

1
52 4152 + €2).
+€ >—2CO( + x|+ €7)

y(@? =+ Colx*)? = 287 + 27 1% 1*.
Consequently,
2+ X7+ y(0)? < €24+ (1 4+2C31x1P)|x 1> + 282 < 2(€ + 3> + 87),
because our assumption on |x| implies 1 + 2C§|)E|2 <2. ]

Lemma 3.19. [f0 < p < 1/Coand0 < § < p/4 then

VIR +yGN? <p, forall|x| < p/2.

Proof. From our assumption it is easy to get §/p + Cop/4 < 1/2. Since
ly ()] < 8+ Colxl” < 8+ Cop® /4,

we have

2 2 2
- _ C 2 2
fP+y@P =+ s+ =) <5+ (5) =5 O

Lemma 3.20. IfO < p <1/Coand0 < & < 1 then

X2 +y(X)? > 8/\/Co,  forall || < p.
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Proof. First assume 8 > Co|x|?. Then |y (X)| > 8 — Co|%|> > 0, which yields
y(©)?* > (8 — ColxH)?
52
> 8% — 28Co|x|> + C21x|* = 5 izt
Therefore, by the assumption |x| < p < 1/Cp, we have
X%+ y(©)? = (1 = CHIEPIFI* +82/2 > §2/2 > §2/Co,

because Cop > 2.
If § < Co|x|?,since 0 < § < 1, we have 82 < § < Co|x|?. Obviously

%12 + ¥ (®)* > 82/ Co,
proving the result.

Lemma 3.21. There exists C = C(n) such that
/ (€ + %> +8%)%"dx < Cps*™",  for0 <8 < p.
{(xeR*!| |X|<p}
Proof. Just observe that

/ (€ + X + 65> "dx < / (%> + 8H*"dx
[X|<p

IXI<p

< ﬁp/ (712 + 62 P di
Rnfl

- ﬁpaz—"/ 157 + 12 d5.

Rr—1

Lemma 3.22. There exist ¢, K, P, > 0, depending only on (M, go), such that

4(n — 1)

U.0,Ucdo > ¢ 282"
n—2

Dyy.p

when) <€ <8 < Kpand p < Ps.

Proof. Observe that U.9,U = —(n — 2)e"2(e? + |x|?)'"x, and, on Dy ,,
UcdyUe = Uv*0,Uc = U0, Uc + Uc (V" — 8410) 04 Ue.

Using (3.27) and Lemma 3.18, we have

|Ue (V% = 84n)8aUc|(x) < (n — 2)Ce" (€ + |X* + y (£)H)* ™"
< (2C0)" 2 (n —2)Ce"2(e? + |X> + 8%)>7"
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when x = (%, y(X)) € Dy, , with |¥| < (2Co)~'. Hence if p < (2Cp)~! and
0 <§ < p, then

)
/ U.dyUedo > / U.d,Uedo — Cp (5)" ,
Day.p Dag.p 8

where we used Lemma 3.21.
In order to estimate from below the right-hand side of this last inequality, we
see that

UednUe(x) = —(n — )" 2(e* + [X* + y (D)D) "y ()
> (n—2)e" (€2 + X7 + y (D)8 — Colx %)
> (n —2)e"28(e? + X + y (D)D)
— (n = 2)Coe" (> + X + y (@)D"

2 (n _ 2)2171’!6}1725(62 + |)z|2 + 52)171’! _ C6n72(€2 + |)E|2 + 52)271’!
forx = (x, y(x)) € on,p with |X| < (2Cp)~!, where we used Lemma 3.18 in the
last step.

Assume 0 < p < (2Co)~'and 0 < § < p/4. According to Lemma 3.19,

{G,y@) | 1X] < p/2} C Dyy.p-

Then

/ _ UethUedo = (n = 2277”2 / (€ + |52 + 83 "dx
Dxg.r |E1<p/2

—Ce"? / (€ + %> + 87> "dx
I¥|<p
=1-1I

Notice that

2 l—i’l
5/ (€2 + |5 + 62 "dx =32—"f ((5) +|&|2+1) dy
I¥l<p/2 I51<p/25 \\O

=2 [ 5P
1y1=p/28

for 0 < € < 8, because (¢/8)% + |¥)> + 1 < 2(|7> + 1).
Seta(n) = [ga—1(|5]1> + 1)!7"dy and observe that

- — - _ _ B 8 I’l—l
/ UyF+1f’Wy=amy—/ (UP+1ﬂ’wyzam>—C<—) .
1¥I<p/28 |7|>p/268 0
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Hence,

I>0n—22"am) (%)H e <%)H (E)H .

On the other hand, II < Cp (6/8)”_2, by Lemma 3.21.
Putting things together, we obtain

[ UedyUedo > (n —2)2*7*"(a(n) = C(3/p)"~" = Cp) (¢/8)" 2,
Dyg.p

from which the result follows. O

Proposition 3.23. There exists P, = Py(M, go) > O such thatif0 <§ < p < P
4(n—1)
5 T'd(Ue + o) + Ry, (Ue + ¢)?
Bxyo

An — 1 An — 1 4
)] U, 2dx + f Y= U pax
n—2 B B n—2

BX() P Byg,p

EY Y e [ e
0:0

ab 1 |a|=2

e\n—2 € n—2
- 7. Qab,cQab,c dx + C/O (‘) + C,O <—)
4 Bxg.,p 8 1%

forall e € (0, p/2]. Here, X is the constant obtained in Lemma 3.16.

Proof. As in [10, Proposition 3.6], we can choose 0 < P, < 1 such that

4(n—1)
/B {n—ld(Ue+¢)| + R, (Ue + ¢) }
X050

4 — 1 4(n—1 4
=D U ax +/ A0 =D o UET B
n=2 Ja 5. n—2
X0 0.0
1
+ / ~ (Ufabhab U ha,,) 00— [ OupeQuped
8+Bx0p | | 4 By,
Z Z |hab,al*e"™ zﬁ (€ + |x])2l+2=2n
(l b=1 |a|=2 on.p

n d
+C Y Y lhapale" 2plMET 4 e p2 A 4 / Wdo
a.b=1|a|=2 Dxg.p



CONVERGENCE OF THE YAMABE FLOW ON MANIFOLDS WITH MINIMAL BOUNDARY 1225

holds for all 0 < 2¢ < p < P, where

8(n—1 —2)2
\I":_M (aaUe¢+ v 3 ) Ue"_zva) p?

n—2

— UZ0phapv + 2Ue(3pUc)hapv® + UZHapdHapv” — v
comes from integration by parts. Here, &, is a 1-tensor controlled by
E.(x)| = C Z Z hab.al*€" 2 (€ + x[) 21720,

a,b=1 |a|=2

It is easy to estimate the following term on on, 0

2n
Ul Val(x) < Ce™(€+ X[+ y (@)
(UE72 V| (x) < Ce™ (€ + 3> + y (3)?) (332
< C" A+ FPP +y @)D"

and all the other terms in W can also be estimated by the right-hand side of (3.32).
Choosing P, possibly smaller, from Lemmas 3.18 and 3.21 we get

/5 Wdo < C <§)n72p, (3.33)

x0.0

for 0 < § < p, from which the result follows. ]

Proposition 3.24. There exist Py, C > 0, depending only on (M, go), such that

f {Mwwewn +Rgxo(ue+¢)}
Byg.p n

<Y(S" </
B,

S 3 g e f (€ + e 221
0:P

a,b=1|a|=2

n=2

n

n n—2
(Ue + ¢>%dx> —@E—Cp—CB/p)"?) (g)

0:P

4;|>»

forall0 < p < Poand 0 < € < 8§ < Kp, where K and ¢ are the constants
obtained in Lemma 3.22.
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Proof. Thisresultisaconsequence of Proposition 3.23 and Lemma 3.16. Observe that

4(n —1 4(n —1 4
4n—1 ~ |dU.dx + / L)n(n + 22U prdx
n—2 on.p on,p —
4(n —1 20 4
= / 4n—1) <n(n — UM +n(n+ 2)U:2¢2> dx
gxw n—2

4(n —1 4(n —1 X
— /” gUsauUst +/ ~ gUeaaUe—adO— (3.34)
Dyyp M 2 0By M 2 ]

n+2

s/i 4n01—1)U2%(UE ¢ )dx
B

X00

4(n —1 n=2
—/ MUea,,Ueda e <5> .
Dy M—2 o

We shall handle the first two terms of the right-hand side of (3.34) separately. As
in [9, Proposition 14], we have
n+2

U2
< €+n—2

n+2

#)7 - W+ Ui

n

d
=C Z Z \hap.o|?€" (€ + |x|) 2220

a,b=1|a|=2
and

n_, 5
Ul ¢pdx > 0 (U V Ydx
By, —2 B
*0-P X0:P

2n 2n_
=/ Ul 2Va—d0—/ Ul vpytdo
9T Byy.p |x] Dyy.p
e\n—2
=z —Cp'™"e" = Cp (5) '

Here, in the last step we estimated the integral on on, o by (3.32) and Lemmas 3.18
and 3.21. So,

4
/N 4n(n — 1)U (U? +
Byy.p
n 2 NF2 5 n !
<Y(s" (UZ + ——=¢*)72dx
B, n—2

o 2 (3.35)
sYG%(f
Byy.p

Z Z |ha, a| € /: (e + |x|)2‘a|+2_2"dx.

o n € n € n—2
(UE + ¢) ”—2dx + C,O (-) —'I— CIO (—)
1Y
a,b=1 |a|=2 0:P

2
219 dx

)
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Recall that Lemma 3.22 says

4n—1) L [€E\N2
—‘/D —— UsdyUesdo < —¢ (5) (3.36)

x0.0

if0 <e <§ < Kpand0 < p < P, for P, small enough.
Now it follows from Lemma 3.16 that

_ 1
Z |hab,ol? / (e+|x|>2'“"+2 Mdx <~ / Qub.cQab,c dx.
4B,

a,b=1 |a|=2

We claim that we can choose P, > 0 possibly smaller such that

e\n—2
/ - OQab,c Qap,cdx < C,02 (g)
B, (0)\Bx,p

for all p < P;. In fact, from Lemma 3.20 we can choose P, small such that
By(0)\By,., C B,(0)\Bs 5 (0)

for any p < P,. Then using Qup,c Qub.c < Ce"2(e + |xD* 2" we get

f Oab,c Qab,c dx < Ce"~ 2/ - (e + |X|)472ndx
B, (0)\ By By (0O\Byy.p
S CG”_Z,OZ-/ (6 + |x|)2—2ndx SCEn—ZpZSZ—n.
R\B;, /e

In particular,

n d
-2 Z Z |hab,a|2‘/: (6+|x|)2|0t|+2—2ndx

a.b=1 |a]=2 Bxg.p (3.37)

== Qab,c Qap,cdx +Cp (—) )
4 Bx » )

Now the result follows from Proposition 3.23 and estimates (3.34), (3.35), (3.36)
and (3.37). O

Proposition 3.25. There exist P, and K such that

=D g 72 otd 2H,, U2, od
M nil U(xo €)| +Rgx0U(x0,€) vgx0+ oM ngOU(xo,e) ngo

n—2
<Y (5" ( / U{;Oi)dvgm) Z Z \hab.al?e" ™ / (e+|x 2272
ab 1|a|=2 Bxy.p
Cc se\n—2
6

forall0 <e <6 < Kpand0 < p < P;.
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Proof. We have

4n—-1, -, )
/M\Bx(,.p {ﬁldU(xo,algm + Re, Uliy o { 4045,

12
+/ _ 2Hg Uy 640,
OM\Dyy

<6 )H—Z
<C|- .

0

As in the proof of Proposition 3.23,

-5 e\n—2
-/l:) 2H8X0 U(xof)dagxo =Cp (5) )

X0+ 0

The result now follows from Proposition 3.24 and the fact that det(gy)(x) = 1 +
19) ( |)C |2d+2) . 0O

Proof of Proposition 3.17. Let P, and K be as in Proposition 3.25. Choose P,
maybe smaller such that P, < K. Given pp < P> choose K’ < pp and §) €

(0, K'pp). Observe that, in particular, one has §;, < ,0123 and §) < Kpp. By
Proposition 3.25, the inequality we want to prove holds for all 0 < € < § < §;, and
0<p=pp < Py,where§ = ngO(xo, oM).

Now choose Cp = Cp(M, go) such that CEIS < dgy(x0,dM) < Cpé, and
take any 8o < Cpd,. Then, because &, < /012g , we have

So < Cgpé.

For any € < Cj'dg,(x0, M) we have € < Cp'dg,(x0, M) < 8 < &) and the
inequality in Proposition 3.17 holds. O

We finally prove some results for later use.

Proposition 3.26. For x € M ,e < p and § < Cp?,

‘4(;1 -1 -

n+2
- = o grn-2
n_2 Agxo U(XO,G) - Rgxo U(Xo,é) + RooU(xO,e)

n—=2 n+2
2

5 € T ) € -

<Cp (52 + |x|2> 1,0 +C (62 + |x|2> i, , )
n+2 n—2

+C(E%p727"—|—eTp17"|log,0|)lg (x).

x0,2p\Bx0.p
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Proof. The proof goes like that of Proposition 3.14 with I, I», I3, 14 being the
same. Observing that we are using normal coordinates, we have

]

n—

€
Bl<Co* | 5—) g,
€+ |x| 0,20

Using (3.29) we obtain

N‘

n=2 1_p, 120 _1-n
< 2 ~ ~ 2 ~ ~
|| < Ce 2 p ~"[log p| leo,Zp\on,p +Ce 2 ép Bry.20\Byg.0°

the | log p| being necessary only in dimension n = 3.
With the same estimate for /1 and /4 as in Proposition 3.14, we get the result. [J

Proposition 3.27. For x € M, € < p and § < Cp?,

2n—1) 9
=2 an. T Utg.e) = Heoy Utxg.o| (¥)
n n=2
< c‘S — ) cl——) "1
=T \e2 +| 2 Dyy.2p ) + €2 + |x|2 DxO.Zp(x)
+C(E T T P log pD 1, (0.
Proof. Observe that, on 0 M,
AU, -2 _
o _ 7 Hg, Ulxy,e)
angl) 2(n—1) S0t
2—n n-2 2—n
= 2L Ut ¢p—¢e T X[ + ——€ 2 (Ix]777 — Gy)
a’?gxo angxo

ad n—2
U, —xo,H,, (U
“‘X,o8 gxo( et @) — (n_l)Xp 5)‘0( e+ )

n=2 [ 0Gy n—2
1— 2 0 _ Gy |,
+ (I — xp)e€ (877&0 =1 Hg,, xo)

where the last term is zero by the definition of G, . Set

dx n=2 5 Oxp n=2 . o
Ni=—LWe+¢—€7 |xP"), h=—Le7 (x]" = Gy),
Mg Mg,
dUe ¢ n—2
J Ja= - Ue +
3= Xpa gxo 4= Xp (3Tlgx0 2n—1) gxo( et ®)).
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Recall (3.25) to bound

n—2
il = |5 — TP < Ce T o T T P

xO,Zp\DX(),P :

For J,, we use the properties (3.29) of the Green function and the hypothesis § <
Cp? to obtain

— G| = €€ 0> log pl1

< 2 ~
|J2| € Dx0,2p\Dx0,p'

Xp ’“ |2 n

In order to estimate J3, let us calculate E)UE/BngX0 . Suppose x = (x, y(x)) € DXO,,O,
then

U /g, (1) = —(n — 2)e"T (€% + |x1) ™ Fxan (x)

s . (3.38)
=—(n—2)€ 2 (€ +x)T 2@ + 0 () — 8an)xa)-
Recall the properties (3.28) and (3.26) of y and Mgy, - So,
n—2 n
0U /91, |(x) < Ce™7 (2 + [xH)72(8 + C[%[%)
n n—2
< c‘3 * Vaic()"
2+ |x)? €2 + |x|?
for x € Dy, ». Consequently,
z n=2
=l (V1 v 1,
3= e \ 2 + |x|2 Dyy.2p 2 4 |x|2 Dyy,2p°
Easily we can get
» o
€
< - -
14l < Cx, ‘ gm‘+U€+|¢|) (62+|x|2> U
Combining all the results, we get the conclusion. O

Proposition 3.28. For x € M, € < p and § < Cp?,

(Z(n—l) 0 i i )(x)
n— 2 angx (x0,€) — gxo (x0,€)

n—2
€ T 2 __p,
2o (ag) o

+eT PP M logphl s p ()
Dx04,2p\Dx0.p :
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Proof. By (3.38) we have

XpOUe/Ong, = xp(n —2)(€? + |x[H)72(8 — CIZ|)
n=2 o 2\ 2zn
>—Ce 2 (e"+|x]) 2 1p

X020 :

Now the result follows as in Proposition 3.27. O

3.4. Type C test functions (uc;(x,,¢))

Our test functions in this case are the ones in [9], which are controlled by Y (S") the
same way as in that paper.

Recall that we assume that the background metric go on M satisfies Hy, = 0
on dM. Fix xo € M\Ms, and let ¥y, : By,(0) C R* — By,(x9) C M be
normal coordinates centered at xg, where p is small such that 0 < p < §g/4.

4
As in Subsection 3.3, we choose a conformal metric g,, = fx’[)_z go such that
det(gy)(x) =1+ O (|x|*?*2) in normal coordinates centered at xq, still denoted

by vx,. We assume fy, = 1 in M\ By, (xp), which implies ngo =0onoM.
Define ¢ as in Subsection 3.3 and set

dn(n — 1)

Ulxg.e)(¥) =< ) ' Xo (W N (Ue W ) + (¥, ()

n <4n(ﬁ— 1)

o0

o0

. (3.39)
=
) €T (1= 1o (W (60)) Grg ()

for x € M. Here, Gy, is the Green’s function of the conformal Laplacian Lg, =
Ag,, 4(”n 21) Rg, » with pole at xo € M\Ms,, boundary condition (3.20) and the

normalization limy|—.¢ |y|"‘2G xo(Wx, (¥)) = 1. This function, obtained in Propo-
sition B.2, satisfies

n—1
|Gx0(‘/fxo()7))— |y|2 n| <C Z Z |hlj ||y||a|+2 n
i,j=1]a|=1
d+3—n .
4 Clyl %fn25 (3.40)
C(+|[loglyl) ifn=23,4,

n—1

<Cc >y Z |hij ey =" 4 Cly |2,
i,j=1|a|=1

(Gx0<wxo(y>>— Iy>™)

for some C = C(M, go, §p) forallb =1, ..., n and xg € M\ Ms,.
We define the test function

L_‘C;(xo,e) = fx()U(x(),e)- (341)
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Observe that this function also depends on the radius p above, which will be fixed
later in Section 4. Such constant will also be referred to as p¢ in order to avoid
confusion with test functions of the other subsections.

P i -
For later use we observe that %U(Xo,e) = Byl C;(xp,¢) = Bg,y Utxg,e) =0 0n
oM.
Our main result in this subsection is the following:

Proposition 3.29.  Under the hypothesis of Theorem 1.9, there exists Pz =
P3(M, go, 8) such that

=1 ) S 4
M ﬁ' UC; (x0,0) gy T Reo™T: (xp.e) [ Vg0

n=2
(/ : ) n
— =2
u} dv
C;(xo, 80
" (x0,€)

dn-1 - 2 72 72
/M {ﬁ'dl}()‘me)'gxo + Rg)fo U(Xo,é) dvgxo + oM 2ng0 U(xo,E)ngxo

n—2

2n n
T n—2
(/M U(xo,e)d”gxo>

for all xo € M\Ms, and 0 < 2¢ < pc < Ps.

<Y(S8"

Proof. Choose P; small such that for any xo € M\Ms, we have dgx() (x0, 0M) >
2 P3. Choosing P3 smaller if necessary (also depending on 8y because of the above
estimates for G,) the result is Corollary 3 and Proposition 19 in [9] with some
obvious modifications, by making use of Theorem 1.6. O

For later use we state the following result, which is proved as Proposition 3.26:

Proposition 3.30. We can choose P3 = P3(M, go, §o) maybe smaller such that
there is C = C(M, go) satisfying

4(n—1) 5 7 Rl
5 e Voo — Rey Utwo.o) + RooU
pe =
< (—€ )7 +C : .
=CLp €2 + |x2 B2 (O €2+ dgxo (x, x0)? MO

n2 oy n2 34
+Ce 2 p 2 4ez plt "[log p|)18,,(0)\B,©)

for all xo € M\Ms, ande < p < P3.

Proof. As in Proposition 3.26, the proof follows the lines of Proposition 3.14, but

the term I, is estimated by || < Cen_gz,ol_”l log p|, where C depends on §.
Choose P3; < C~4. O



CONVERGENCE OF THE YAMABE FLOW ON MANIFOLDS WITH MINIMAL BOUNDARY 1233

3.5. Further estimates

The results of this subsection are consequences of what was proved in Subsec-
tions 3.2,3.3 and 3.4.

In this subsection, unless otherwise stated, if xo € dM, xo € Ms,\0M or
X0 € M\Mpsy, l(xy,e) Will stand for i o (xg,e)> UB;(xg,e) OF UC;(xg,¢)> TESPECtively.
If xo € Mas,\Ms,, ti(xy,e) Will stand for up.(x,,¢) and Uc.(x,,¢), the results below
holding for either. By the "radius" p of it (y, ¢), we mean py4, pp or pc, if t(y).c) =
U A; (xp,€)» U(xg,€) = UB:(xg,€) OF U(xy,e) = UC:(xg,¢)> TESPECtively.

We observe that whenever it (x,,e) = UB;(xy,e) We have dg,(xp, IM) < §p <
C,oz, according to Proposition 3.17, because xg € Ms,\d M in this case. Hence, we
can make use of Propositions 3.26, 3.27 and 3.28.

Corollary 3.31. There exists C = C(M, go) such that, for € < p,

‘4(11 -1 42

_ _ B an2
ﬁAgou(Xo,e) ~ Rgolt (o) + Rooll (3 ¢

n—2
~12 € S0 2\~ 1
=cr (62 + dg, (x, xo)2> (€7 dgy (. x0)) 2 1y, (w0)
n+2
€ 2 |

+C|5——F— .

(62 +dg (x, xO)z) M\Bpr2 (o)
Proof. 1t is a consequence of Propositions 3.14,3.26 and 3.30. O

Corollary 3.32. 3 There exists C=C (M, go) such that, if p is the radius of it x, ¢,
and €1 < €y < p, we have

_ 4n—1) nt2
U(xy,er)
M

~n—2
-2
€2 €167 £
c(r+%) (5 )
p= |\ € +dg,(x1,x2)

Agylh(xy,e) = Rygylh(xy,e0) + ROO”(XZ,Q)
Proof. As in [8, Lemma B.5] we get

n—=2
2
€1 €2
/ 2 2 2 2 dvgo
{dgy (v.x2)=p/2} \ €] + dgy (X1, Y) €5 +dg,(x2, y)

) n—2
2
<C € €162
= _2 2 B .
P~ \ € + dg,(x1, X2)

3 For types A and B test functions in dimensions n > 5, the coefficient p 172 in this inequality can

be improved to p. Indeed, p was worsen to ,01/2 due to the log p terms in Propositions 3.14 and
3.26, which are necessary only for n = 3 or 4, as observed in the footnote in Proposition 3.14.

(S}

dvg,
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We claim that

n—=2 n—=2
2

J ) () @t
62 X2,Yy v
{dgo(y~x2)§4p} €%+dg() (xlvy)2 6%+dg() (XZ,y)z 50 £

(3.43)

n—=2
2
€16
<Cp .
(6% + dg, (x1, X2)2>

A= {2dg0(.X1, J’) <e +d12} N {dg()(ya x2) = 4p}

Set
and
B = {2dg4,(x1,y) = €2 +di2} N {dg,(y, x2) < 4p}

where dj; = dg,(x1, x2). Observe that on A we have

1
€ +dg (y, x2) > €2 +dip — dgy(y, x1) > 5(62 +di2) > dgy(y, x1)

1
and  dg, (v, x1) = (€2 +d12) < €2 +dg (v, x2) =< 5p.
Then

n—=2 n—2
2 2
€1 €2 2 2.1
S I S B —— (€3 + dgy(x2, y)*) " 2dv
/A<ef+dgo<x1,y)2> (e§+dgo<xz,y>2) 2o %

n—2
C\ar s (€] +dgy(x1, ¥)7) 2 dgy(x1,y)” dug, (3.44)
€ +dip {dgy (v,x1)=5p}

IA

n—=2

7
€1€2 N
N\ n / dgy (X1, Y) "dvg,
€ +di, {dgy (¥,x1)=5p}

On the other hand,

n-2 n—=2
7 ==
€ & . o
&+ dgy(x1, y)? S| (& +dy (2, 1)) 2dv
/B (612 + dgy (x1, y)z) <e§ + dyg, (x2, y)2> 2 g 2
(3.45)

IA

n—2
2
€162 ~
=Cl=22 / dgy (X2, y)' " dvg,.
€ +dj, {dgy (v.x2) <4p)

The estimate (3.43) follows from (3.44) and (3.45) observing that the integrals on
the right-hand sides of those inequalities are bounded by Cp.
The result now follows from (3.42), (3.43) and Corollary 3.31. O
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Corollary 3.33. * There exists C = C(M, go) such that, if p is the radius of ii x,.c,)
ande| <€ < p,

. 9 € €1€2 ’
i —u dog, > —C [ p'? + _>
/;M (x1,€1) g (x2,€2)%%g0 ( P €3 + dg (x1, x2)?

Proof. Observe that the above integral vanishes when iy, ,) is a type C test func-
tion. For type B test functions we obtain
a n—2

—U - ———H, U
angxz (x2,€2) 2(” _ 1) 8xy (x2,€2)

n—=2 n
€ 2 12 € 2
> (5 C3 PG (RIS, b P
- <62+|x|2> £ P <e2+|x|2> Duy2p\Dize

from Proposition 3.28. Then, using (2.3) and (3.30), we estimate

0 € 7
() > — Cp VP Lid, (v.x2)<4p}NoM
a’?go (x2,€2) €%+dg0(x2,y)2 {dgq (v, x2)<4p}
€ 3
—C| 55— NdyOo.x)=p/20n0M-
<6§+dgo<x2,y)2> R

The same (actually a better) estimate as above can be obtained for type A test func-
tions by means of Proposition 3.15.
As in [8, p.274-275] we can prove

n—=2

132 132
/ a0 &2 do
{dgy (vxn)<dpinom \ €] + dgy (x1, ¥)? €3 +dg, (x2, y)? %

n=2

2
€1€2
=Cp <e2 +d, (x1, x2)?2
T dgy (X1,

and

n=2 n
2 2
/ €1 € do
e _ e .
(dgy )z p/2000M \ €] + dgy (x1, )? €3 + dg, (x2, )2 ‘

n—2
2

) €16 z
=C— 2 2 )
P \€ + dgo (x1,x2)

The result now follows. O

4 Similarly to the footnote in Corollary 3.32, for types A and B test functions the coefficient pl/2
can be improved to p if n > 5.
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Corollary 3.34. For € < p we have

4(n — 1) n+2 2+”2 nZJrn2
‘—Agou(xo o) = Rgolt(xp.0) + ROOu(x ol dvg
. ni2 €p -1/2 n>>5
sC(—) +C {ep™Pllogp/e)l  n=4
P el/? n=3.
Proof. The result follows easily from Corollary 3.31. O

Corollary 3.35. If i (xy,e) = UB:(xy,e) We have

/ ‘Z(n -1 90 _ Ho i
——1u — u
om | n—2 0ng, (x0,€) 80" (x0,€)

°(

()u%m+—mgwm n=4

12 12
c(f) |1ogp|+c(5) n=3,
8 P

for e < p,where § = dg,(xo, dM).

n
2(n—1) 2(n—1)
n
doyg,

n—2
)2 |1ogp|+— n>5

A
S| M| ™

Proof. From Proposition 3.27, on d M we have

U (xg,e) — Hgol (xp,¢)

‘2(n—1) 0
n—2 0ng,

8 € 3
<cl(—— )1
€ (62 + dg() (.X', xO)Q) {dgo(xvx0)§4)0}

cp! € " 1
+ TN ) .
P (62+ dgo ()C, x0)2> {dso(x,x0)§4p}

Using 8 < Cp?, which in particular implies 8 < Cp, the first term on the right-hand
side above is estimated by C (8/€)"~2/2(e +dg, (x, X0)) ™"/* 1{d,, (x.x)<4p} > and the
result follows easily. 0

4. Blow-up analysis

In this section, we carry out the blow-up analysis for sequences of solutions to the
equations (2.4) that will be necessary for the proof of Theorem 1.9. Although the
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analysis goes along the lines of [8, Sections 4, 5 and 6], here we have to consider
the possibility of both interior and boundary blow-up points, thus differing from
the situation in [1, Section 4]. As we will see in Proposition 4.2 below, type A
test functions are used to approximate solutions near boundary blow-up points. As
for interior blow-up points, we make use of type B test functions if those points
accumulate on the boundary, and type C ones otherwise.

Remark 4.1. Before proceeding to the blow-up analysis, we observe that one can
choose pa, pp and pc in Propositions 3.8, 3.17 and 3.29 in such a way that the in-
equalities of those propositions hold the three at the same time. To that end, choose
8o according to a small pp in Proposition 3.17 and then p¢ according to &g in Propo-
sition 3.29. Moreover, observe that given C = C(M, go) one can always assume
PA, PB, pc < C. This last remark will be used in the proofs of Propositions 4.10
and 4.22 below.

Let u(t),t > 0, be the solution of (2.4) obtained in Section 2, and let {#,}52
be any sequence satisfying lim,_, o ¢, = co. We set u, = u(t,) and g, = g(t,) =
4

2n
/ n= 2dvg0 f dvg, =1, forallv.
M M

It follows from Corollary 2.3 that

4(n — 1) n+2
Agotty — Rgyuty + Roouv

as v — 00.
The next proposition is an application of the decomposition result in [24],
which plays the same role here as [30] did in [8, Proposition 4.1].

ul 2 go. Then

2n
n+2

— 2n
dvg, =/ |Rg, — Roo|m+2dvg, — 0
M

Proposition 4.2. After passing to a subsequence, there exist an integer m > 0, a
smooth function u > 0, and a sequence of m-tuplets {(x; . €/ ) 1<k<m} such
that:

[e'9)
v=1"’

(i) The function u satisfies

4(n—1) w3 .
=3 Agolhoo — Rgylico + Roouls? =0, inM
Olloo/0ng, =0, onoM;

(i) Foralli # j,

* * %
EJ,V l,V 6l Uej v

* * * 2
{elv € +dg0 xiv,xjv)
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(iii) There are integers my, my, with 0 < m| < my < m, such that x,’;v € 0M for
1 <k <my, x,f’v IS M350/2\3Mf0r m +1<k<my, x;v S M\M350/2f07”
my+1<k<m,and

1}l_i)nc}oa’(g,o(x,f,v, IM) /e, =00 if k=my+1;
@(v) If
UAGf ep,) T =m

Uixy ep ) = VUBiGf e,y mit 1 <k<=m 4.1

UCi(xf ep,) Yhk=mat1,

(see equations (3.22) , (3.30) and (3.41)) then

0.

m
lim uy —uoo — ZL_‘(XZ‘,WGE.U) H'(M) =
k=1

V—>00

Proof. By modifying the arguments in [24, Section 3] to the case of Riemannian
manifolds, we can prove the existence of uy, and ﬁ(xffuf;fu) satisfying (i) and (iv)
except for, instead of using equations (4.1), the ﬁ(x;: Wé;é ) are defined by

n—2
4 —1 S n—
¥) (€)W ) u((ef) 05 ).

* *
k,v k,v

Ux e ) () = <

o0

Here, Wx;; are coordinates centered at x; | and u satisfies
sV B

n+2
-2

Au+nn—2un—2 =0 inR" 4.2)

iflim,,ﬁoodgo(x;{"’v, 3M)/€;:’v = 00, and

nt2 .
Au+nn—2un2 =0 in{y =1, .... yu) | yn > 1}

Lu=0 on {y = (y1, oo Yn1, )},

4.3)
for some ¢ € R if dgo(x,f’v, BM)/E;{"V is bounded.

Rearrange the indices and choose m | such that k > m + 1 should (4.2) holds
and k < m should (4.3) holds.

As in [14, Lemma 3.3], we can prove that u > 0 and also that (ii) holds.
The classification results in [11,21] (regularity was established in [12]) imply that
u(y) = U(y — z) (see (3.1)), for some z = (z1, ..., 2n) € R" (with z, = ¢ if
k <my).
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The points xk are now redefined as ‘ﬁx* (z).> This establishes (iii).

For each pair (x; ,, €/ ), one can check that the difference between each func-
tion obtained above and the corresponding one defined by (4.1) converges to zero
in H'(M). This proves (iv). O

Proposition 4.3. If us(x) = 0 for some x € M, then uso = 0.

Proof. This is just a consequence of the maximum principle. O

Define the functionals

4(n—=1) 2 2
v Ju ldulg dvg, + [3y Regu”dug,

n=2

(fM”%d”gO !

E(u) =

and

4(n—=1) 2 2
:—2 fM |du|godvgo + fM R u“dvg,

2n_
Juui=2dvg,

Fu) =

Observe that Roo = F (o). Hence,

2)1

2n
1= lim | u!?dv, = lim uls de +Z v
V00 M gO V00 80 (xkv ekv 80

The right-hand side of this equation is (E(uoo)/Roo)z + m(Q(S} )/Roo)2 +

(m—m1)(Y($")/Roo)? if iy > Oandml(Q(S+)/Roo)2+(m_ml)(Y(Sn)/Roo)2
if uso = 0. Thus,

Roo= (E(uoo)”/2+m1Q(S Y24 (m— ml)Y(S”)”/z)/ if oo >0, (4.4)

_ 2
and Roo = (1 Q(S1)"2 + (m = m)Y (5")"/2) ’ if 1o = 0.

5 To see that changing the centers x* i3S above does not change the limit in (ii), we consider,

for fixed j, new centers x* i satisfying dg, (x* ’F’V) /e v = C (the term €* e in the quotient

Jsv?
comes from the rescaling). If the limit in (ii) holds with 6;‘ y /el* , — 00, that relation does not
change after replacing the centers. So, let us assume e /61 , < C without loss of generality.

The triangle inequality gives

2
* * * * 2
dgo(xi,v’ ) = (dg()(xl v’ j,v) dgo(x] v j,v)> dgo(xz v’ j,v) Cdgo(x] v )
Hence,
*  zk 2 x 2 e* * 2 * * )2
d&’O(xi,u’xj,v) dgo(xl va ) j v dgo(xj v ',v) 1 dgo(xi,wxj,u)
eF e* = 2 €f et Ce* €* = 2 €f eF -¢,
i, jv RIS A iv J,v i, j,v

so that (ii) still holds with x* T replacing x;'.‘,u
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4.1. The case uqs, =0

We set

A, = {(Xk, €k, )k=1,...m € (M x Ry x Ry)™, such that

xp € oM ifk <my, xp € M\OM ifk > m| + 1,
€k 1
dgo (i, X7 ) < €60 5= & <2, 5=y =2

For each v, we can choose a triplet (xg. v, €.y, % v)k=1....m € A, such that

,,,,,

4(n —
fM n_ |d(uv Zak v”(xk vs€k, U))|g0dvgo

+/MRgo Zak vl (xp e v)) dvg,

k=1

4(n —
S/M n_2 |d( Uy Zaku(xk ek))‘godvgo

=1

+ /M Ry, (”v - Zakﬁ(Xk,Gk))zdvgo

k=1

4.5)

for all (xi, €, r)r=1,..m € Ay. Here, i(x ,.¢,) = UA; (xpvver) AN B (xp ) =
UA; () Tk <my i, ) = UB;(xk,v.€k,p) and i (x, se0) = WB; (e .ex) ifmy+1=<
k < mz,andu (Kkv k) = lUc, (Xkov€kv) and u Uxp,en) = lc, (Xp.€x) if k > mp+ 1; see

(3.22),(3.30) and (3.41).
Proposition 44. If k > my + 1, then lim,_, o dg, (xk,v, IM) /€r,y = 0.

Proof. 1t follows from the triangle inequality and (4.5) that

gy (Vs OM) _ dy (eks OM) _ g (3, OM) 1

k —_ k
€k.v 26k’U 26k’U 2

Now the right-hand side goes to infinity as v — oo by (iii) of Proposition 4.2.

Proposition 4.5. We have:

(i) Foralli # j,

lim
V—> 00

+
€jv €i.v €iv€jv

2
€iv €jv d (xl.,l)sx',l))
jv % j — .

O
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(ii) We have
=0.

hm |MV Zak Vu(xk v>€k,v)

V=00 HY (M) —
k=1

Proof. This is a simple consequence of Proposition 4.2 and the definition of
(Xk.vs €k.v, Qk.v); see [8, Propostion 5.1] for details. O

Proposition 4.6. We have

€
dgy (v, X7 ) < 0(D€f 6"— —14o(), and ar,=1+o(1),
k,v

Jorallk = 1,...,m. In particular, (X v, €k v, Qk,v)k=1
A, for v sufficiently large.

m 1S an interior point of

.....

Proof. 1t follows from Propositions 4.2 and 4.5 that

m m
: :akavu(xk,vaék,v) - : :M(X;U,G;U)
= k=1

H(M)

m m
Z U(xg,ef,) uy — Zak,vﬁ(xkyv,ek,v) =o(l).
k=1 H(M) k=1 H(M)
Now the result follows. 0
Notation. We write u, = v, + w,,, where
m m
vy = Zak,vb_t(xkqv,gk,v) and wy = Uy — Zak,vﬁ(xki,v,ék,u) . (4.6)
k=1 k=1
Observe that by Proposition 4.5 we have
4(n—1)
/ —|de| ,dvg, + / Rg,widvg, = o(1). (4.7)
M n— M

Set
-2

(nl 2n
cvz(/ E= dago) (/ w72 zdvgo)
oM

Proposition 4.7. Fix p < Py. Let Y, : Qv = B (0) C R} — M be Fermi

coordinates centered at xi , if | <k <my, and let Yy, : Q. = Bxk‘u’/) C R" —
M be normal coordinates centered at xi , if m1 + 1 < k < m (see Definitions 3.1
and 3.2). We have:

n+2
- n—2
/M U (g o) Wy dVg0

@) =o()Cy;
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) 2 e = Y0
o / (nxkzu € v) 2v i 2 wy dvgy| < o(1) €y ;
» 2, + 1V,
nt2 ekmk‘i(x)
(iii) / il wy dvgy| <o(1)Cy, ifmi+1<k=<m,
o k) 2 T ’
exv ¥ (x) .
andf T 2 N, dvg | < 0(D) Cy, ik < m,
o B al/aes]

where we are denoting y = (yl, ooy Yn—1) for any y = (y1, ..., yn) € R".
Proof. It follows from the definition of (xx,,, €k, v, otk,,) that
4n—1) _ _
——— iy e0) AWV go + Rl (e ) Wy | dVgy =0
M n—2

Integrating by parts, we obtain

4n—1) _ _
Agou(xk,vfk‘u) - Rgo”(Xk,v,ek,u) wvdvgo
M n—2

4n—1) 9
+ — dog, = 0.
/8 n—2 0ng T U (e, Wy dOgy =

We claim that

H 4(n—1) _ 2

2 Agou(kavek,v) RgOu(xk v, €k, v) + ROO (xk o€k, v) = 0(1)9

2n_
n— Ln+2 (M)

and

20-1) =o(1).
L n

—U
H 8ng0 (xk,lhék,\)) (BM)

The first statement follows from Corollary 3.34. As for the second one, observe
first that
8l/_t(xk,\u€k,v)/ang() =0

on IM if Uey ) = UC:(xeyenn)- I Uireyenn) = WA (v, this statement
follows easily from Proposition 3.15 and (2.1), and if Ul yiern) = UB:(xp.y.ex.y) this
is Corollary 3.35, also making use of Proposition 4.4.

This proves (i). The remaining statements follow similarly. O

Proposition 4.8. There exists ¢ > 0 such that

n+2_
/Z Ao e Ws dVg,

4n—1 2 2
=(-o90 {/M ﬁ'dwvlgodvgo + /M Rgyw,, dvg,

for all v sufficiently large.
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Proof. Once we have proved Proposition 4.7, this proof is a contradiction argument
similar to [8, Propostion 5.4] and [1, Proposition 4.6] and we will omit the details.
Assume by contradiction that there is a sequence {w,} satisfying

4 =D iR d Ry 02 dvg, = 1
w g et [ Reth e =

and

. on+2— AN .5
vll{go n — 2ROO /M l;u(xk,vfk.v)w” dUgO Z 1 :

After rescaling around xj ,, the new sequence obtained converges (weakly in
H/ (R7%) if k < my and in HILC(R”) if Kk > m; + 1) to a certain w. It turns

loc
out that one can choose k € {1, ..., m} in such way that w satisfies

1\ .,
—— ) w(y)dy >0
/m (1+|y|2>

. 1 2
| 1aimPay < nn+2) (—2) B2(y) dy
R r \ 141yl

if kK < my, or the same two inequalities with R” replaced by R" if k > m + 1.
On the other hand, if k¥ < m, due to Proposition 4.7, w satisfies

and

1\
/m<1+|y|2> @ =0,

L\ T 1P,
/m(lJrIyIz) rrpp =0

1 S

Vi o
— w(y)dy =0,
/R»; (1+|y|2> L+ |y[?

where y = (y1, ..., yn), and j = 1,...,n — 1. By considering the corresponding
equations on the round hemisphere we obtain a contradiction as in [1, Proposi-
tion 4.6]. If k > m; + 1, w satisfies the same last three equations (with j =
1, ..., n for the last), but with R’} replaced by R", and the same contradiction is
reached by considering corresponding equations on the round sphere instead of the
hemisphere. O

Corollary 4.9. There exists ¢ > 0 such that

n+2— n% 2 4(}’1—1) 2 2
n _ZROO‘/I\VI‘UV 2wv dngS(I—C) {/M ﬁ|dwvlg0dvg0 +/M Rgowv dvgo

for all v sufficiently large.
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Proof. By the definition of v, (equation (4.6)), we have

n/2

: —n— 2 _
Ull?go Z (xk vo€k,v) dUgO =0.
Hence, the assertion follows from Proposition 4.8. O

Proposition 4.10. For all v sufficiently large, we have

m 2/n
E(w,) < (Z E(ﬁm,em"ﬂ) :

k=1

Proof. Choose a permutation o : {1, ..., m} such that €, ;) , < €5(j),» foralli < j.

During this proof we will omit the symbol o, writing ¢; ,, instead of €4 ;),,, so that
€v < €, foralli < j. After calculations similar to the ones in [8, Proposition
5.6] we obtain

n=2

2 o
E(w)) (/ v‘§'2dvg0)
M
2

< (X Bua?) ([ i ) 3] T
< Ui ooery v v —c
(Xk,vs€k.v) u v £0 L 612"‘) +dg0(xi,Vaxj,U)2

k=1 i<j

4(n—1) _ _
- 2] Zal v j, Vu(xz vy €i, u)( ) Ago”(x_/,u,éj,u) - Rgou(xj,wfj,v)

i<j

I

n+2
+ Rooll], )dvgo

(xj vs€j.v)

8(n — 1) / — al/_t(xj vsé/'.v)

ai,va_i,vu(xivv,ei,v)%dago
M ; gy

n+2

- 220[1 VO[] V(F(M(Xj v,€j, v)) ROO)/ u(xz v, €i, v) (x] s€j, v)dvg()

i<j

It is not difficult to see that F (U(xjpej) = Roo + o(1). This is more subtle
in the case iU(x;,.e;,) = UB;(xj,.¢;,)» When we make use of Proposition 4.4 and
Lemma 3.20. Then, because of [8, Lemma B .4], we have

n—2

n+2

\F (i )—R |/ i e dvg, <o(1) AT i
(X.],uafj,v) oo ()szez v) (xjve 80 +d,0(xl U’xj v) .
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Then, using Corollaries 3.32 and 3.33,

n=2

2_” n
E(vy) (/ v{]zdvg0>
M
m N N
= E‘(l’_t(xk,v»ek,v))7 </ vsz)
k=1 M

n=2
2
E €ivEj
- (C_CmaX{PA’PBuOc}l/Z—0(1))( 2 - 2) :
€ + dgy (Xiv, Xjv)

i<j

Hence, the assertion follows by choosing p4, pp and pc smaller if necessary (see
Remark 4.1). ]

Corollary 4.11. Under the hypothesis of Theorem 1.9, we have
E(v)) < R, for all v sufficiently large.

Proof. Using Propositions 3.8, 3.17 and 3.29, we obtain E (i, ¢.,)) =< Q(Si)
fork < my,and E(u(y,.¢.,)) < Y(S") for k > m; + 1. Then the result follows
from Proposition 4.10 and (4 .4). Ll

4.2. The case uy, > 0

Proposition 4.12. There exist sequences {Yg}aen C C®(M) and {Mg}aen C R,
with Aq > 0, satisfying:

(i) Foralla € N,

4
MDA g — RggWa + hatle g =0 in M

a _ .
%1//}1—0 Ol’laM,

(ii) Foralla,b € N,

4, 1 ifa=0»b
n—2 _
AlwaWb”m dvg, = {0 ifa #b:

(iii) The span of {{a}aen is dense in L*>(M);
(iv) We have lim,_, 5o Ay, = 00.

Proof. Since we are assuming Ry, > 0, foreach f € L?(M) we can define T (f) =
u, where u € H'(M) is the unique solution of

4
4(n—1) _ n—2
=3 Agot — Rgou = fuse™ inM

el _
8ngOu_O on oM .
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Since H'(M) is compactly embedded in L*(M), the operator 7' : L*(M) —
L?(M) is compact. Integrating by parts, we see that 7' is symmetric with respect to
4

the inner product (Y1, ¥p) — f u Vi Youlstd Vg, - Then the result follows from the
spectral theorem for compact operators. O

Let A C N be a finite set such that A, > Z—i‘%ﬁoo for all @ ¢ A, and define the
projection

r(f)= ; ( /M wufdvgo) Yauss® = f — ZA ( /M mfdvgo> Yauls? .

Lemma 4.13. There exists { > 0 with the following significance: for all z € R4
with |z| < ¢, there exists a smooth function u, satisfying du;/9ng, =0 on M,

4
f use” (ih; — Uoo)Yadvg, = z4 foralla € A, (4.8
M
and
4n—1) = _ -~
r ﬁAgO’/‘Z _RgOMZ+ROOu£ =0. (49)

Moreover, the mapping 7z — u; is real analytic.

Proof. This is just an application of the implicit function theorem. O

Lemma 4.14. There exists 0 < y < 1 such that

4(n—1) _ .=
Yo | ——=Agylt; — Ry lt; + Rooll dvg,
M n—2

I+y
E(u;)—E(us) <C sup

acA

)

if |z| is sufficiently small.

Proof. Observe that the function z — E(ii;) is real analytic. According to results
of Lojasiewicz (see equation (2.4) in [29, page 538]), there exists 0 < y < 1 such

that
1+y

|E(itz) — E(uoo)| < sup

acA

’

0 EG
Py uz)

Za

if |z] is sufficiently small. Now we can follow the lines in [8, Lemma 6.5] to obtain
the result. O

We set

.....
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For each v, we can choose a pair (z,, (Xk.v, €k.v, %.v)k=1....m) € A, such that

4(n — - N i ;
/ id( Uy — Uz, — Zaksvu(xk,vvekv‘f'))igodvgo
M

n—= =1

m
+ /M Ry, (uv — Uz, — Zak,vﬁ(xhu,ek,u))zdvgo

k=1

4(n — o 2
=< /M |d( Uy —uz; — Zaku(xk,ek))|godvg0

n-— =1
n 2
+f Ry (uy — it — Zakﬁ(xk,ek)) dvg,
M k=1

for all (z, (x, €, a)k=1,...m) € Ay. Here, it(y, . o) = UA () and ity ) =
U A; (i) TR S0, 0 60) = UB: (i ery) AN Uy e) = UB: (i) Ty 41 <
k< my,and it(x \.e,) = UC;(xp0.€r,0) and u Uxp,e) = UC;(xp,e) 1Tk = ma + 15 see
(3.22),(3.30) and (3.41).

The proofs of the next three propositions are similar to Propositions 4.4, 4.5

and 4.6.
Proposition 4.15. Ifk > my + 1, then lim_, oo dg, (xk,v, IM)/€x, = 00
Proposition 4.16. We have:

(i) Foralli # j,

Il
8

2
lim {Gi,v n €jv + dgo(xi,v, xj,v)
V—00

€jv €jv €i,v€j,v
(i1) We have
=0.

lim “u"' Uz, — Zakv"u(xk,vaék,v)

V—00 H(M)
k=1

Proposition 4.17. We have |z,| = o(1), and

d * * €k,v
g0 (Xk,vs Xg ) <o(D) €, o = I+o(l), and ap,=1+o0(1),
k,v

forallk =1, ..., m. In particular, (2, (Xk,v, €k,v, U v)k=1,...m) IS an interior point
of A, for v sufficiently large.

Notation. We write u,, = v, + w,, where

m

vy =il + ) Chvil(y e, AN Wy =y — i, — Y iy, - (410)
k=1 k=1
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Observe that by Proposition 4.16 we have

4(n—1)
/—|d v| dvgo—i—/ Ry widvg, = o(1). 4.11)
M M

n—
n— n=2
2(n—1) 2(n—1 2n 2n
C, = lwy| =2 dog, + |wy | =2 dvg, .
oM M

Proposition 4.18. Fix p < Py. Let Yx,, : @,y = B (0) C R — M be Fermi

coordinates centered at xi,, if 1 < k < my, and let Yy, : Q. = E)Ck,vp C R" —
M be normal coordinates centered at xi ,, if m1 +1 < k < m (see Definitions 3.1
and 3.2). We have:

Set

4
@) / MOOZWa Wy dvgo
M

02
. )
(ii) /M U g vrer) Wy dVg0

< o(l)/ |lwy|dvg,, fora e A;
M

=o(H)Cy;

g, W WP
ka 6kv+|1//kv(x)|
n+2 Ek 1)0‘ (X)
(iv) / B a5 wodvg | S0o()Coy ifmi+1<k<m,
2, ”ek,,+|wkv<x>|2

€k vwk ,,(x)
and (xku €k,v) 2
ka eku+|w1(v(x)|
where we are denoting y = (y1, ..., yu—1) for any y = (y1, ..., yn) € R".

Proof. (i) Set 1/7a,z = 0Ju;/dz4. It follows from the identities (4.8) and (4.9) that
Va0 = Y, foralla € A. By the definition of (zy, (xk,v, €k,v, 0 v)1<k<m), We have

wy dvg,| <o(1)Cy, ifk <my,

4n—1) - 3
(dVa,z,, wy)gdvg, + Ry Va,z,wydug, =0.
M n—2 M

Hence,

i _ 4(n — )
a | usk Yawydvg, = — ——— AgVa — RgyWa | wy dug,
M M n—

4n—1) - ~
:/ <7Ago(wa,zu —VYa) —Rgy(Va,z, —Wa)) wy,dvg,
M\ n—2

However, we know that ax/}a,h/ango =0on dM. Then,since A, > 0 and |z, — O
as v — 0o, we conclude that the assertion (i) follows.
The proofs of (ii), (iii), and (iv) are similar to Proposition 4.7. O
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Proposition 4.19. There exists ¢ > 0 such that

n+2— 2
n_zROO/ ( +ZM(XI< ék.u))wvdvgo

< —c)/ |d w2, + Regw? ) dvg,

for all v sufficiently large.

Proof. As in Proposition 4.8, once Proposition 4.18 is established, this proof is a
contradiction argument similar to [8, Proposition 6.8] and [1, Proposition 4.18]. [

Corollary 4.20. There exists ¢ > 0 such that

n+2— 1)
n—2RO° y vl w dvg0<(1—c) 7|d 1,|g0—i—ng>de

for all v sufficiently large.
Proof. By the definition of v, (see (4.10)), we have

m

i =2 it 5
. n=2 __ ., n=2 __ —n 2 —
VIEEO " Vv Uoo Z e 2€k,v) dvgo =0.
k=1
Hence, the assertion follows from Proposition 4.19. O

The next two propositions are similar to Propositions 6.14 and 6.15 of [8] and we
will just outline their proofs.

Proposition 4.21. There exist C > 0and 0 < y < 1 such that

2)1

2 (1+y) LIS YO
2Ry, — Roo|n+2dvg0} +C Zekfv
k=1

E(iz,) — E(us) < C {/
M

if v is sufficiently large.

Proof. Asin [8, Lemmas 6.11 and 6.12], because du, /0ng, = du,/0ng, = 0 on
dM , we can show that there exists C > 0 such that

_ n+% n+2 _ "+% n=-2
Iy =iz, 12 < Clui™ (R, — Roo) "3, +CZei 4.12)
Ln=2(M) Ln+2 (M)
and
ey = iz, 1y < Clled™ (R, = Roo)ll 2, (M)+CZek,i, (4.13)

k=1

for v sufficiently large.
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We will prove the estimate

4n—1)  _ 2
Y 7Agouh Rgyiiz, + Rootf,” ) dvg,
" —

sup
acA 2
o . o )12#;12 m w2 (414)
§C{/ ui 2| Ry, —Roo|n+2dvg0} +CZ€k,2v
M k=1

for v is sufficiently large.
Integrating by parts, we obtain

4n—1) _ nt2
Va | ——5 Agoltz, — Rygliz, + Rooilz,” | dug,
M n—2

4(n—1) ni2
= Yo | ———=—Agotty — Rgyuy + Rooul™ dvg,
M n—2
n+2

—|—)»a/ o zl/fa(uv uz,)dvg, — Roo/ 1/fa(uv = —uz, )dvgo
M

n+2

. n+2
Using the fact that 4(,1"_721) Agotty — Rggty + Rogty > = —(Rg, — Roo)uy* and the
pointwise estimate
n+2 ”+2 _ _ n+2
luy ™ — | <Cu uy — iz, | 4+ Cluy — iz, |72,
we obtain
4(n—1) _ _ — 2
sup Ya 72Agouz]) — Rgyliz, + Roolif, ” | dvg,
acA|lJM -
n+2 . ﬂ_Jr%
<Clluy"(R,, — R n + Clluy, —u + Clluy —ug ||", .
[ ( 8v OO)”anTrZ(M) lluy Zv”Ll(M) lluy ol L%(M)
Then it follows from (4.12) and (4.13) that
dn—1) _ 2
sup Va 724%“211 Rz, + ROOqu dvg,
acA|lJM -
L—I—% n+2 n+2
< Clluy ™ (Rg, — R ; + Clluy ™ (Rg, — R
luy™ (Rg oo)”anﬁ(M) lluy = (Rg oo)”L P (4.15)
LS
+C Z ek"‘;} .
k=1

On the other hand, by Corollary 2.3 we can assume

n+2

n+2

_ on 2n
lluy ™ (Rg, — Roo)IIL 25 oty (/ |Rgu—Roo|"+2dvgv> <1. (416
M
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The estimate (4.14) now follows using the inequality (4.16) in (4.15). Proposition
4.21 is a consequence of Lemma 4.14 and the estimate (4.14). ]

Proposition 4.22. There exists ¢ > 0 such that

n m " % m n—2
E(UV) 5 (E‘(I’_tZu)2 +ZE(ﬂxk,€k,v)2) _Czek,zv
k=1

k=1
if v is sufficiently large.

Proof. Choose a permutation o : {1, ..., m} such that €, (), < €5(j),» foralli < j.
During this proof we will omit the symbol o, writing ¢; , instead of €4 ;),,, so that
€y < €, foralli < j. After calculations similar to the ones in [8, Proposition
6.15], we obtain

n=2

2 =
E(vy) </ vﬁzdvg())
M
n—2

2
n m 2\ 2n_ n
< (E(ﬁzvﬂ+ZE<a(xk,v,ek,v>>f) ( / vv“dvgo)
k=1 M

m dn—1) ] N
- Zzakav ( 2 AgOMZU - RgO”Z\) + F(MZV)MZU )M(xk,UsEk,v)dng
=1 M=
4(” - 1) 8ﬁ(x ',vse',v) -
B Zzai’vajvvf 2 aj - u(xi,v»fi,u)dvgo
i<j M - Ngo
4n—1) _ _
- 22051"1,051-,,,‘/‘ ( ) Ago“(x_/,uﬁj,v) - Rg()”(x_/,u,G_j,u)
i<j M n

n+2

- _m -
+ F(”(xj,u,6_/.u))”(x_,-.v,e_,~yv)> ”(Xi,u,éi,u)dvgo
n—=2

5
5 €i,v€jv
3T ey -

EJZ'YU + dg() (xi,l)7 xj,l))z

Since F(u;,) = F(us) = Roo as v — 00, we have the estimate

J.

Now the assertion follows as in the proof of Proposition 4.10. O

n—z

4(n —1 n+2 -2
( ) ”_t(xk,mék,v)dvgo = 0(1)616,1 N

ﬁAgob_‘Zv — Ry,itz, + F(iz,)iiz,”
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Corollary 4.23. Under the hypothesis of Theorem 1.9, there exist C > 0 and 0 <
y < 1 such that

_ 20 o B2 (14y)
E(w,) < Ruo+C (/ u;’*2|RgV — Roolmdvgo) )
M

if v is sufficiently large.

Proof. Using Propositions 3.8, 3.17 and 3.29, we obtain E(it(y ,.¢.,)) < o)
forallk = 1,...,my and E((x . ,)) < Y (") forall k = m; + 1, ...,m. Then
the result follows from Propositions 4.21 and 4.22 and (4.4). L]

5. Proof of the main theorem

As in [8, Sections 3 and 7], the proof of Theorem 1.9 is carried out in several
propositions, whose proofs will be only sketched in what follows.

Let u(¢),t > 0, be the solution of (2.4) obtained in Section 2. The next propo-
sition, which is analogous to [8, Proposition 3.3], is a crucial step in the argument.

Proposition 5.1. Let {t,},2 | be a sequence such that lim,_,t, = 0o. Then we
can choose 0 < y < 1 and C > 0 such that, after passing to a subsequence, we

have

® - n_ — o 52 (14y)
Rg(tu) - ROO S C {/ u(t])) n—2 |Rg(tu) — Rooln+2dvg0}
M

forallv.

Proof. 1t is a long computation using Corollaries 4.9, 4.11, 4.20 and 4.23; see [8,
Section 7]. O

Proposition 5.2. There exists C > 0 such that

() n . ) %
/ {/ u(t)n=2 (Rg(t) — Rg(t)) dvgo} dt <C
0 M
forallt > 0.

Proof. A simple contradiction argument using Corollary 2.3 and Proposition 5.1
(see [8, Proposition 3.4]) shows that there exist 0 < y < 1 and #p > 0 such that

= - n_ — o B2 (14y)
Rg(t) - Roo < C {/ u(t)n72|Rg(t) — Roo|"+2dvg0}
M
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for all + > fy. Then it follows that

. - on . ; n+2(1+y)
Rg(l)_ROO < C{-/Ildu(t)n2|Rg(t)—Rg(t)|n+2dUg0}
+ C(Eg(t) - EOO)H_V )
hence
o - on . m n+2(1+y)
Re) = Roo = C {/M u(t)n=2| Ry () — Rg(r)l"”dvgo} (5.1)

for r > O sufficiently large. By (2.7) and (5.1), there exists ¢ > 0 such that

d — — n—2 — 2 o
E(Rg(t) - Roo) = —T M(Rg(;) — Rg(t)) u(t) "—Zdvgo
n+2

= 2n_ n
"2u(t) -2 dvg,

n—2 — 2
= . |Rg(t) — Rgar)

L
< —c(Rg() — Roo) ™7

_ _ 1-
for ¢ > O sufficiently large. Hence, %(Rg(,) — Roo)_ﬁ > ¢, which implies

I+y

Eg(,) — Rs < Ct™ =7, fort > 0 sufficiently large.

Then using Holder’s inequality and the equation (2.7) we obtain

2T o o 3
/ (/ (Rgy — Rgry) M(f)"—zdvgo) dt
T M
2T > 2T o, . 3
< / dt / / (Rg(;) — Rg(t)) u(t)mdvgo dt
T T Jm
<CT

1

—T(Rgm Rg<27>)}

V
-



1254 SERGIO ALMARAZ AND LIMING SUN

for T sufficiently large. This implies

00 N ) " %
/ </ (Re(r) — Rg() u(t)"—Zdvgo) dt
0 M
! —_ 2 2n %
=/ (/ (Re) = Rgw) u(t)"_Zdvgo> dt
0 M

ok+1 1

00 . . 1
+ Z/ (/ (Rg(r) — Rg(t))zu(t)n2dvgo> dt
k=0 2k M
© Y
<cYy 2 wr<c,
k=0

which concludes the proof. O

Proposition 5.3. There exist C, ¢ > 0 such that

supu(t) < C and i}r‘l/lfu(t) >c, forallt>0. 5.2)
M
Proof. We first claim that, given yy > 0, there exists r > 0 such that
/ w(t)2dvg, <y, forallt >0, x e M. (5.3)
B, (x)

Indeed, we can make use of Proposition 5.2 as in [8, Proposition 3.6] to obtain the
above inequality.

Fixn/2 < g < p < (n+2)/2. According to Corollary 2.3 there is C; > 0
such that

/ |Rg()|Pdvgy < Co, forallt >0.
M

4
Set yo = y,"*C, "™, where y; is the constant obtained in Proposition A.3. By
(5.3), there is » > 0 such that

/ dvesy <y, forallt>0,xeM.
By (x)

Then

P—4q q
p P
f |Rg(r)[Tdvgry < {/ dvg(z)} {/ |Rg<t>|”dvg<t)} 7.
By (x) By (x) - (X)

Hence, the first assertion of (5.2) follows from Proposition A.3. The second one
follows exactly as in the proof of the second estimate of (2.8). O

Proof of Theorem 1.9. Once we have proved Proposition 5.3, it follows as in [8,
p-229] that all higher order derivatives of u are uniformly bounded. The uniqueness
of the asymptotic limit of R, ;) follows from Proposition 5.2. O
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Appendix
A. Some elliptic estimates
Let (M", g) be a complete Riemannian manifold with boundary d M and dimension

n > 3, and let n, be its unit normal vector pointing inwards.

Definition A.1. We say that u € H'(M) is a subsolution (resp. supersolution) of

(A1)

Agu+ Pu=f in M
Bu/ang+ﬁu =f ondM

if, forall0 <v e C Cl (M), the following quantity is nonpositive (resp. nonnegative)

/ ((du, dv)g — Puv + fuv)dvg +/ (—Puv + fv)doy,.
M oM

The next proposition is similar to [17, Theorems 8.17 and 8.18]; see also [19,
Lemma A.1].

Proposition A2. Letg > n,s > n—1land P € L92(M), P € L*(dM) with
P La2(M) + ||PllLs (M) < A.

(a) For any p > 1, there exists C = C(n, p,q,s, g, N) andro = ro(M, g) such
that

_n 2_27}1
sup u <Cr » ||”||Lp(32t(x)) +Cr ||f||L‘1/2(B;;(x))
B (x)

T
+ Cr' TS f s Dy (1)

foranyx €e OM,r <rpand0 <u € H'(M) subsolution of (A.1).
(b) I];ll <p< nnTz’ there exists C = C(n, p,q,s, g, A) andrg = ro(M, g) such
that

_n . o_2n
r 1’||u||L,,(th(x)) = CBIP(f)M +Cr= ¢ ||f||Lq/2(B;_(x))
. (x

_n=1 =
+Cr' S flles by o
foranyx e OM,r <rpand0 <u € H' (M) supersolution of (A.1).

Proof. After rescaling we can assume r = 1. Let 8 # 0,k = ||f||Lq/2(B4+) +

11 £1lLs(py) and 0 < x € CL(B;). We will assume that k > 0. The general case
will follow by tending & to zero. Set u = u + k.
If u is a subsolution, by definition we have

/ (du, d(x*iP))gdv, 5/ (Pu— f)x*uldv, +/ (Pu— fyx*uldog,
M M oM
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and we have the opposite inequality in case u is a supersolution. Choosing g > 0
should u be a subsolution and 8 < 0 should u be a supersolution, in both cases we
obtain

/Xzaﬁ—wda@dvgfwrlf 2xiPldxgldit]g dvg
M M
+|ﬂ|—1/ X2(PL+ k7 P dvg (A2)
M
+|ﬂ|‘1/ X2(P|+ k7 fhiaf T doyg
oM

by means of (du, d(x*uP))g=2xuP (dx., dit)g+p x*u#~"|dui]}. Applying Young’s
inequality to the last term of (A.2) we arrive at

/ Kb dalgdv, < €117 / ldx [+ dvg
M M
+C|ﬂ|‘1/ AP+ K Daf du,  (A3)
M
+C|ﬂ|1/ P+ k| F i do.
oM
Seth = |P|+k~'|f|,h=|P|+k~'|f]and

_prl
_Juz ifpg#E—1
logu ifg=-—1.

Then (A.3) can be rewritten as

2. 2 (B+1)? 2.2
x“ldwl;dv, < C——=— ldx 5w dv
/M F B2 ST

2
+c% / hwdv, (A4)
M

1)? _
+CM-/ thwzdcrg
1Bl Jom
if B # —1and
2 2 2 2 27
/ X |dw|gdvg§C/ |dx|gdvg+C/ X hdvg—l—C/ Xx“hdo, (AS)
M M M aM

if B = —1. It follows from X2|dw|§ > %|d(xw)|§, —w?|dy |§ and Sobolev inequal-
ities that

o o
(/M(Xw)nzdvg> —C/M ldx |3 wdv, SC/MX%dw@dug (A6)
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In order to handle the right-hand side of (A.4) we use Holder’s and interpolation
inequalities to get
2,2 2
<
/M x“hw dvg = ”h”Lq/z(BD”Xw”LZq/(q*D(BZ')
< Ikl oy (€2 Ix Wl v gy €2 I wll 2y y)? (AT
=< 2”h”L‘1/2(BI) (GHXw”iZn/(an)(B:) +e M ||Xw||i2(BZr))

where ) =n/(q —n),and

f xhw?dog <|hllLspllxwl a1 p,)
oM

<1l s by (€PN X W 200 02 gy F€ 22 5w 20pyy)> BD)

=< 2||}_l||L5(D4)(€ llxw ||i2(n—l)/(n—2)(D4) +e 2 ||Xw||%2(D4))

where up; = (n —1)/(s + 1 — n). It follows from the Sobolev embedding theorems
that

e | (xw)’do, < e/ |d(xw)|;dvg + e 27! / (xw)*dvg
Dy B B
4 4

and

2n—1) 12 2
([ G =doy)™ < | 1dGaw v
Dy By
Then the inequality (A.8) becomes

/ X hwdoy < Ce|lhllLs(py) / |d(xw)|3dv,
aM Bf
(A9)
+Ce—2”«2—‘||h||LS(D4)/+(Xw)2dvg.
B4

Choosing € = c|B|(B + 1)72A~!" with ¢ > 0 small, we can make use of the
inequalities (A.6), (A.7), (A.8) and (A.9) in (A 4) to obtain

n—=2
n

(| cwidn) ™ =ca+pp™ | dx2+xwld. (A0
B B §

Here,y = 8+ 1,u = max{u; +1,2uy +2},and C depends on A and is bounded
when | 8] is bounded away from zero.

Forany 1 <r, <rp <3 we choose x as a cut-off function satisfying 0 < y <
1,ldx| < 2/(rp — ra) and

x =1 inB;’;
x=0 inBf\B}.
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Using this in (A.10) we obtain

n—2
n "oocd 2u
itsdn, ) < CLEIDT [ gy, (A.11)
B, b —Tq B,'Z

1/e
If we set (e, r) = (/Br ﬁedvg) and 8§ = n/(n — 2), the estimate (A.11)
becomes

2
ca NG
OBy, ra) < (w> T oG if y >0
T la (A.12)
ca N
®(y, rp) < (ﬂ) "oy, ra) if y <0,
r'p —Fq

It is well known that lim,_, oo ® (e, r) = Sup g+ u and lim,—, _oo (e, 7) = infB’_Jr u.
The rest of the proof follows as in [17, p.197-198] by iterating the first inequality in
(A.12) to prove (a), and by using (A.5) and iterating the second inequality in (A.12)
to prove (b). ]

Once we have established Proposition A.2(a), the proof of the next proposition
is similar to [1, Proposition A.3].

Proposition A.3. Let (M", go) be a compact Riemannian manifold with boundary

oM and with dimension n > 3. For each q > n/2 we can find positive constants

y1 = 1M, go,q) and C = C(M, go, q) with the following significance: if g =
4

un=2 g is a conformal metric satisfying

[ dvy, <1 and / |Rg|? dvg < y1
M By (x)

for x € M, then we have

n—2
. o
u(x) < Cr_Tz </ dvg)
By (x)

Using Proposition A.2(b) and interior Harnack estimates for elliptic linear equa-
tions (see [17, Theorem 8.18]), one can prove the next proposition by adapting the
arguments in [8, Proposition A.2].

Proposition A4. Let (M, go) be a Riemannian manifold with boundary oM, P a
smooth function on M, and suppose u that satisfies

—Agou(®) +Pu>0 inM
0
u=~0 onoM .

Mgy
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Then there exists C = C(P, go) such that
Cinfu > dvg,.
1]rll/] u > /Mu Vgo

In particular,
n+2

n n—2
/ u%dvgo < Cinfu (supu) .
M M M

B. Construction of the Green function on manifolds with boundary

In this section we prove the existence of the Green function used in this paper
and some of its properties. The construction performed here extends the one in
[1, Proposition B-2]; see also [14, page 201] and [5, page 106].

Lemma B.1. Let (M, g) be a connected Riemannian manifold of dimension n > 2
and fixx € M and a € R. Let u : M\{x} — R be a function satisfying

lu(y)| < Codg(x, y)* and |Veu(y)lg < Codg(x, y)* ",

for any 'y € M, with x # y. Then, for any 0 < 6 < 1, there exists C1 =
Ci1(M, g, Co, o) such that

lu(y) — u(z)| < Cidg(y, 2)% (dg(x, )70 + dy(x, 2)*7?)
foranyy,z € M,withy # x # z.

This is [1, Lemma B.1]. For the reader’s convenience, we provide the proof here.

Proof. Lety # x and 7 # x.
1% case: dg(y,2) < %dg(x, y). Let y : [0,1] — M be a smooth curve such that

y(©) =y, y(1) = z,and [ [y/(1)gdt < 3d(y, 2).

Claim. We have 1d,(x, y) < do(y (1), x) < 3d,(x, y).
Indeed, since dq (v, y (1)) < %dg(y, 7) < %dg(x, y), we have

3 1
dg(x’ V(f)) = dg(-x’ )’) _dg(y(t)v y) = dg(x7 )’) - ng(-x’ Y) = ng(x7 )’) .
Moreover,

3 7
dg(y (1), %) < dg(y (1), y) +dg(y, %) = 7 dg(x, y) +dg(x,y) = 7dg(x, ).

This proves the claim.
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Observe that u(z) — u(y) = fol g(Veu(y (1)), y'(t)) dt. Thus,

lu(y) —u(2)| = SuP Vg M(V(t))lg/ [y (0] gdt

tel0,

< C sup dg(y(1),x)*” 13 d 2 (3, 2)
tel0,1]

< C(@)dg(x, )" dg(y,2) < Cla)dg(x, y)* Pdg(y,2)" .
2" case: dg(y,z) > %dg(x, v). In this case, we have

lu(y) —u@)| < u)| + |u@)| < Cdg(y, x)* + Cdy(z, x)*
=< Cdg(y, X)Ol—ng(Z, y)9 + Cdg(Z, x)a—e(dg(x’ y) +dg(y, Z))9
< Cdg(y, 2) (dg(x, y)* 70 + dg(x, 2)* 7). O

Let (M, g) be a compact Riemannian manifold with boundary d M, dimension
n > 3, and positive Sobolev quotient Q (M).

Notation. We denote by L, the conformal Laplacian Ag 4(n 1) Rg,and by B, the

boundary conformal operator 8187 Hyg, where 7, is the inward unit normal

2(n 1)
vector to dM.

Setd(x) = dg(x,dM) forx € M,and M, = {x € M ; d(x) < p} for p > 0.
Choose pp = po(M, g) > 0 small such that the function

M2,50—>3M
X X

is well defined and smooth, where X is defined by dg (x, X) = dg(x, 9M), and po/4
is smaller than the injectivity radius of M. Then, for any 0 < ¢ < 2pp, the set

M = {x € M; d(x) =t} is a smooth embedded (n — 1)-submanifold of M. For
eachx e M B0 s define the function

Mzﬁo — ad(x)M
Y= x,

where y, is defined by dg (v, yx) = dg(y, 8gyM).

For any x € My, and pg € (0, po), we define the local coordinates v (y) =
(Y1, -+ Yn) On M3, where y, = d(y),and (y1, ..., y»—1) are normal coordinates of
¥x,centered at x, with respect to the submanifold dy(x)M . Then (x, y) — ¥, (y) is
locally defined and smooth. Observe that ¥, (x) = (0, ..., 0,d(x)) forany x € My,
and that ¢, are Fermi coordinates if x € d M. Moreover, in those coordinates we
have gy, = San and gup(x) = 84p,fora, b = 1, ..., n, and the inward normal unit
vector to dM is dyr'(3/dy,), see Figure B.1. Choosing fo possibly smaller, we
can assume that, for any x € Mj,, ¥x (y) = (1, ..., y) is defined for 0 < y, < 200
and [(y1, «..s Yu—1)| < 0.
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Figure B.1. Illustration of the notation.

Proposition B.2. Let py € (0, py), xo € M and d = [%] Suppose that one of
the following conditions holds:
(a) xo € OM and there exist C = C(M, g) and N sufficiently large such that

Hg(y) < Cdg(x0, )V, forally e dM; (B.1)

(b) xo € Mp,2 and Hy =00ndM;
(c) xo € M\Mpp,.

Then there exists a positive Gy, € C*°(M\{xo}) satisfying

LGy =0 in M\{xo} (B2)
ByGy, =0 ondM\{xo}, '

(x0) = — /M Go ()L g () dvg(y) — /8 GBI () (B

for any ¢ € C*(M). Moreover, the following properties hold:
(P1) There exists C = C(M, g) such that, for any y € M with y # xg,
Gy (V)] < Cdy(x0,y)*™" and V4G (y)| < Cdg(xo, y)' ™"

(P2) If xo € 0M consider Fermi coordinates y = (yy, ..., yn) centered at that point.
In those coordinates, write g, = exp(hgp), a, b =1, ..., n, where

d
hab) = D hanay®| = COM, @)1y, (B.4)
|a|=1
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where hgp.o € R and each o stands for a multi-index. Then there exists C =
C(M, g, po) such that 6

20yP"
(n—2)op—1

21y
Ve Gy (y)— (n 2)on 1

(P3) If xo € My, )2 consider the coordinate system vy, defined above. Then there
exists C = C(M, g, po) such that

Gy (V) —

n—1 d
<C Y Y habaldg(xo, )"

a,b=1 |a|=1

L] Clgxo, T ifn>5
C(1+ [logdy(xo, Y))) ifn=3,4 (B.S5)

<C Z Z |hab,oldg (x0, y)!* 1"

a,b=1|a|=1
+ Cdy(xg, y) 27,

1
‘Gxo(Y) - m“(}’l, s Yty Yn — d(x) "

F 1D - Yaets Yn +d @) P "] < Cdg(x0, )",

vg (Gxo ) -

1
2o O e = d o)

F 11y wes V1o Yn +d @) P | < Cdg(x0, y)* 7",

ifn > 4 and

1
‘Gxo(y) - m“()’l, ceos Yn—1,Yn — d(xo))|2_n

115 ees Yie1> Yn + d(x0) >

< C(1 + [logdg(xo, y)I),
Ve(Gry(») — ;H()’l’ R R P 1)) | i
AN (n —2)ou—1

F 1Oy vy Yaets Yu +d(x0)[F)

< Cdy(x0, )7,
ifn=3;

6 The log term in dimensions 3 and 4 should also be included in [1, Proposition B-1]. However,
that term does not affect the results in [1] as observed in the footnote in Proposition 3.14 above.
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(P4) Ifxog € M\ M, consider normal coordinates y = (y1, ..., yn) centered at that
point. As in (P2), write gap = exp(hqp) where hyyp satisfies (B.4). Then there
exists C = C(M, g, po) such that the estimates (B.S) hold. (Observe that in
this case the sums range from || = 2 to d instead of from || = 1to d.)

Remark B.3. The indentity (B.3) and the estimates in (P2) and (P3) may change
according to the normalization chosen for G, . Notice that different ones have been
used in the rest of the paper.

Proof. Let x : Ry — [0, 1] be a smooth cutoff function satisfying x (#) = 1 for
t < po/2,and x () =0fort > pg. Foreachx € M, set

X0/ x AWy - yu—1)D

Kl(-xv )_
g (n — 2)ou_1
L 1) R (G P MR (€ [eal 8
where we are using the coordinates ¥, (y) = (y1, ..., yn). Observe that
n 82
Za—yzK](x’y) :Oa fOI' |(yla '--ayn—l)l < p0/21 0 S yl’l < /00, andx #y
a=1 a

Moreover, 0K1/0y,(x,y) =0if y € 0M with x # y.
For each x € M\ M, >, set

4d,(y, _ .
Kr(x,y) = %dg(y,x)2 ", if 0 <dy(y,x) < po/4.

If we express y — K»>(x, y) in normal coordinates (yi, ..., y,) centered at x, we
have K2(x, ¥) = X @1, <oes Y) D11 vy Y2) 127", and thus

n 2

0

Y aaKa(e,y) =0, for 0 <dg(y,x) < po/8.
dy2

a=1 a

Define K : M x M\ Dy — R by the expression

K(x,y) = x(dx)Ki(x, y) + (1 = x(dx))K2(x, y),

where Dy = {(x,x) € M x M ; x € M}. Thus, K(x,y) = Ki(x, y)if x € My, 2,
and K(x,y) = Ka(x,y) if x € M\M,,. Observe that 9K /dng y(x,y) = 0 if
y € M with y # x.

Expressing y — Kj(x,y) and y — K>(x, y) in their respective coordinate
systems (as described above) one can check that there exists C = C(M, g, po) such
that

ILgyK(x, y)| < Cdg(x, y)' ™.
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Forany ¢ € C*(M) and x € M, we have

¢(X)=/ (Ag,yK(x,y)¢(y)—K(x,y)Ag¢(y))dvg(y)
M
] (B.6)
—/ K(x,y)a—cb(y)dog(y)-
M Ng

Indeed, this expression holds with K (x, y) replacing K (x, y) when x € M2,
and with K> (x, y) replacing K (x, y) when x € M\ M, .
We define Iy : M x M\ Dy — R inductively by setting

Ci(x,y) = Lg,yK(xa y)

and
Cry1(x,y) = /M Lk (x, 2)T1(z, y)dvg (2) .

According to [5, Proposition 4.12], which is a result due to Giraud ( [18, p.50]), we
have

Cdy(x, y)k= ifk <n
[Tk, I = {CA +[logdg (x, y))  ifk=n (B.7)
C ifk >n,

for some C = C(M, g, pp). Moreover, Iy is continuous on M x M for k > n,and
on M x M\ Dy fork < n.

If (a) or (b) holds we can refine the estimate (B.7) around the point xg, using
the expansion g, = exp(hqp). Since K(x,y) = Ki(x,y) for x € My > and
K(x,y) = Ka(x, y) forx € M\M,,, one can see that

n d
Loy Ko, I <C Y Y |hapaldg (xo, )17 + Cdy (xo, y) 177,
a,b=1|u|=1

for some C = C(M, g, po), if (a) or (b) holds. Then Giraud’s result implies

n

d
Tk (x0, )| = C Z Z b |dg (x0, y)¥ 1 Flel=n
a.b=1al=1 (B.8)

+dg(x, )T ifk <n—d.

Claim 1. Given 0 < 0 < 1, there exists C = C(M, g, po, 0) such that
ICag1(x, ¥) = Togi1 (v, YD < Cdg (v, ¥)?, foranyy #x #y'.  (BI)

In particular, ', 1 (xo, ) € C%%(M).
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Indeed, observe that [Ty (x, y) — ' (x, y)| < Cdg(y, y)? (dg(x, y)! 707" +
dg(x, y yl=0=my according to Lemma B.1. So, Claim 1 follows from the estimates
(B.7) and Giraud’s result.

Set

Fi(x,y) = K(x, y>+2f Tj(x, DK (2, )dvg (2) .
Claim 2. For any ¢ € CZ(M) and x € M,and forall k = 1,2, ..., we have

$(x) = —/MFk(x,y)quﬁ(y)dvg(y) —/BM Fr(x, y)Bgp(y)dog(y)
+ / Fest (2 )6 () dvg () (B.10)

2
- / S He 5B, )8 () ()

Claim 2 can be proved by induction on k.

Claim 3. Forany x € M and 0 < 6 < 1, the function y +— F,(x,y) is in
C19(M\{x}) and satisfies

|Fu(x, Y| < Cdg(x, y)*™" |V y Fulx, Y)g < Cdg(x, y)' ™", (B.11)

and

|vgny”(xv y) — vg,y’Fn(xa y/)|g
dg(y, y")?

< Cdy(x, )07+ Cdy (x, y)' 707", (B.12)

for some C = C(M, g, po). In particular, for any x € OM,y — 0F,/dng y(x,y)
defines a continuous function on d M\ {x}.

As a consequence of Claim 3, if xo € dM we can choose N large enough in
the hypothesis (a) such that y — Hg(y) F,(xop, y) is in CHP@OM) for0 <6 < 1
and satisfies

1 Hg () Fn(x0, )licro@my < C(M, g, po.0). (B.13)

It is clear that (B.13) also holds if xo € M\ M, with no assumptions on H,, and
that its left-hand side vanishes under the hypothesis (b). In particular (B.13) holds
should (a), (b) or (c) holds.

Let us prove Claim 3. Choose y # x and a smooth curve y; such that yyp = y.
Then, for any r > 0,

d

7 [j(x, 2)K(z, y)dvg(z) :f Lj(x, z) K(z y)dvg(z)
1 JM\B,(y) M\B,(y)
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For any r > 0 such that 2r < d¢(x, y) and ¢ small, we have

/ Fj(x’z)‘K(Zsyt)_K(Z’y) dUg(Z)
B (y) 4

<c / Ao (5, 2" (dg (20 )" ™" + dy (2, 1)), (2)
Br(y)

< C2" dy(x, y)' ™" f )(dg(z,yt)l—" +dg(z, ) ™ dvg (2)
Br(y

and the right-hand side goes to 0 as »r — 0. Here, B,(y) stands for the geodesic
ball centered at y. Hence,

d
° /M L6 DK (0 y)dvg (2) = / I, z) K@ wdug@) (B4

and the estimates in (B.11) follow from Giraud’s result.

Now,
1
dg v [ i 05K ydug@ ~ [ 15Ky
</F( )_ (Z’y) dyl (Zy)d @
(x, .
-~ Jm s dg(y,y)9 g%

<C / dg(x, 2)7"(dy (2, NI dy(z, ) 0TV (2)
M
< C(dg(x, )77 +dg(x, )07,

where we used Lemma B.1 in the second inequality, and Giraud’s result in the last
one.

This proves Claim 3.

Using the hypothesis Q(M) > 0, we define uy, € C2(M) as the unique
solution of

Lg”xo(y) n+1(x07 y) inM (B.15)
Bgu)q)(y) 2(n I)Hg(y)Fn(XO» )’) ondM. ‘
It satisfies
luxgllc2emy = Clluxyllcoary + ClITn41(x0, )l coe
xo 1C29(M) xo 1CO(M) n+ CcY9 (M) (B.16)

+ C|[Hg(-) F(x0, ')”Clﬁ(aM)

where C = C(M, g, po, 0) (see [17, Theorems 6.30 and 6.31].
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Claim 4. There exists C = C(M, g, po, 0) such that ||uy, lc2emy = C.
Indeed, using (B.10) with k = n and any ¢ € C2(M), one can see that

sup [ ¢ < C sup |Lgd| + C sup |Beo| + Clldll 201y + Cllbll 2an) -
M M aM
Since Q(M) > 0, there exists C = C(M, g) such that
[ v+ [ oo < [ L@wiave+c [ 1B@ldo;.
M aM M aM
Thus, Young’s inequality implies
/ ¢*dvg + / ¢p*do, < C / Lo(¢)*dvg +C / Be(#)?doy .
M M M aM

Hence, |¢llcoopy < CliLg@llcomy + ClIBg@llcoamy - Setting ¢ = uy, and using
the equations (B.15), we see that

lizollcocary < CUT st Gos Mo + ClHg (Y Fu(xo, Vicoan - (B

Claim 4 follows from the estimates (B.7), (B.9), (B.13), (B.16), and (B.17).
We define the function G, € C LO(M\{xo}) by

Gxo(y) = K(.X'(), y) + Z/M Fi(x07 Z)K(Zv )’)dvg(z) + ng()’) .
k=1

One can check that the formula (B.3) holds.

Claim 5. We have G, € C*°(M\{xo}) and (B.2).
In order to prove Claim 5, we rewrite (B.6) as

/K(x,y)Lg¢(y)dvg(y)+/ K(x,y)Bgp(y)dog(y)
M oM
:/M LgyK(x, y)¢(y)dvg(y) — ¢ (x) (B.18)

n—2
- /BM mHg(Y)K(X, V¢ (y)dog(y) .
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Thus,
/{/ Fj(x,z)K(Z,y)dUg(Z)}Lg¢(y)dvg(y)
M M
+/ {/ Fj(x,z)K(z,y)dUg(Z)}Bg¢(y)d"g(y)
oM M
-/ Fj(x,z){ | KGyLgove + [ K(z,y)Bg¢<y>d6g<y>}dvg<Z>
M M M
_ / I, 2) / L K (2 )6 (0)dvg(7)dvg(2)
M M
2
_/ F.i(x’Z){/ ey (MK (z, y)¢(y)d0g(y)+¢(z)}dvg(1)
M am 2(n—1)
=/M{/1l4 Fj(x,z)Lg’yK(z,y)dvg(Z)—Fj(X,)’)}¢(Y)dvg(Y)

—/ {/ I'j(x, 2)K(z, y)dvg(z)} S H,M¢(y)dog(y),
am UM 2(n 1)
where we used (B.18) in the second equality. Hence, we proved that the equations

Lgy [ Tj(x, 2K (z, y)dvg(2)

=ljpx,y)—Tjx,y) in M
By [y Fj(x,z)K(z ¥)dvg(2)

=— 2(n 1)Hg(y)fM Ij(x,2)K(z, y)dvg(z) ondM,

hold in the sense of distributions. Then it is easy to check that the equations (B.2)
hold in the sense of distributions. Since G,, € C'(M\{xo}), elliptic regularity
arguments imply that G, € C°°(M\{xo}). This proves Claim 5.

The property (P1) follows from (B.11) and Claim 4. In order to prove (P2),(P3)
and (P4), we use (B.7), (B.8), (B.14) and Claim 4.

Claim 6. The function G, is positive on M\ {xo}.
Let us prove Claim 6. Let

G- — -Gy, ifGy <0
~]o ifGy, > 0.

Since G, has support in M\{xo}, one has

0= —/ G;OLngodvg—/a Gy, B:Gxdoy

n—2 n—2 _0
= [, (veomi+ = Recar v+ [ 5o o,
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By the hypothesis Q(M) > 0, we have G, = 0 which implies G, > 0.

We now change the metric by a conformal positive factor u € C°° (M) such
that g = uﬁg satisfies R; > 0 in M and H; = 0 on 9M (see [16]). Observing
the conformal properties (2.2) and (2.3), we see that G = u‘lGxO > 0 satisfies
Lgé = 0 in M\{xp} and Bgé = 0 on dM\{xp}. Then the strong maximum
principle implies G >0, proving Claim 6.

This finishes the proof of Proposition B.2. O

Let (M, go) be a Riemannian manifold with Q(M) > 0 and H,, = 0. Let
4

8xp = x’})j go be a conformal metric satisfying
| fxo (¥) — 1] = C(M, g0)dg,(x, x0)-

Notation. For a Riemannian metric g we set M; , = {x € M : dg(x,dM) < t}
and oy M = {x € M : dg(x, M) = t}.

Proposition B.4. If pg is sufficiently small and xo € M, 2 \dM, then there exists
a positive G, € C*°(M\{xo}) satisfying

{Lgm Gy, =0 inM\{xo} B.19)

By, Gxy =0 ondM,
and there exists C = C(M, go, po) such that

1G 1 (¥) — I 7"
_ [ Cloo P + Cdg,, (x0, 3MDIgo ()1 n >4 (B.20)
= | €+ Hog(po (DD + Cdy,, (x0. 8M) o' ™" n =3,

Ve, (Gxo ) = [P < ClgoI' ™" + Cdlg,, (x0, IM) ()| ™", (B:21)

where ¢o(y) = (1, ..., Yn) are gx,- normal coordinates centered at x.

Proof. We will use the notation d(x) = dg,(x, 9M). Let us define the coordinate
system ¥o(y) = (1, ..., yn) on My, o where (y1, -+, yp—1) are normal coordi-
nates of yy, on 94(xy),goM centered at xo, with respect to the metric induced by
g0, and y, = d(y) — d(xo). Here, yy, € 04(xg),50M is such that dg(y, yx,) =
dgo (¥, 0d(xg), 50 M) This differs from 1, defined above by a translation in the last
coordinate.
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According to Proposition B.2, multiplying it by some constant, one can con-
struct a function Gy, satisfying

Lg,Go =0 in M\{xo}
BoyGo=0 ondoM,

1 _ _
(G =5 (101 o 3P 101 s a3 + 24 (x0)P™)

Cdg, (v, x0)> " n>4
C(1 + |logdg,(y, x0)[) n =3,

<

and
1
[960(G0) = SO s I+ 1014 e Y1, 30+ 2d o) 7))
< Cdgy (y, x0)*™".

for some C = C(M, go, po). Using |(y1,...,Yu—1, Yu+2d(x0))| = [(y1, ..., Yn)l
and Lemma B.1 we have

<Cd(x0)|(V1,- -y,

SCd(XO)l()’l’ ~--7yn)|_n'

101 o3P =101, 31, a4 2d o)) P

V101 3P MOt a1, Yo+ 240D P

Then

1Go(y) — 1Yo > ™"
{Cdgo (3, %0)37" + Cd (x0)dgy (¥, x0)' " n>4 (B.22)

<
C(1 + | logdgy (v, x0)]) + Cd (x0)dgy (v, x0)' ™" n =3,

Vo (Go(») — [$0(MIP™)| < Cdgy (v, x0)*™" + Cd (x0)dg, (v, x0)™".  (B.23)

Now we change this to the conformal metric gy,. Let ¢o(y) = (y1, ..., yn) be gx,-
conformal normal coordinates centered at xo. By the definition of ¢o and vy one
can check that £ = ¢g o 1//0_1 satisfies £(0) = 0 and d£(0) = idrn. Since M is
compact, one can find C = C(M, go) uniform in xqg such that

EG1, s V) = G150 Y| < CLOL oo ) P (B.24)

The function G5, = fxgl Gy satisfies (B.19), so we shall prove (B.20) and (B.21).
Observe that

G0 (¥) = Go(¥)| < Cdgy (3, X0)| Gy ()| < Cgy (y, x0)> " (B.25)
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Combining (B.22), (B.24) and (B.25), one gets (B.20) from the following steps:

1Gxo () = 1doN "] < [Gy(¥) — Go)| + 1Go(y) — Yo"
+ oM = I& o Yo I* "]
< Cdgy(y, x0)* ™" + Cd(x0)dg, (v, x0)' ™" + Clyro () > ™"
< Cdgy(y, x0)° " + Cdg, (x0, IM)(x0)dg, (¥, X0)' ™"

for n > 4 and with obvious modifications for n = 3. Similarly, using (B.23), (B.24)
and (B.25), one gets (B.21). O
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