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Synchronization is full measure for all ↵-deformations
of an infinite class of continued fractions

KARIANE CALTA, COR KRAAIKAMP AND THOMAS A. SCHMIDT

Abstract. We study an infinite family of one-parameter deformations, called ↵-
continued fractions, of intervalmapsassociated todistinct triangleFuchsiangroups.
In general for such one-parameter deformations, the function giving the entropy of
the map indexed by ↵ varies in a way directly related to whether or not the orbits of
the endpoints of themap synchronize. ForNakada’s original↵-continued fractions
and for certain continued fractions introduced byKatok-Ugarcovici, both of which
are associated to the classical case of the modular group PSL2(Z), the full parame-
ter set for which synchronization occurs has been determined.

Here,weexplicitlydetermine the synchronization sets for each↵-deformation
inour infinite family. (Ingeneral, ourFuchsiangroupsarenot subgroupsof themod-
ular group, and hence the tool of relating ↵-expansions back to regular continued
fraction expansions is not available to us.) Acuriosity here is that all of our non-syn-
chronization sets can be described in terms of a single tree of words. In a paper in
preparation, we apply the results of this present work so as to find planar extensions
of each of the maps, and thereby study the entropy functions associated to each de-
formation. We give an indication of this in the final section here.

Mathematics Subject Classification (2010): 11K50 (primary); 37A10, 37E05
(secondary).

1. Introduction

1.1. Main results

Associated to each of the infinite family of groups Gm,n defined below in (1.1), we
introduce interval maps Tm,n,↵ , defined in (1.3) below, parametrized by ↵ 2 [0, 1].
We show that for each n, the set of those ↵ such that the T3,n,↵-orbits of the end-
points of the interval of definition, denoted `0(↵) and r0(↵) respectively, eventually
agree has full Lebesgue measure. We call such agreeing of orbits synchronization.
We give a full description of the set of ↵ for which synchronization occurs. The
following is a simply stated implication of this detailed description.

Theorem 1.1. For n � 3, the set of ↵ 2 [0, 1] such that there exists i = i↵, j = j↵
with T i3,n,↵( r0(↵) ) = T j

3,n,↵( `0(↵) ) is of full Lebesgue measure.
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A key phenomenon of our setting is that for all n � 3 there are two synchroniza-
tion relations, in the sense that for n fixed there is a large subinterval of the val-
ues of ↵ along which all values where synchronization occurs is announced by
a basic relation in the group G3,n being satisfied by the elements R, L such that
T i�13,n,↵( r0(↵) ) = R · r0(↵) and T j�1

3,n,↵( `0(↵) ) = L · `0(↵). These relations, dis-
covered by computational investigation and justified in Propositions 5.2 and 8.2,
determine (maximal) intervals along which synchronization occurs.

These synchronization intervals are defined by admissibility the digits of the ex-
pansionof both of T i�13,n,↵( r0(↵) ) andof T j�1

3,n,↵( `0(↵) ). While each endpoint of a syn-
chronization interval is determined by one of the expansions no longer being admissi-
ble, the applicable synchronization relationallowsus todetermine theother expansion
at that endpoint. This leads to the tree of words, V , defined in Definition 4.11.

The intervals are indexed byZ6=0⇥V . (A proper subset of V is necessary when
�1 is the indexing natural number.) That the complement in [0, 1] of the collection
of the intervals of synchronization is a measure zero Cantor set is proven by use of
the ergodicity result of [4] for the setting of ↵ = 0.

The admissibility of the two expansions defining a synchronization interval is
shown by induction, with the expansion directly related to the index of the interval
being straightforward, and the second expansion requiring a more delicate induction
argument. A new phenomenon presents itself in the proofs of admissibility: the
interval of admissibility of a candidate expansion of digits for some endpoint (in
other terms, the corresponding higher rank cylinder) has an endpoint determined
by the longest string of digits having a property that we name full-branched, see
Subsubsection 4.2.3.

After initial results in Sections 2 and 3 describing the dynamics in the setting
of ↵ = 0, 1 for all n � m � 3, the determination of the synchronization set
of parameter ↵ proceeds by treating three partitioning subintervals of (0, 1). The
setting of each of these subintervals is addressed in Sections 4, 6 and 7. We find it
intriguing that a single tree of words allows the labeling of all of the synchronization
intervals, despite the fact that there is more than one synchronization equation.

We expect that the case of m > 3 will be very similar, although the synchro-
nization relations will involve longer words and thus some arguments will become
awkwardly tedious. Our work raises the question of whether there is a simple char-
acterization of when a one-parameter deformation of interval maps has a set of
synchronization relations.

1.2. Motivation

The ↵-continued fractions of Nakada [17] are associated to the modular group
SL2(R), whose projective quotient is G2,3. Nakada determined natural extensions
and more for the setting of ↵ � 1/2. Kraaikamp [12] gave a more direct method
for treating these values. Intermediate results occurred, with Luzzi-Marmi [15]
pushing the study forward. Nakada-Natsui [18] confirmed a numeric observation
of [15] by showing that, in our terminology, a certain synchronization relation im-
plies synchronization. It was left to Tiozzo et al. [5] (see also [6, 7, 19]) and, in-
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dependently, [14] to show that the relation accounts for all synchronization. These
authors also confirmed that the entropy function, assigning to ↵ the entropy of the
interval map indexed by ↵, behaves nicely on the synchronization intervals and is in
fact continuous in ↵. (Note that some authors refer to synchronization asmatching.)
The approach of [14] was to determine planar models of the natural extensions of
the maps and then determine the entropy function.

Similar results on a two-parameter family of continued fraction maps related
to the modular group were obtained by Katok and Ugarcovici in a series of papers,
[9–11]. In particular, in [10] the synchronization of special orbits of the endpoints
of the intervals of definition for their maps provide key information to determine
properties of planar natural extensions. For both the Nakada ↵-continued fractions,
and a one-parameter sub-family of the Katok-Ugarcovic family, Tiozzo and co-
authors related so-called exceptional sets of the entropy function to explicit subsets
of the Mandelbrot set, see [2, 6, 7, 19].

Partial results when the underlying groups are the Hecke triangle groups (thus,
the G2,q with q � 3) were given in [8, 13].

Our goal is to study deformation families of continued fractions defined over an
untreated infinite family of groups, and determine how the entropy function varies.
The current work is the initial step in this, where we discover the synchronization
relations and exactly determine the set of parameters ↵ for each G3,n, n � 3 such
that synchronization occurs. In work in preparation, we apply these results to ex-
plicitly determine planar extensions and thereby study the behavior of the entropy
functions. In Section 9, we sketch an example suggesting how this works.

1.3. The basics of our maps

We use the groups considered in [4]. Fix integers n � m � 3, and let µ = µm =
2 cos⇡/m, ⌫ = ⌫n = 2 cos⇡/n. Also let t = µ + ⌫ that is,

t := tm,n = 2 cos⇡/m + 2 cos⇡/n.

Let Gm,n be generated by

A =

✓
1 t
0 1

◆
, B =

✓
⌫ 1
�1 0

◆
, C =

✓
�µ 1
�1 0

◆
, (1.1)

and note that C = AB. We work projectively, hence B,C are of order n,m re-
spectively while A is of infinite order. That is, Gm,n is a Fuchsian triangle group of
signature (m, n,1).

Fix ↵ 2 [0, 1] and define

Im,n,↵ := I↵ = [ (↵ � 1)t,↵t ) . (1.2)

Let
T↵ = Tm,n,↵ : x 7! AkCl · x, (1.3)



954 KARIANE CALTA, COR KRAAIKAMP AND THOMAS A. SCHMIDT

where as usual, any 2⇥2 matrix
� a b
c d

�
acts on real numbers by

� a b
c d

�
·x = ax+b

cx+d , and

• l 2 N is minimal such that Cl · x /2 I;
• k = �b(Cl · x)/t + 1� ↵ c .

We consider T↵ as a map on the closed interval taking values in the half-open inter-
val I↵ ,

T↵ : [ (↵ � 1)t,↵t ]! I↵ .

When ↵ = 0 and (m, n) = (3, n) this gives the (unaccelerated) maps treated in [4].
See Figures 1.1 and 1.2 for graphs of two of our maps.

– 1.5 1.0 0.5

- 1.5

- 1.0

- 0.5

Figure 1.1. The graph of the function x 7! T3,3,0.14(x). Each branch is given by some
x 7! AkC · x .

– 0.28 0.5 b 1 1.5 1.72

0.5

1.0

1.5

Figure 1.2. The graph of the function x 7! T3,3,0.86(x). Branches agree with x 7!
AkC2 · x for various values of k when x � b = b↵ , see (1.7).
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1.4. Geometric perspective, well-definedness

The reader may well ask if there always does exist an l such that Cl · x /2 I↵ . For
the special cases of ↵ = 0, 1 see below; here we briefly indicate the setting for all
other ↵. A quick study of the graph of the function x 7! C · x shows that this has
horizontal asymptotes given by y = µ, a pole at x = 0 and a zero at x = 1/µ. Of
course this function is increasing on each of its branches. In fact, C is an elliptic
matrix (that is, its trace is of absolute value less than 2) that fixes a point in the upper
half-plane of real part µ/2. It thus acts as a rotation about that fixed point. Indeed,
it acts as a rotation on a hyperbolic m-gon; from the words above, this m-gon has
consecutive vertices 1/µ, 0,1, µ. (Note that whenm = 3, we haveµ = 1/µ = 1.)
Therefore the remaining m � 4-vertices lie between 1/µ and µ; let us denote the
set of all vertices by v1 = µ, v2, . . . , vm�3, vm�2 = 1/µ, vm�1 = 0, vm = 1.
Thus, C acts on the real line as (�1, 0) ! (µ,1) ! (v2, µ) ! (v2, v3) !
· · · ! (1/µ, vm�3) ! (0, 1/µ) ! (�1, 0). For x 2 I↵ , the map T↵ is thus the
composition of rotating by powers of C until Cl · x is no longer in I↵ , and then
shifting by applying the appropriate power of A to bring this image back into I↵ .

Certainly the left endpoint of I↵ , being negative, is sent by C to a positive real
number. We now briefly indicate why this value is greater than ↵t . It then follows
that T↵ on the left endpoint is given by some A�kC with k > 0. In fact, for all
negative x 2 I↵ , we claim that C · x > x + t . Elementary calculus shows that the
graph of x 7! C · x has a tangent line with slope 1 of equation y = x + µ + 2.
Since ⌫ < 2, the tangent line lies below the line y = x + t . Since the map has a
pole at x = 0, it easily follows that the claim holds. The claim implies that there is
a leftmost subinterval sent outside of I↵ by C ; we can partition I↵ by applications
of powers of C�1 to this leftmost subinterval (with the rightmost image subinterval
restricted to its intersection with I↵). In particular, it follows that there always does
indeed exist an l such that Cl · x /2 I↵ .

1.5. Continued fraction perspective

The main aim of this subsection is to assure the reader that our maps are indeed
continued fraction-like.

Since
C · x =

�µx + 1
�x

=
�1
x

+ µ,

we immediately find that

x =
1

µ� C · x
, (1.4)

Now
C2 · x = C · (C · x) =

�1
C · x

+ µ,

yielding that

C · x =
1

µ� C2 · x
. (1.5)



956 KARIANE CALTA, COR KRAAIKAMP AND THOMAS A. SCHMIDT

Now (1.4) and (1.5) yield that

x =
1

µ�
1

µ� C2 · x

.

After l times we find

x =
1

µ�
1

µ�
. . .�

1
µ� Cl · x

. (1.6)

Since Ak · x = x + kt , we see that T↵(x) = Ak · (Cl · x) = Cl · x + kt , yielding
that C` · x = T↵(x)� kt . Substituting this in (1.6) gives

x =
1

µ�
1

µ�
. . .�

1

µ�
1

µ + kt � T↵(x)

.

Continuing in this way we find a continued fraction expansion of x with partial
quotients given by µ and µ + kt , with k 2 N.

1.6. Digits, cylinders, admissible words, ordering

When studying the dynamics of these maps, the orbits of the interval endpoints of
I↵ are of utmost importance. We define

`0 = (↵ � 1)t and `i = T i↵(`0), for i � 1 ,

r0 = ↵t and r j = T j
↵ (r0), for j � 1 .

1.6.1. Two examples

To aid the reader and help motivate our results, we briefly discuss two examples
with m = n = 3.
Example 1.2. Fixm = n = 3 and ↵ = 0.14, see Figure 1.1. Here, `0 = �1.72 and
r0 = 0.28. Calculation shows that `1 = A�1C · `0; thus, the leftmost branch of the
graph shown in Figure 1.1 is given by x 7! A�1C · x for x 2 [`0, (A�1C)�1 · r0 ).
Similarly, the rightmost branch is the graph of x 7! AC ·x for x 2 [(AC)�1 ·`0, r0 ].
All of the remaining branches are surjective.

As the graph suggests, T3,3,↵ is not expansive. This has no effect on the content
of this work until Section 9, where we indicate future results. However, the reader
may well be relieved to find that T3,3,↵ is eventually expansive. Indeed, its third
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compositional power, T 33,3,↵ , is expansive. We sketch a proof of this. First, for each
x in the domain of T3,3,↵ , we have T 03,3,↵(x) = x�2; in particular, T 03,3,↵(x) is mini-
mized at x = `0. Since 0 < r0 is sufficiently small, it is also quite easy to verify that
(T 23,3,↵)0(x) is minimized at x = (A�2C)�1`0. Now let ˜̀�2 = (A�3CA�1C)�1 ·`0.
The inequality r0 < � ˜̀�2 makes it fairly straightforward to show that (T 33,3,↵)0(x)
is minimized at x = ˜̀�2. One finds that (T 33,3,↵)0( ˜̀�2) > 1.75, and thus T 33,3,↵ is
expansive as claimed.
Example 1.3. Now fix m = n = 3 and ↵ = 0.86, see Figure 1.2. Here we have
`0 = �0.18 and r0 = 1.72. In Figure 1.2, we have marked C�1 · `0 by b, and as
indicated in the caption there, this is b = b↵ see (1.7) below. Here, one finds that
for each x 2 [`0, b↵), there is some k such that T3,3,↵ is given by x 7! AkC · x .
For x � b↵ , it is of the general form x 7! AkC2 · x . By the definition of our map,
the map x 7! C · x relates each branch for these larger values of x to a branch for
values less than b↵ .

For each x < b↵ in the domain of T3,3,↵ , we have T 03,3,↵(x) = x�2; for x � b↵ ,
we have T 03,3,↵(x) = (x�1)�2. It is an easy matter to check that T3,3,↵ is expansive.

1.6.2. Cylinders, notation for digit sequences, full cylinders

The cylinders for the map T↵ are

1(k, l) = 1↵(k, l) = 1m,n,↵(k, l) := { x | T↵(x) = AkCl · x } .

See Figure 1.3 for a representation of some explicit cylinders. Note that since each
of A,C are of positive determinant, T↵ is an increasing function on each of its
cylinders. We call (k, l) the ↵-digit of x if x 2 1↵(k, l). Define

b↵
[1,1) = (k1, l1)(k2, l2) . . .

to be the (infinite) word (also called the sequence of digits) for the orbit of `0 =
(↵ � 1)t ; that is, `0 2 1(k1, l1), `1 2 1(k2, l2), etc. Similarly, define b↵

[1,1) as the
word giving the digits of the orbit of r0. We will also need to consider subwords of
these; for any r  s 2 N, let b↵

[r,s] denote the subword (kr , lr ) · · · (ks, ls) of b↵
[1,1).

We similarly denote subwords of b↵
[1,1).

A cylinder 1↵(k, l) is called full if its image under T↵ is all of I↵ . Since the
action by C has a pole at x = 0, for all ↵ 6= 0, 1 there are full cylinders 1↵(k, 1)
with k 2 Z of arbitrarily large absolute value.

The leftmost cylinder of I↵ , thus the cylinder of `0(↵), has image [`1, r0) and
is said to be a right full cylinder. (In the rare instance that `0(↵) = `1(↵) it is of
course a full cylinder.) The only cylinder with l = 1 and k < 0 that could possibly
be non-full is this leftmost cylinder. Let

b = b↵ = C�1 · `0(↵). (1.7)

Note that since `0(↵) < 0, one has b < 1/µ. If b /2 I↵ , then the rightmost cylinder
of I↵ has l = 1, k > 0; its image is [`0, r1) and in general is only left full. If b 2 I↵ ,
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then all cylinders of index (k, l), l = 1, k > 0 are full; since C acts so as to send
1↵(k, l + 1) to 1↵(k, l) it follows that each the cylinder of index (k, 2) (with pos-
sible exception of the rightmost cylinder) is full if and only if the cylinder of index
(k, 1) is. In general, continuing with analysis of this type shows that the only candi-
dates for non-full cylinders are those of index {(k, 1), (k, 2), . . . , (k,m�1), (k0, l 0)}
where (k, 1) is the ↵-digit of `0(↵) and (k0, l 0) that of r0(↵). As the referee kindly
pointed out to us, in the special case that k0 = k, the cylinder 1↵(k, l 0) will gener-
ally be neither left- nor right full, as it has image [`1, r1). In all other cases, each of
the non-full cylinders has image either [`0, r1) or [`1, r0).

∆α(−1, 1) ∆α(−2, 1) · · · · · · ∆α(k, 1)

ℓ0 r0 b

•••

0

(−1, 1) (−2, 1) · · · · · · (1, 1) (−1, 2) · · · · · · (k, 2)

ℓ0 r0

••

0 b 1

(−k, 1) · · · · · · (2, 1) (1, 1) (−k, 2) · · · (2, 2) (1, 2)

ℓ0 r0

••

0 b 1

Figure 1.3. Schematic representation of cylinders for three values of ↵ when m = n =
3. Top: small values of ↵; middle: intermediate values of ↵; bottom: large values of ↵.
See Sections 4, 7 and 6 for the respective details. Here b = b↵ as defined in (1.7).

1.6.3. Admissibility and orders, definitions

A word U in the letters A, C is called admissible for a pair ↵ and x 2 I↵ if U =
AkuClu · · · Ak1Cl1 and for each j , with 1 j  u, one has Ak j Cl j· · ·Ak1Cl1 · x =
T j

↵ (x). Note that this is equivalent to having for each j both that (1) Ak jCl j· · ·Ak1Cl1 ·
x 2 I↵ and (2) l j is minimal such that Cl j Ak j�1Cl j�1 · · · Ak1Cl1 /2 I↵ . We also
simply say that such a wordU is admissible for ↵ if there exists an x 2 I↵ such that
U is admissible for the pair ↵, x .

The ↵-alphabet is the set of possible single digits for x 2 I↵ , that is all (k, l)
such that 1↵(k, l) 6= ;. The standard ordering of real numbers then induces an
ordering of this alphabet: (k, l) � (k0, l 0) if 1↵(k, l) lies to the left of 1↵(k0, l 0).
(Confer Figures 1.3 and 1.4; in this second figure the order on each I↵ is rather
from bottom to top.)

The analysis for the setting of fullness of cylinders also yields that for k > 0,
1↵(�k, 1) lies to the left of any 1↵(�k � j, 1) with j > 0, as well as to the
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0.5 1.0 1.5 2.0

–2

–1

1

2

y = x – 2

y = x

D(–2,1)

D(–1,2)
D(–2,2)

D(2,2)
D(1,2)

D(1,1)
D(2,1)

D(–1,1)

g^2

G

Figure 1.4. The unions of the various13,3,↵(k, l), see Subsection 1.6. Each I↵ is given
as a vertical fiber (of coordinate x = ↵t with t = t3,3 = 2), from the left endpoint at the
bottom up to the right endpoint at the top of the fiber. For each ↵ such that they exist,
the1↵(k, 2) have limiting value as |k|!1 of 1. Similarly, the1↵(k, 1) have limiting
value as |k|!1 of 0.

left of any 1↵(k0, 1), with k0 > 0. Similarly, 1↵(k0, 1) lies to the left of any
1↵(k0 � j, 1), j < k0. Now since C acts in an order preserving manner, we find
that any 1↵(k, l) lies to the left of all 1↵(k, l + 1). We thus find that for each ↵,
the ordering on the ↵-alphabet is a restriction of the following order.

For each ↵, the ↵-alphabet is a (strict) subset of (Z \ {0} )⇥ {1, 2, . . . ,m � 1}.
We define the full order on (Z \ {0} )⇥ {1, 2, . . . ,m � 1} by

(k, l) � (k0, l 0) if and only if (i) l < l 0,
or (ii) l = l 0 and one of k0 < k < 0, k < 0 < k0,

or 0 < k0 < k.
(1.8)

For m = 3 and n � 3, the full order is indicated in Table 1.1.

(1, 2) � (2, 2) � · · · � (N , 2) � · · ·

����������������

� · · · � (�M, 2) � · · · � (�2, 2) � (�1, 2)
����������������

� (1, 1) � (2, 1) � · · · � (N , 1) � · · ·

����������������

� · · · � (�M, 1) � · · · � (�2, 1) � (�1, 1).

Table 1.1. The full order. Here m = 3, n � 3.
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This ordering extends to the set of all words (including infinite words) in the usual
lexicographic manner.

The ↵-alphabet depends only on the first digits of `0(↵) and r0(↵), as we now
prove.

Lemma 1.4. Fix m, n,↵. Then the ↵-alphabet depends only on the first digits of
`0(↵) and r0(↵).

More precisely, denote the ↵-digits of `0(↵) and r0(↵) by (k, 1), (k0, l 0), re-
spectively. Then the ↵-alphabet is

{(k0 + j, l 0) | j � 0} [
[

1ll 0
{(k � j, l) | j � 0} [

[

1l<l 0
{( j, l) | j > 0}.

Proof. Since `0(↵) 2 1↵(k, 1), all indices corresponding to cylinders between
1↵(k, 1) and x = 0 are certainly in the alphabet. These indices are (k � j, 1),
with j > 0. The pre-images of these cylinders under powers of C are also cylinders
of T↵ , up to and including the l 0th power. If l 0 = 1, then all indices corresponding to
cylinders between 0 and1↵(k0, 1) are in the alphabet. If l 0 > 1, then all ( j, 1) with
j > 0 are present, and so are all preimages under powers of C are also cylinders
of T↵ , up to and including the (l 0 � 1)st power. The cylinders between the pole of
Cl 0 and 1↵(k0, l 0) have their indices in the language, and we have accounted for all
possible indices.

1.6.4. Relating admissibility and orders

If x 2 I↵ , then each of T↵(x), T 2↵ (x), . . . is also in I↵ . This is directly related to the
notion of admissibility. Here we use the notation of Subsubsection 1.6.2.

Lemma 1.5. Fixm, n,↵. As above, let (k, 1) be the ↵-digit of `0(↵) and (k0, l 0) that
of r0(↵). Admissible words AkuClu · · · Ak1Cl1 are characterized by the properties:

(i) each (ki , li ) is in the ↵-alphabet;
(ii) for each 1  j  u,

b↵
[1,u� j+1] � (k j , l j ) · · · (ku, lu) � b↵

[1,u� j+1];

and,
(iii) whenever k j = k,

b↵
[2,u� j] � (k j+1, l j+1) · · · (ku, lu).

Proof. That admissible words have these properties is straightforward. Indeed, by
definition admissibility implies that there is an x 2 I↵ whose ↵-digit sequence
begins (k1, l1)(k2, l2) · · · (ku, lu), with each digit in the ↵-alphabet. Thus, each
Ak j�1Cl j�1 · · · Ak1Cl1 · x has ↵-digit sequence beginning (k j , l j ) · · · (ku, lu), and
each of these is in I↵ . Since the endpoints of I↵ correspond to b↵

[1,1) and b
↵
[1,1),

and the ordering in the language corresponds to the usual ordering of real numbers,
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the inequalities of (ii) must hold. The images of non-full cylinders are given in
Subsubsection 1.6.2; if some k j = k, then `1  Ak j Cl j · · · Ak1Cl1 · x . Thus the
inequalities of (iii) hold.

For the other direction, our word is admissible for ↵ and x1 if there is a se-
quence of x j with x j 2 1↵(k j , l j ) such that Ak j Cl j · x j = x j+1. When each
1↵(k j , l j ) is a full cylinder, we can choose any xu 2 1↵(ku, lu) and then repeat-
edly solve for x j 2 1↵(k j , l j ) such that Ak j Cl j · x j = x j+1.

Recall that the T↵-image of a non-full cylinder 1↵(k j , l j ) is one of: [`1, r0),
[`0, r1), [`1, r1) according to (1) k j = k and k 6= k0; (2) (k j , l j ) = (k0, l 0) and k 6=
k0; or, (3) (k j , l j ) = (k0, l 0) and k = k0. Suppose that j < u and let x 2 I↵ be such
that its ↵-expansion begins (k j+1, l j+1) · · · (ku, lu). When (1) holds, (ii) applies and
yields that x � `1 and hence x is in the corresponding image. Similarly, when (2)
holds, (i) implies that (k j+1, l j+1) · · · (ku, lu) � b↵

[2,u� j+1] and thus x  r1 (and,
we can assume strict inequality) and is in the image. Finally, when (3) holds we
have `1  x  r1 and again x belongs to the T↵-image of 1↵(k j , l j ). Using this,
we can show that there always exists an x1 as in the proof of the cases where only
full cylinders appear.

The following two results provide a key tool for proving admissibility of digits
by induction, see for example Subsubsection 4.4.1.

Lemma 1.6. Suppose N 2 N and for some ↵0,↵00, with 0  ↵0 < ↵00  1, one has
b↵0

[1,N ] = b↵00

[1,N ]. Then b
↵
[1,N ] = b↵0

[1,N ] for all ↵ 2 [↵0,↵00].

Proof. Recall that for any � 2 [0, 1], the initial digit of `0(�) is (k, 1) for some
k < 0. Of course AkC · `0(�) � `0(�). When k < �1, the matrix AkC is hyper-
bolic and the smallest � such that the initial digit of `0(�) is (k, 1) is determined
by `0(�) being a fixed point of AkC . For this �, the cylinder 1�(k, 1) is a subin-
terval of I� . Therefore, for x > � and sufficiently close to �, AkC · x > `0(�).
Considering the graph of the function x 7! AkC · x , this implies that `0(�) is the
larger of the two fixed points of AkC . Hence, (k, 1) is admissible for all ↵ � �
such that AkC · `0(↵) < r0(↵). The extreme value for this latter condition is given
by Ak�1C · `0(↵) = `0(↵). Therefore, the set of ↵ for which (k, 1) is ↵-admissible
forms an interval. (When k = �1, since the parabolic A�1C has no fixed point, this
statement also holds.) Similarly, the admissibility of the initial digit of x = r0(�)
implies that the image of this value lies below the line y = x ; admissibility contin-
ues for all ↵ � � until r0(↵) is a fixed point.

With ↵0,↵00 as announced, fix some ↵ 2 (↵0,↵00). Since N � 1, we certainly
have that `0(↵), `0(↵

0) and `0(↵
00) all share a common first digit. Since also the

r0(�) are increasing, Lemma 1.4 yields that the ↵-alphabet contains the ↵0-alphabet.
In particular, each of the N digits in b↵0

[1,N ] is contained in the ↵-alphabet.
Again from the increasing nature of the endpoints `0, r0, we find for each

j  N both b↵
[1,N� j+1] � b↵00

[1,N� j+1] and b
↵0

[1,N� j+1] � b↵
[1,N� j+1]. Thus by

Lemma 1.5, the admissibility of b↵0

[1,N ] for ↵0,↵00 implies its admissibility for ↵.
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Finally, b↵
[1,N ] = b↵0

[1,N ] for otherwise we would contradict the increasing nature
of `0.

The following is proven mutatis mutandis.

Lemma 1.7. Suppose N 2 N and for some ↵0,↵00, with 0  ↵0 < ↵00  1, one has
b↵0

[1,N ] = b↵00

[1,N ]. Then b
↵
[1,N ] = b↵0

[1,N ] for all ↵ 2 [↵0,↵00].

ACKNOWLEDGEMENTS. It is a real pleasure to thank the referee for a careful
reading, helping us to clarify history, and for the explicit suggestions to include
examples as in Section 9, as well as to concentrate on group conjugations so as to
streamline Sections 5 and 8.

2. Dynamics in the case of ↵ = 0 for all signatures

Calta-Schmidt [4] study the dynamics of what in our notation is T3,n,↵ with ↵ = 0,
and of its natural extension. We briefly generalize that work in this section (our
T (x) gives their g(x) upon restricting to m = 3).

Fix integers m, n (both greater than 2). In the notation of (1.2), let I := Im,n,0
and thus I = [�t, 0). We have

T := Tm,n,0 : I! I
x 7! A�kC · x ,

where k = k(x) is the unique positive integer such that T (x) 2 I. Notice that
T (x) = �kt + 2 cos⇡/m � 1/x . Let 1k := 1↵=0(�k, 1). For k � 2 we have
the full cylinders 1k = [ 1

µ�(k�1)t ,
1

µ�kt ); that is, T sends each surjectively onto I.
Recall ⌫ = 2 cos⇡/n. We have that 11 = [�t,�1/⌫ ) and its image under T is
the interval [�⌫ + 1/t, 0). The T -orbit of x = �t is of central importance, thus let

` j = T j (�t) for j = 0, 1, . . . .

The following element of the underlying Fuchsian group is key to the study of this
orbit and therefore to many arguments in this paper.

W = A�2C (A�1C)n�3
⇥
A�2C(A�1C)n�2

⇤m�2
. (2.1)

Since A�1C = B and Bn = Id (projectively),

W = A�1B Bn�3
⇥
A�1B Bn�2

⇤m�2

= A�1B�2
⇥
A�1B�1

⇤m�2
= A�1B�2

⇥
BC�1B�1

⇤m�2

= A�1B�2 B
⇥
C�1

⇤m�2B�1 = A�1B�1C2B�1

= A�1B�1(AB)2B�1 = A�1B�1A BA .
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– 3.0 – 2.5 – 2.0 – 1.5 – 1.0 – 0.5

0.5

1.0

1.5

2.0

2.5

3.0

Figure 2.1. A trace of 20,000 consecutive orbit elements to show the natural extension
of the determinant plus one map when (m, n) = (5, 7) and ↵ = 0. Vertical lines: dotted
at `1, and right ends of cylinders for k = 1 and k = 2. Solid anti-diagonal: y = �x .
Bullet points placed at initial orbit of vertex of x-coordinate `0 = �t . Order of orbit of
`0 itself: `0 < `6 < `12 < `18 < `1 < `7 < `13 < `19 < `2 < `8 < `14 < `20 < `3 <
`9 < `15 < `21 < `4 < `10 < `16 < `22 < `5 < `11 < `17. (See ArXiv preprint for
colored version.)

Now, since A · (�t) = 0, and B · 0 = 1, while A fixes1, we certainly have that
W fixes x = �t . Substituting A�1C for B gives the form that we will use several
times below.

W = A�1C�1ACA . (2.2)

We claim that the right hand side of (2.1) is the admissible word for the corre-
sponding element in the T -orbit of `0 = �t . That is, all ` j lie in 11 other than
`n�2+k(n�1) for 0  k  m � 3 and also `2n�4+(m�3)(n�1); all of these latter orbit
entries lie in12. Furthermore, `2n�4+(m�3)(n�1) is the left endpoint of12, and thus
`2n�3+(m�3)(n�1) = `0. To justify this, we will show:

(i) (A�1C)n�3 · `0 < �1/⌫ < (A�1C)n�2 · `0 ;

(ii) [A�2C(A�1C)n�2]m�2 · `0 = �⌫ ;

(iii) A�2C(A�1C)n�2 · (�⌫) =1 .

Note that (iii) is immediate, as the pole of A�2C(A�1C)n�2 = A�1B�1 is that of
B�1, and certainly B·1=�⌫. Similarly, [A�2C(A�1C)n�2]m�2=(A�1B�1)m�2=
(A�1B�1)�2, and A�1B�1 is a conjugate of C�1 and thus is of order m. From this,
we find that

[A�2C(A�1C)n�2]m�2 · `0 = (BA)2 · (�t) = BC · 0 = B ·1 = �⌫ ,
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and (ii) also holds. Finally, we have `0 = �t < �⌫ < �⌫ + 1/t = `1 = B · `0 and
since B ·�1/⌫ = 0, B · 0 =1, B ·1 = �⌫, we find that `0 < B3 · (�1/⌫) < `1,
and now (i) easily follows.

Now, A�1C = B has no fixed points, has its pole at x = 0, and defines an
increasing function. Thus for x < 0 we have A�1C · x > x . From this, (i) implies
that ` j = (A�1C) j · `0 for 0  j  n � 3. Since B�2 · (�t) < 0, this also
holds for j = n � 2. Since A�2C(A�1C)n�2 = A�1B�1 = C�1, the increasing
function x 7! A�2C(A�1C)n�2 · x has no fixed points, and hence (iii) implies that
A�2C(A�1C)n�2 · x > x for all x < �⌫. Combining this with (ii) gives that for
each j < m � 2 we have `0 < [A�2C(A�1C)n�2] j · `0 < �⌫ < �⌫ + 1/t = `1.
This in turn gives the correctness of the various ` j corresponding to the sub-words
of [A�2C(A�1C)n�2

⇤m�2. That the remaining factors of (2.1) correspond to the
T -orbit is easily argued, especially since the fact that W fixes x = �t combines
with (ii) to show that [A�2C (A�1C)n�3]�1 · `0 = �⌫.

We thus have that the ordering of the T -orbit of `0 as real numbers is as given
in Table 2.1. Note that the orbit elements contained in 12 are found as final entry
from each column.

`0 < `n�1 < `2n�2 < · · · < `(m�2)(n�1)
< `1 < `n < `2n�1 < · · · < `(m�2)(n�1)+1

...
...

...

< `n�3 < `2n�2 < `3n�3 < · · · < `(m�2)(n�1)+n�3
< `n�2 < `2n�3 < `3n�4 < · · · < `(m�3)(n�1)+n�2

Table 2.1. The T -orbit of `0 ordered as real numbers, when ↵ = 0.

We let � be the union of mn�m � n rectangles whose bases lie on the x-axis with
endpoints being consecutive elements in the orbits of `0 under the real ordering,
beginning with [`0, `n�1], along with [`(m�3)(n�1)+n�2, 0], and whose heights we
label Li , 1  i  mn � m � n, also in accordance with the real order of the bases.

Set L1 = 1/t ; Lm�1+i = (RA�1CR�1) · Li for any 1  i < (m � 1)(n � 2);
and, Li = (RA�2CR�1) · Li�1+(n�2)(m�1) for 2  i  m � 1. Since these
relations accord with T = Tm,n,0, and �t being fixed by W gives that 1/t is fixed
by RW R�1, we have that the left upper vertex � is (�t, 1/t) and in fact the left
upper vertex of the i th rectangle is (�1/Li , Li ), thus showing that� has infinite µ-
measure. We have seen that `mn�m�n�1 = �1/⌫, and hence find that the rightmost
element of that orbit has value

`(m�3)(n�1)+n�2 = [(A�1C)n�3A�2C]�1 · (�1/⌫) = B�1AB3 · (�1/⌫)

= B�1A · (�⌫) = �1/t .
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Therefore, the rightmost rectangle has height Lmn�m�n = t . One can show that T
is bijective on � up to a set of measure zero.
Remark 2.1. In [4], an acceleration of the ↵ = 0 interval map (when m = 3)
is defined. This new interval map is shown to be ergodic with respect to a finite
invariant measure (that is absolutely continuous with respect to Lebesgue measure).

3. Dynamics in the case of ↵ = 1 for all signatures

0.5 1.0 1.5 2.0

– 1.0
– 0.8
– 0.6
– 0.4
– 0.2

0.2

0.5 1.0 1.5 2.0 2.5 3.0

– 0.6

– 0.4

– 0.2

0.2

Figure 3.1. Plots showing the domains of the natural extensions for (m, n) = (3, 3) and
(m, n) = (4, 5) when ↵ = 1. Vertical lines marked at x = µ and x = µ + 1/t in both
cases.

This case is dominated by

U = ACm�2(AC�1)n�2 . (3.1)

We now let the interval be I := Im,n,↵=1 = [0, t).

Proposition 3.1. For all m, n � 3, the map Tm,n,1 has

(1) U as the admissible word for the orbit of t = r0(1);
(2) exactly one non-full cylinder, 1(1, n � 1) = [µ + 1/t, t];
(3) full cylinders of the form1(k, l) for all l 2 {1, . . . ,m� 2} and k 2 N, as well

as 1(k,m � 1) for k > 1.

Proof. We first claim that all possible exponents of C are seen, thus that for each
l 2 {1, . . . ,m � 1}, there are non-empty cylinders 1(k, l) = 11(k, l) and in fact
for each l these are indexed by k 2 N. A first application of C sends all of (0, 1/µ)
to negative values, and in particular outside of I. As well, since 1/µ is sent to
0, these images are brought back into I by positive powers of A. Furthermore, this
shows that each of the cylinders1(k, 1), k 2 N is full. Therefore, also the cylinders
1(k, l), k 2 N are full for all 1  l  m � 2.

We turn attention to the case of l = m � 1. In fact, there are full cylinders
1(k,m � 1) for all k > 1 and the sole non-full cylinder is 1(1,m � 1), as we
now briefly explain. Since CA�1 · 0 = µ + 1/t < t , one has that 1(1,m � 1) =
[µ + 1/t, t]. As well, since of course A2C · (µ + 1/t) = A · 0 = t , the cylinders
1(k,m � 1) for all k > 1 are all indeed full (and their union is [µ,µ + 1/t]). It
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remains only to consider the orbit of t , which we know begins by t 7! ACm�1 · t .
We observe that ACm�1 = AC�1 = AB�1A�1, and is thus clearly an elliptic
matrix of order n. We now translate by A so as to consider the orbit of 0 under
powers of B�1. This elliptic matrix fixes a point of real part �⌫/2 and rotates a
hyperbolic n-gon; one also easily verifies that �⌫ 7! 1 7! 0 7! �1/⌫ is part of
the orbit of the vertices of the n-gon. The predecessor of�⌫ is B ·�⌫ = �⌫ +1/⌫.
We translate back to I by A, and thus this predecessor corresponds to µ + 1/⌫, a
value that is visibly greater than µ+1/t . In conclusion, the Tm,n,1-orbit of t begins
with (ACm�1)s · t for 1  s  n � 2. But, (ACm�1)n�2 · t = (CA�1)2 · t =
CA�1C · 0 = C ·1 = µ. That is, the orbit of t reaches the right endpoint of the
(full) cylinder 1(2,m � 1), and thus thereafter returns to t .

4. Orbit synchronization on the interval ↵ < �3,n, n � 3

We define �3,n as the value of ↵ such that

C�1 · `0(�3,n) = r0(�3,n).

Compare with Figure 4.1, where the leftmost gray vertical line occurs at x =
2�3,3 = (G�1)2, with G = (1+

p
5)/2. In particular, for all ↵  �3,n , the point b↵

lies outside of I↵ . Since `0(↵) < 0 for all ↵ < 1, it follows that 0 < r0(�3,n) < 1.
We define ✏3,n such that

A�1C · `0(✏3,n) = r0(✏3,n).

Compare with Figure 4.1, where the rightmost gray vertical line occurs at x =
2✏3,3 = G.

One finds that `1(↵) = A�1C · `0(↵) holds for all 0  ↵ < ✏3,n . Elementary
calculations show that for all n � 3, r0(✏3,n) � (1+

p
5)/2, and thus this equation

holds in particular for all ↵ < �3,n .
In this section we prove the following:

Theorem 4.1. For m = 3 and n � 3, the set of ↵ 2 (0, �3,n) such that there exists
i = i↵, j = j↵ with T i3,n,↵( r0(↵) ) = T j

3,n,↵( `0(↵) ) is of full measure.

4.1. Right cylinders and (potential) synchronization intervals

Basic motivation for our approach to synchronization of the T↵-orbits of r0(↵) and
`0(↵), with ↵ < �3,n , comes from the following. We will eventually show for this
range of our parameters that synchronization depends on right and left digits being
related by

C�1AC =

✓
1 0
�t 1

◆
. (4.1)
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0.5 1.0 1.5 2.0

–2

–1

1

2

y = x

y = x – 2

*

Figure 4.1. The first image of the endpoints. In light gray is the graph of x 7!
T3,3,↵(x � t), with x = ↵t ; these thus give the values of `1(↵). In dark gray that
of x 7! T3,3,↵(x); these give the values of r1(↵). (Here t = t3,3 = 2.) The dashed
curve is the image of the left endpoint under C�1 (giving the values of b↵), above this
curve a next digit begins with a C2. The asterisk marks an accidental synchronization,
see Example 4.4. The large dot has x-coordinate �3,nt , see Section 6.

Lemma 4.2. Fix m = 3, n � 3, ↵ < �3,n , and i, j 2 N. Suppose that `i�1 =
C�1AC · r j�1. Then

(1) `i = r j ,
(2) `i�1 � r j�1 with equality if and only if both equal zero.

Proof. There is some u 2 Z \ {0}, that `i = AuC · `i�1 (recall that since ↵ < �3,n ,
the exponent l is always one). This thus equals AuC C�1AC ·r j�1 = Au+1C ·r j�1.
In particular Au+1C ·r j�1 2 I↵ . We conclude that r j = Au+1C ·r j�1 . From this, we
find `i = r j . Since C�1AC clearly fixes zero, see (4.1), it follows that `i�1 = r j�1
holds if either is zero; otherwise, the fact that the exponent of A is greater when
passing from r j�1 to r j than from `i�1 to `i (in light of the ordering of digits, (1.8))
shows that `i�1 > r j�1.

Definition 4.3. We say synchronization occurs at ↵ if there exist i, j such that
r j = `i . A synchronization interval is an interval of ↵ values for each which
synchronization holds with the same pair of indices i, j . (We will assume that at
least for one ↵ in the interval, both i, j are minimal.)

The following example is represented in Figure 4.2.
Example 4.4. Fix n = 3, so t = 2. In Figure 4.1, the first dark gray branch to
the left of x = 2 �3,3 corresponds to r1(↵) = AC · r0(↵), equivalently to b↵

[1,1) =
(1, 1) · · · . This branch intersects the line y = x � 2 at a point we call 2⇣ . Thus,
AC · r0(⇣ ) = `0(⇣ ). Here, ⇣ = (5�

p
21)/2 = 0.20871 · · · .

Explicit computation reveals that for sufficiently close ↵ � ⇣ , the digits of the
`0(↵) are given as b↵

[1,1) = (�1, 1)(�2, 1)(�2, 1)(�1, 1) · · · . Since m = n = 3,
(2.1) gives W = A�2CA�2CA�1C . Solving for ⌘ such that r0(⌘) = A�1CW ·
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`0(⌘), we find ⌘ = (�1 +
p
21)/10 = 0.35825 · · · . One can verify that for all

↵ 2 [⇣, ⌘) both

b↵
[1,1) = (1, 1) · · · and b↵

[1,1) = (�1, 1)(�2, 1)(�2, 1)(�1, 1) · · · .

Since `0(↵) = A�1 · r0(↵) for any ↵, the digit expansion of the `0(↵) for these
↵ shows that A�1CW A�1 · r0(↵) = `4(↵). Direct calculation, or an application
of part (ii) of Lemma 5.1, shows that (C�1AC) AC = A�1CW A�1. Hence, for
all ↵ 2 [⇣, ⌘), the hypotheses of Lemma 4.2 are fulfilled with i = 5 and j = 2.
Therefore, r2(↵) = `5(↵) holds, and we conclude that [⇣, ⌘) is a synchronization
interval.

Note that in Figure 4.1, the visible intersection of this first dark gray branch
with the light gray branch (which corresponds to `1 = A�1C · `0) marks a point of
what one could call “accidental" synchronization. That is, for ↵ = (2 �

p
2)/4 =

0.146 · · · , we have r1(↵) = `1(↵). Of course, this implies that each of these is
periodic. In particular, this and indeed any accidental synchronization occurs at an
algebraic value of ↵.

We seek synchronization intervals of the form [⇣, ⌘), where the endpoints are
identified by R · r0(⇣ ) = r0(⇣ ) and LA · `0(⌘) = r0(⌘), for certain R, L 2 G3,n .
Our synchronization intervals form a subset of full measure; to prove this, it will
be very helpful to have the digits of the ⇣, ⌘. The following is key to finding these
digits.

Lemma 4.5. Fix m = 3, n � 3, an interval [⇣, ⌘] ✓ (0, �3,n) and i, j 2 N.
Suppose that there are R, L 2 G3,n (none of which is the identity) such that

(a) L = C�1ACR;
(b) R · r0 = r j�1 for all ↵ 2 [⇣, ⌘];
(c) LA · `0 = `i�1 for all ↵ 2 [⇣, ⌘), while LA · `0(⌘) = r0(⌘);
(d) R · r0(⇣ ) = `0(⇣ ).

Then

(i) `i�1(⌘) = A�1LA · `0(⌘) = `0(⌘);
(ii) r j (⌘) = Ak+1C · r j�1(⌘) = r1(⌘), where k is such that AkC · r0(⌘) = r1(⌘);
(iii) A�2CLA · `0(⇣ ) = `1(⇣ ).

Proof. For any ↵, the identity (a) implies LA · `0 = C�1ACR · r0.
Recall that for all ↵, r0(↵) /2 I↵ . Now set ↵ = ⌘. Hypothesis (c) implies

that `i�1 = A�1LA · `0 = `0. Now, if r1 = AkC · r0, then r1 = AkCLA · `0,
which again by (a) gives r1 = AkC C�1ACR · r0 = Ak+1CR · r0. Now (b) gives
Ak+1C · r j�1 = r1.

Finally, (d) with `1 = A�1C · `0 yields `1(⇣ ) = A�1CR · r0(⇣ ). Hypothesis
(a) now yields that A�2CLA · `0(⇣ ) = `1(⇣ ).

We will be describing synchronization subintervals of ↵ 2 [0, 1] in terms of com-
mon initial portions of the digits of r0(↵).
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2 ζ 2 η 2 ω

L

R

y = x

y = x – 2

Figure 4.2. Determining a synchronization interval [⇣, ⌘), compare with Example 4.4.
Here, m = n = 3 and t = t3,3 = 2. The labels L , R mark respectively the curves y =
A�1CW A�1 · r0(↵), y = AC · r0(↵) where ↵ = x/2 = x/t3,3. (In terms of Definitions
4.7 and 4.32 for Rk,v and Lk,v in general, these are y = L1,1 · r0(↵), y = R1,1 · r0(↵),
respectively.) The dark is the single branch of y = r1(↵) while light gray colors the two
branches of y = `4(↵) for (5�

p
21)/2 < x < (3�

p
5)/2. The x-axis is shown as a

dotted line.

Definition 4.6.

(1) If the ↵-digits for some x are all of the form (ki , 1), it is convenient to suppress
the notation indicating that the exponent of C is simply one. We refer then to
simplified digits, and uniformly use a d instead of a b in notation referring
to simplified digits. Thus the statement d↵

[1,1) = k1, k2, . . . is equivalent
to b↵

[1,1) = (k1, 1)(k2, 1) . . . and similarly for expressions involving d. Of
course, sequences of simplified digits are ordered by way of the order (1.8).

(2) Given s 2 N and integers c1, c2, . . . , cs and d1, d2, . . . , ds�1, let v =
c1d1 · · · ds�1cs and for any k 2 N, define the upper (simplified) digit sequence
of k and v as

d(k, v) = kc1, (k + 1)d1, · · · , (k + 1)ds�1, kcs .

(3) Define an order on the words w, v of the form above by v � w whenever
d(k, v)�d(k, w) for some positive k. Hence, c1d1 · · · ds�1cs�c01d

0
1 · · · d 0r�1c

0
r

if there is an i such that c j = c0j , d j = d 0j for all j < i and either (1) ci < c0i ,
or (2) ci = c0i and di > di+1.

Definition 4.7.

(1) The length of d(k, v) is S(v) := | d(k, v) | = cs +
Ps�1

i=1 (ci + di ). Notice that
S(v) is indeed independent of k.

(2) The ↵-cylinder of k, v is

Ik,v = {↵ | d↵
[1,S(k,v)]

= d(k, v)} .

That is, Ik,v is the set of all ↵ such that the initial simplified digits of r0(↵) are
kc1, (k + 1)d1 · · · (k + 1)ds�1, kcs .
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(3) The right matrix of k, v is

Rk,v = (AkC)cs (Ak+1C)ds�1(AkC)cs�1 · · · (Ak+1C)d1(AkC)c1 .

(4) The potential synchronization interval associated to k, v is Jk,v = [⇣, ⌘),
where ⇣ = ⇣k,v and ⌘ = ⌘k,v are such that

Rk,v · r0(⇣ ) = `0(⇣ ) and r0(⌘) = C�1ACRk,v · r0(⌘) .

Note that if ↵ 2 Jk,v , then Rk,v · r0(↵) = rS(v)(↵).

4.2. Tree of words and a partition

From Lemma 4.5, we have that

d⌘k,v
[1,1) = kc1, (k + 1)d1, · · · , (k + 1)ds�1, kcs , k + 1, · · ·

and furthermore, this sequence continues with the digits of r1(⌘k,v). Thus, this
sequence is periodic with pre-period d(k, v) and period k + 1, kc1�1, (k + 1)d1, · · ·
· · · , (k + 1)ds�1, kcs . This period is expressible in terms of the word v0, which we
now define.
Definition 4.8. For each s > 1 and each word v = c1d1 · · · cs�1ds�1cs , define

v0 =

(
1(c1 � 1)d1c2 · · · cs�1ds�1cs if c1 6= 1
(d1 + 1)c2 · · · cs�1ds�1cs otherwise .

We interpret this also to mean that when v = c with c > 1 then v0 = 1(c � 1), and
when v = 1 then v0 = 1.

As necessary, we extend the notion d(k, v) in the natural manner to include the
setting of infinite words, and also extend the notion of Rk,v to include more general
words.

Lemma 4.9. Let k 2 N and v = c1d1 · · · cs�1ds�1cs . If ⌘k,v 2 Ik,v , then d
⌘k,v
[1,1) =

d(k, v(v0)1).

Proof. For simplicity, let ⌘ = ⌘k,v . From Lemma 4.5 (ii), the simplified digit of
r0(⌘) following d(k, v) is k + 1, and thereafter the simplified digits begin with the
sequence of r1(⌘). This can be expressed as d⌘

[1,1) = d(k, v) (k + 1) d(k, v)[2,S].
When v = c1 = c we have S = c and we find d⌘

[1,1) = kc, (k + 1), kc�1

(when c = 1, we take this to mean k, k + 1.) For longer v, we must group the new
occurrence of k + 1. This grouping depends on whether c1 = 1 or not. In either
case, one indeed finds that d⌘k,v

[1,1) = d(k, v(v0)1).
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Definition 4.10. Set2�1(c1) = c1+ 1 and2q(1) = 1q1 for q � 1. For c > 1, set
2q(c) = c[1(c � 1)]q1c for any q � 0. (To avoid double labeling and also to stay
within our desired language, 20(1) is undefined; note that 21(1) = 111, compare
with 20(c) = c1c for c > 1.)

We now recursively define values of the operators 2q . Suppose v = 2p(u) =
uv00 for some p � 0 and some suffix v00. Then define for any q � 0

2q(v) = v(v0)qv00 .

Definition 4.11. Let V denote the set of all words obtainable from v = 1 by finite
sequences of applications of the various 2q . We call v the parent of each 2q(v),
and also refer to 2q(v) as a child of v. See Figures 4.3 and 4.4 for portions of this
directed tree.

1
2q

✏✏

2s
ssf

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

1s1

2t
✏✏

1q1

2s
✏✏

1s1[(s + 1)1]t s1 1q1[(q + 1)1]sq1

2t
✏✏

D

gg

1q1[(q + 1)1]sq1{[(q + 1)1]s+1q1}t [(q+1)1]sq1

D

gg

Figure 4.3. Each vertex of the directed tree V of Definition 4.11, has countably
infinite valency. A small portion of V , with some values of D of Definition 4.17, is
indicated. Here q, s, t are any positive integers.

1
2�1

// 2
2�1

//

2u�1
✏✏

3

20
✏✏

2(11)u�112 313

2u
✏✏

20
//

D

]]

31313

D
oo

313(1213)u13
D

^^

Figure 4.4. A second small portion of V of Definition 4.11, with some values of D of
Definition 4.17. Here u is any positive integer. Note that the pieces of V depicted here
and in Figure 4.3 share the vertex 1.

The following result gives the basic structure of the collection of potential synchro-
nization intervals.
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Theorem 4.12. We have the following partition

(0, �3,n) =
1[

k=1
Ik,1 .

Furthermore, for each k 2 N and each v 2 V , the following is a partition:

Ik,v = Jk,v [
1[

q=q 0
Ik,2q (v) ,

where q 0 = 0 unless v = c1, in which case q 0 = �1.

When n = 3, the first statement of the theorem describes the partition given by the
intervals of definition of the leftmost dark gray branches of Figure 4.1. See also
Figure 4.5.

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Jk,v Jk,Θq(v) Jk,Θq−1 (v)

Ik,Θ0 (v)

ζk,v ηk,v ζk,Θq(v) ηk,Θq(v) ζk,Θq−1 (v) ηk,Θq−1 (v) ζk,Θ0 (v) ωk,v

• • • • • • • •

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Ik,v −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

←−−− Ik,Θq(v) −−−→

Figure 4.5. A hint of the partition of a general ↵-cylinder Ik,v . That !k,2q (v) =
⇣k,2q�1(v) holds for appropriate v is part of Lemma 4.28.

4.2.1. Palindromes

The notation �v denotes the word formed by taking the letters of v in reverse order.
Thus, v is a palindrome if and only if v = �v .

Proposition 4.13. Suppose v 2 V . Then:

(1) v can be expressed as a word in an alphabet of at most three letters;
(2) v is a palindrome;
(3) if v = 2q(u) for some q � 1, then v = uxu for some palindrome x .
(4) if u is the parent of v, then there is a palindrome y such that v0 = yu;
(5) with this same y, one has v0v00 = yv;
(6) if further v 6= c1, then there are palindromes a, z such that v00 = az, y = z0a.

Proof. The first statement naturally has two cases: if c1 = 1 then we claim that
all ci = 1 and all d j are contained in {d1 + 1, d1}; if c1 > 1 then all d j = 1 and
ci 2 {c1, c1�1}. We prove this by induction. Our bases cases are: 2�1(c1) = c1+1
and 2q(1) = 1q1 for q � 1; for c > 1, set 2q(c) = c[1(c � 1)]q1c for any
q � 0. The statement clearly holds here. Thereafter, v, v0 are words in these small
alphabets, and v00 is a subword of v hence every 2q(v) has the desired property.
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Statement (3) follows from (2). Statement (4) implies (5), as (yu)v00 = y(uv00) =
yv. It remains to prove (2), (4) and (6).
Beyond easily handled cases of short v, there are naturally three cases to consider.

Case 1. Suppose v = 2h
0(c) for some h � 1 and some c > 1. Induction gives

v = 2h
0(c) = c(1 c)h . This is obviously a palindrome, that is (2) holds. We find

v0 = 1(c � 1)(1 c)h = 1(c � 1)1 c(1 c)h�1 = 1(c � 1)1 2h�1
0 (c) = yu,

where y = 1(c � 1)1 and u = 2h�1
0 (c). But, here v = 20(u) is the parent of v,

and hence (4) also holds in this case.
Set z = c and a = 1. Then y = z0a and v00 = 1 c = az. Therefore, (6) also

holds in this case.

Case 2. Suppose v = 2q(u) for some q � 1. If u = c1, all of (2), (4) and (6) are
easily verified.

Assume now that (2), (4) and (6) hold for u, in the sense that u = Zaz, u00 = az
with u,Z, a, z and z0a all palindromes. Since u = �u , we have u0 = (zaZ)0 = z0aZ.
Therefore,

v = 2q(u) = u(u0)qu00 = u(u0)q�1u0(az) = u(u0)q�1z0aZ(az)

= u(u0)q�1z0a u = u(z0aZ)q�1z0a u.

Since z0a and Z are palindromes, we find that v is a palindrome; that is (2) holds.
Set y = (z0aZ)qz0a. This is clearly also a palindrome. Since

v0 = (z0aZ)qz0a u

(4) also holds.

Now, v = uv00 gives v00 = (z0aZ)q�1z0a u. Let a = (z0aZ)q�1z0a and z = u.
Then v00 = az and y = z0a. That is, (6) holds.

Case 3. Suppose that v = 20(u) and v 6= 2h
0(c) for any h � 1 and any c = c1.

Assume that (2), (4) and (6) all hold for u in the sense described in the proof of the
previous case.

We find
v = uu00 = (Zaz)az

and thus
 �v =

 �
u00  �u = �az u = zaZaz.

Thus (2) holds in this case.
Now,

v0 = u0u00 = (z0aZ)az = (z0a)u.
Thus (4) holds; since v00 = u00, (6) also holds.
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Remark 4.14. We thus have for v 2 V , other than those v of the form v = c1,
(

v = uv00 = uaz
v0 = yu = z0au.

In the case of v = 2q(u) with q � 1, we have z = u. (Thus in the previous
proposition, x is a.)

The child 2q(v) has length less than twice the length of v only when q 2
{�1, 0}. The following addresses the setting of q = 0.

Lemma 4.15. Suppose that u is a child of Z 2 V . Then the palindrome 20(u)
is characterized by the property of u being both a prefix and a suffix, and these
subwords having exactly the subword Z in common.

Proof. Let v = 20(u). Since v00 = u00, we can write u = Zaz and v = uaz =
Zazaz with each of Z , u, a, z palindromes. Now, v = (Zaz)az = zaZaz. We have
v = za Zaz|{z}

u

= zaZ|{z}
u

az. Thus the property does indeed characterize 20(u).

Lemma 4.16. If v 2 V , then v0 � v00.

Proof. One directly verifies the result for any v = c1 and for any v = 2q(c1). The
remaining possibilities can be divided into two cases.

Case 1. When v = 2q(u) for some q � 1, we can write v = uau. We find
v0 = (u0a)u = a

 �
u0 u, and v00 = au. Writing u = c1d1 · · · cs�1ds�1cs , from

Definition 4.8 and that fact that u is a palindrome show that
 �
u0 and u agree until the

relationship is determined by d1c1 � (d1 + 1) or d1c1 � d1(c1� 1) 1, when c1 = 1
or c1 > 1 respectively.

Case 2. Suppose that v = 20(u). Then as in Lemma 4.15 we can write v = uaz =

zau, v00 = az. We have v0 = z0au = a
 �
z0 u. As in the previous case, we find that

v0 � v00.

4.2.2. Derived words

We will often argue by induction on the length of v. These arguments rely on the
following map, D, giving the derived word D(v) of v whenever v is of length at
least three.
Definition 4.17. Let v = c1d1 · · · ds�1cs , with s � 2.

(i) If c1 = c > 1, and v is such that d1 = 1 and the set of ci , 1  i  s, is
contained in the set of two letters {a = c1, b = c1 � 1}, express

v = (a 1)e1(b 1) f1 · · · (b 1) fg�1(a 1)eg�1a.



SYNCHRONIZATION IS FULL MEASURE 975

(ii) if c1 = 1, and v is such that the set of d j , 1  j < s is contained in the set of
two letters {a = d1, b = d1 + 1}, express

v = (1 a)e1(1 b) f1 · · · (1 b) fg�1(1 a)eg1.

In both cases, let
D(v) = e1 f1 · · · fg�1eg .

Note that (the proof of) part (1) of Proposition 4.13 shows that D(v) is defined for
each v 2 V of length at least three. We call the various subwords (c1 1)ei , (c1 �
1 1) f j , (1 d1)ei , (1 d1 + 1) f j full blocks for v.

For examples ofD(v), the reader is encouraged to choose various values of the
indices q, s, t, u of Figures 4.3 and 4.4.

Lemma 4.18. The map D sends V to itself, preserving the parent-child relation-
ship. That is, if u 2 V is of length at least two, and v = 2q(u), then there is a
q 0 such that D(v) = 2q 0(D(u) ). Moreover, q 0 = q unless v = 2h

0(c) for some
h � 1.

Proof. Just as in the proof of Proposition 4.13, there are easily verified base cases
which we leave to the reader. We treat three main cases, see Figure 4.6, as well as
Figures 4.3 and 4.4.

c

2h�1
0

✏✏

c(1 c)h�1
D

//

20
✏✏

h

2�1
✏✏

c(1 c)h
D

// h + 1

u

✏✏

v //

2q�1
✏✏

D(v)

2q�1
✏✏

v(v0)qv00
D

// 2q(D(v) )

u 6= c1

✏✏

v //

20
✏✏

D(v)

20
✏✏

vv00
D

// 20(D(v) )

Figure 4.6. Taking derived words, v 7! D(v), respects parent-child relations. See
Lemma 4.18, and compare with Figures 4.3 and 4.4.

Case 1. Suppose v = 2h
0(c) for some h � 2 and some c > 1. We have v =

c(1 c)h = (c 1)hc. Hence,D(v) = h+ 1, and thus alsoD(2h�1
0 (c) ) = h. We note

that 2�1(h) = h + 1, and of course that v = 20(2h�1
0 (c) ). That is, the result

holds in this case.

Case 2. Suppose v = 2q(u), with q � 1 for some u 2 V . Although this part of the
proof is fairly straightforward, it has perforce a panoply of variables representing
words; the reader may wish to consult (4.2), below, as a guide.

We can write D(v) = D( u(u0)qu00 ) = D( u(u0)q�1y u ). Calculation, simply
using the definition of D, shows that D( u(u0)qu00 ) has prefix D(u). The definition
also yields that the derived word of any palindrome is also a palindrome, thus here
D(v) also has suffix D(u). Direct calculation shows that for any words u, x and
any p � 1, D(u(u0)px) = D(u) { [D(u)]0 }pX for some X . By Proposition 4.13,
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there is some palindrome Y such that [D(u)]0 = YD(Z) where D(Z) is the par-
ent of D(v). Therefore, D(v) = D( u(u0)q�1y u ) = D(u) [YD(Z)]q�1XD(u) for
some (new) X . Since D(v) is a palindrome, we have X = Y . Again by Propo-
sition 4.13, YD(u) = YD(Z)[D(u)]00 = [D(u)]0 [D(u)]00. Therefore, D(v) =
D(u) { [D(u)]0 }q�1 [D(u)]0 [D(u)]00 = 2q(D(u) ).

As a summary, we have

D(u(u0)qu00) = D(u(u0)q�1u0u00) = D(u(u0)q�1yu)

= D(u) {[D(u)]0}q�1XD(u) = D(u) [YD(Z)]q�1XD(u)

= D(u) [YD(Z)]q�1YD(u)

= D(u) {[D(u)]0}q�1YD(Z)[D(u)]00

= D(u) {[D(u)]0}q [D(u)]00 = 2q(D(u) ).

(4.2)

Case 3. Suppose that v = 20(u) and v 6= 2h
0(c) for any h � 1 and any c = c1.

Lemma 4.15 and the definition of D yield the result in this case.

4.2.3. Fullness of branches

We aim to describe symbolically T3,n,↵-orbits, and in particular to determine inter-
vals in the parameter ↵ where initial segments of such orbits share common digits.
For any word determining sequences of digits, we must determine the endpoints of
the parameter interval along which the word does describe admissible sequences of
digits, see Figure 4.7. The following notion is key to this.

2ζ

L

R

2 η 2ω

Figure 4.7. A non-full branch. Here n = m = 3, v = 111 and k = 1; we have that
!1,111 is determined by the fixed point of R1,11. The labels L , R mark respectively the
curves y = L1,111 · r0(↵), y = R1,111 · r0(↵) where ↵ = x/2 = x/t3,3. Dark gray
gives branches of y = r3(↵), while light gray colors the two branches of y = `9(↵);
the branches of y = r2(↵) are dotted. The left portion has 2(9 �

p
15)/7 < x <

(11 � 6
p
2)/7. The right “zooms in" to 0.35910 < x < 0.35915. (This interval lies

between the vertical gray lines in both portions.) The x-axis is shown as a dashed line.
Thin gray lines give y = x and y = x � 2. (This example is in fact the longest interval
Ik,v where Rk,v is not full for any n � 3, k 2 N, v 2 V .)
Definition 4.19. Let u a word with alternating letters ci , d j . (We allow prefixes of
words v including those that end with some d j .)
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(1) If u begins with say c1 and ends in some d j , then powers of u are again alter-
nating words in the letters ci , d j . In the case that u = c1 · · · c j begins with c1
and ends in some c j , then we define u2 = c1 · · · (c j + c1) · · · c j and similarly
for higher powers.

(2) We say that u is full branched if for any prefix u[1,`] of u, the inequality u1 �
u1[1,`] holds. We denote the longest prefix of u that is full branched by f(u).
Note that an equivalent definition is: f(u) is the longest prefix of u satisfying
( f(u) )1 = min{( u[1,`] )

1 : u[1,`] is a prefix of u}.
(3) We define !k,u as the ↵-value such that Rk,f(u) · r0(!k,u) = r0(!k,u). That is,

r0(!k,u) has the (T↵-inadmissible) simplified digit expansion ( d(k, f(u) ) )1.

Example 4.20.

(1) Recall that the leftmost dark gray branches in Figure 4.1 are branches of r1(↵)
as a function of r0(↵), with ↵ < �3,3. These branches agree with portions of
the graphs y = AkC · x and x = r0(↵). For each k, the corresponding branch
intersects with y = x � t on the left, and y = x on right. The leftmost of
these two points is x = r0(⇣k,1). Certainly for every ↵ between such a set of
intersection points, we have r0(↵) = k, · · · . On the other hand, by definition
f(1) = 1, and thus r0(!k,1) is the fixed point of AkC · x . That is, r0(!k,1)
is our right intersection point. Furthermore, for all ↵ 2 [⇣k,1,!k,1) we have
y = r1(↵) is given by r1(↵) = AkC · r0(↵). That is, the first simplified digit
of r0(↵) is k. In other words, Ik,1 = [⇣k,1,!k,1).
Being a fixed point, r0(!k,1) = k, k, . . . , is purely periodic with period k.
Note however that this is not a T↵-admissible expansion, as were it so then r1
for this value of ↵ would equal r0. But, r0(↵) /2 I↵!

(2) Now suppose c > 1. By definition, f(c) = c, that is v = c1 is full branched.
Therefore, for each k, !k,c is such that r0(!k,c) is the fixed point of (AkC)c.
Of course, (AkC)c has the same fixed point as AkC . That is, !k,c = !k,1.
Related to this, there are values of ↵ sufficiently close to !k,1 so that for each
of these ↵, the first c simplified digits of r0(↵) are all equal to k. Equivalently,
r0(↵), r1(↵), . . . , rc(↵) are all in1↵(k, 1). And, this is also to say that d(k, c)
gives the first c simplified digits of r0(↵). The reader should easily find ↵ in
the complement of Ik,c inside of Ik,1.

(3) Consider v = 111. We consider each prefix in turn. Of course u = 1 is
full-branched. We next compare (11)1 = 11 · 11 · 11 · · · · with 11; by
our convention for powers, we certainly find that (11)1 � 11. We next
compare (11)1 with (111)1 = 111 · 111 · 111 · · · · = 121212 · · · ; certainly
(11)1 � (111)1. Therefore, f(111) = 11. Compare this with Figure 4.7.

(4) Consider v = 21(313) = 313(1213)13. Arguing just as for the previous case,
we find that (31)1 is the minimal element of {31, (31)1, (313)1}. Since
3131 = (31)2, we certainly have that (31)1 = (3131)1, and thus this latter
is our current candidate for the maximal length full branched prefix of v. We
compare it with (31312)1. We find that these infinite words agree in their first
four letters, but in the fifth (a “c j”-position) they differ. Confer Figure 4.8.
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Since 31313 � 31315, we find that (3131)1 � (31315)1. We thus now
compare (3131)1 with (313121)1. Confer Figure 4.8 we find that (313121)1
is the smaller. One easily sees that is it also smaller than (3131213)1. We
now compare it with (31312131)1. See Figure 4.8. Again, (313121)1 is
the smaller. One easily sees that also (313121)1 � v1. Therefore, f(v) =
(313121)1.

3 1 · 3 1 ·3 1 ·3 1 · · ·
3 1 3 1 2+3 1 3 1 3

3 1 3 1 ·3 1 3 1 · · ·
3 1 3 1 2 1 ·3 1 3

3 1 3 1 2 1 ·3 1 3 1 2 1
3 1 3 1 2 1 3 1 · 3 1 3 · · ·

Figure 4.8. Naive calculations for f(21(313) ). From left to right, finding: (31)1 �
(31312)1; (3131)1 � (313121)1; (313121)1 � (31312131)1. The beginning of
second copies of words are marked with a dot.

The following shows that certain phenomena illustrated in the above examples hold
in general.

Lemma 4.21. If v 2 V is of length greater than one, then f(v) has even length. In
this case, for each k 2 N, a simplified digit expansion for r0(!k,v) is d(k, ( f(v) )1 ).

Proof. Our convention for powers of words shows that any prefix u of odd length
greater than one, thus having initial letter c1 and final letter some ci , has its second
power including the letter c j + c1. Already u2 is larger than the prefix (c1d1)1.
The first statement thus holds.

For any word u = c1d1 · · · d j , we have

d(k, u1 ) = [kc1, (k + 1)d1, · · · , (k + 1)d j ]1 = d(k, u )1.

Thus, since !k,v is defined to be ( d(k, f(u) ) )1, the result holds.

The next result indicates the utility of the notion of full branchedness.

Lemma 4.22. Let v 2 V and fix k 2 N. The ↵-cylinder set Ik,v is a subset of
[⇣k,v,!k,v).

Proof. The set of ↵ such that d↵
[1,S(k,v)]

= d(k, v) is contained in the interval [⇣,!)

such that Rk,v · r0(⇣ ) = `0(⇣ ) and Rk,v · r0(!) = r0(!). (Note that this is implied
by the connected nature of each of the1(k, l), confer Figure 1.4.) The left endpoint
here is exactly ⇣ = ⇣k,v .

Now, the definition of the ↵-cylinder Ik,v as the set of those ↵ such that the digit
sequence determined by k and v are ↵-admissible implies that Ik,v is contained in
the intersection of the corresponding ↵-cylinders for k and the prefixes u of v. In
particular, the least right endpoint of these cylinders gives an upper bound of the
right endpoint of Ik,v . But, each of these cylinders has its right endpoint bounded
above by its own corresponding fixed point, d(k, u1). Hence, we find that the right
endpoint of Ik,v is less than or equal to the least of these d(k, u1). Since this least
point is d(k, ( f(v) )1), we are done.
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Lemma 4.23. Fix m = 3, and n 2 N. Then �3,n = !1,1.

Proof. Let � = �3,n By definition, C�1 · `0(� ) = r0(� ). Applying AC to both
sides of this equality yields r0(� ) = AC · r0(� ). Since f(1) = 1, we have that
r0(!1,1) = AC · r0(!1,1) and thus �3,n = !1,1.

Recall that the full blocks of v are defined in Definition 4.17.

Lemma 4.24. Suppose v 2 V is of length greater than one. Then f(v) ends with a
full block of v.

Proof. When c1 = 1, we have 1 d1 � 1 (d1 + 1). When c1 > 1, we have c1 1 �
(c1 � 1) 1.

We treat the case of c1 = 1, the other case being similar. First, ifD(v)=e1 then
one easily verifies that f(v) = (1 d1)e1 . Otherwise, the argument of Lemma 4.21
showing that v of length greater than one have f(v) of even length, gives here that
f(v) ends with some power of [1 (d1+1)]. Suppose we have a prefix of v which ends
with a non-full block of this type, sayw = (1 d1)e1[1 (d1+1)] f1 · · · [1 (d1+1)] fi� j .
Then the square of w has the intermediate term [1(d1 + 1)] fi� j (1 d1)e1 , whereas
the prefix that completes w to the end of the block [1 (d1 + 1)] fi agrees with w2 up
to a replacement of (1 d1) by [1 (d1 + 1)]. That is, this new prefix is smaller than
w2, and thus certainly its infinite power is smaller than w2. The result thus holds in
this case.

Proposition 4.25. Suppose v 2 V . Then

f(2q(v) ) =

8
><

>:

(c 1)h if q = 0, v = 2h
0(c)

v(v0)q�1y if q � 1, with y as in Proposition 4.13
(ua)h+1 if q = 0, v = 2h

0 �2p(u), p � 1, and 2p(u) = uau.

In particular, for all v 2 V , the word v is a prefix of ( f(v) )2.

Proof. Direct evaluation, as in Example 4.20 shows that f(c 1 c) = c 1. Now sup-
pose the result holds for some h�1 � 1; the only remaining (even length) candidate
prefixes that could be f(v) are (c 1)h�1 and (c 1)h . Since these words have the same
infinite powers, by definition the longer of these, that is (c 1)h , is f(v).

For q � 1, base cases can be directly verified. We now use induction on the
length of v, and thus assume f(2q(D(v) ) ) = D(u) {[D(u)]0}q�1Y , with Y as in
(4.2). From (4.2), we then have

D( v(v0)q�1yv ) = f(2q(D(v) ) ) D(u).

Since the blocks of v of exponent ei are larger than the blocks of exponent fi , one
finds that f(2q(v) ) can be no longer than v(v0)q�1y. Since f(2q(v) ) ends with a
full block, f(2q(v) ) can also be no shorter than v(v0)q�1y. Thus, the result holds.
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We can indeed assume that2p(u) = uau, see Remark 4.14. From the previous
case, f(2p(u) ) = ua. One easily finds that 2h

0 � 2p(u) = u(au)h+1. Thus, we
seek to prove that f( u(au)h+1 ) is formed by dropping the suffix u. Here also, we
can apply D, as the verification for bases cases is straightforward.

That ( f(v) )2 has prefix v is easily checked in each case.

The following result could well be placed earlier, but is not used until directly
hereafter.

Lemma 4.26. Let k 2 N and v = c1d1 · · · cs�1ds�1cs . If ⇣k,v 2 Ik,v then d
⇣k,v
[1,1) =

d(k, v), d⇣k,v
[1,1). Furthermore, if v = �v , then r0(⇣k,v) is the fixed point of Rk, �v0 .

Proof. By definition, ⇣k,v is such that Rk,v ·r0(⇣k,v) = `0(⇣k,v) and hence r0(⇣k,v) is
the fixed point of ARk,v = Ak+1C(AkC)cs�1 (Ak+1C)ds�1(AkC)cs�1 · · ·
(Ak+1C)d1(AkC)c1 . When v is a palindrome, that is when v =  �v , this ma-
trix is indeed R

k,
 �
v0
. (Note that when v = 1 this matrix must be interpreted as

Ak+1C .) The definition of ⇣k,v also shows that the sequence of upper simplified
digits of ⇣k,v is formed by d(k, v) followed by the digits of `0(⇣k,v). That is,
d⇣k,v

[1,1) = d(k, v), d⇣k,v
[1,1).

Corollary 4.27. Fix k 2 N. Suppose that v = 2p(u) for some u 2 V and some
p � 1. Then for h � 0, we have!k,2h

0(v) = !k,v . Furthermore, limh!1 ⇣k,2h
0(v) =

!k,v .

Proof. Proposition 4.25 implies that ( f(2h
0(v) ) )1 = (ua)1 = ( f(v) )1. Lem-

ma 4.21 now implies that !k,2h
0(v) = !k,v . For each h, Lemma 4.26 shows that

⇣k,2h
0(v) has prefix d(k,2h

0(v) ) = d(k, u(au)h+1 ). Therefore, the second state-
ment holds as well.

Lemma 4.28. Suppose that v 2 V . Then for q 2 N (except when (v, q) =
(1, 1) ) ),

f(2q(v)) =
 �������
(2q�1(v) )0.

Furthermore, for each k 2 N, !k,2q (v) = ⇣k,2q�1(v).

Proof. Proposition 4.25 gives f(2q(v)) = v(v0)q�1y, with notation as there. Now
(2q�1(v) )0 = v0(v0)q�1v00 = (v0)q�1yv. Since both 2q�1(v) and y are palin-
dromes,

 �������
(2q�1(v) )0 = v(v0)q�1y. Therefore,

 �������
(2q�1(v) )0 = f(2q(v)).

By definition, r0(!k,2q (v)) is the fixed point of Rk,f(2q (v)). By Lemma 4.26,
r0(⇣k,2q�1(v)) is fixed by Rk, �w , where w = (2q�1(v) )0. Therefore, ⇣k,2q�1(v) =
!k,2q (v).

The following illustrates how 21(1) plays a role similar to the 20(c), c > 1.



SYNCHRONIZATION IS FULL MEASURE 981

Lemma 4.29. For each k, c 2 N,

!k,c 1 c = ⇣k,c+1 .

Proof. Since f(c 1 c) = c 1, this follows since Ak+1C( AkC)c · r0(↵) = r0(↵) is
equivalent to ( AkC)c+1 · r0(↵) = `0(↵).

Lemma 4.30. Suppose that v 2 V . Then v (v0)1 � ( f(v) )1.

Proof. The result is immediate for v = c1. We treat our usual remaining cases.

Case 1. Suppose v = 2h
0(c) for some h � 1 and some c > 1. We have v = c(1 c)h ,

and f(v) = (c 1)h . Since v (v0)1 = c(1 c)h [ 1 (c � 1) 1 1]1 � (c 1)h+2, the result
holds in this case.

Case 2. v = 2p(u), p � 1. Write v = uau in our usual decomposition. Then
v00 = au and f(v) = ua. We find

( f(v) )3 = uau au a = vv00a � vv0,

thus certainly ( f(v) )1 � v (v0)1.

Case 3. Finally, suppose v = 2h
0(uau). Thus, v = u(au)h+1, v00 = au and

f(v) = (ua)h+1. Hence, ( f(v) )2 = u(au)h+1 · au · a(ua)h�1 = vv00a(ua)h�1.
Since v00 � v0, it follows that ( f(v) )2 � vv0, and thus ( f(v) )1 � v (v0)1.

4.3. The complement of the potential synchronization intervals is a Cantor set

Proposition 4.31. For all v 2 V , and all k 2 N, both

Ik,v = [⇣k,v,!k,v) and Ik,v � Jk,v .

Proof. Fix k 2 N. We argue by induction on the length of the word v. Recall that by
Lemma 4.9, ⌘k,v 2 Ik,v implies that d(k, v(v0)1) gives the sequence of simplified
digits of r0(⌘k,v).

The base cases, given by v = c1, are easily verified.

Case 1. Suppose v = 2h
0(c) for some h � 1 and some c > 1. We have v =

c(1 c)h . We begin by assuming the result for both words c, c + 1. We then have
⌘k,c < ⇣k,c+1 < !k,c+1 = !k,c. Therefore, there must be proper extensions of
the word c1 = c that are admissible on [⌘k,c, ⇣k,c+1). By Lemma 4.9, d

⌘k,c
[1,1) =

kc, (k + 1), kc�1; that is, c 1 is admissible at this value of ↵. Now, (AkC)c+1 ·
r0(↵) = `0(↵) determines the value ↵ = ⇣k,c+1. Equivalently, Ak+1C(AkC)c ·
r0(↵) = r0(↵).

From this last, we conclude that f(c 1 c) = c 1 is admissible throughout
[⌘k,c, ⇣k,c+1), with arbitrarily high powers of c 1 admissible for ↵ sufficiently close
but smaller than ⇣k,c+1. (Recall that !k,c 1 c = ⇣k,c+1.) Since20(c) = c 1 c is a pre-
fix of (c 1)2, we find that there is an interval with right endpoint !k,c 1 c on which
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the word 20(c) is admissible. The left endpoint of this interval is characterized as
the leftmost ↵ such that the third letter is admissible; it must hence be ⇣k,c 1 c. Thus,
our result holds when h = 1. We now partition the interval [⌘k,c, ⇣k,c+1) according
to the highest power of c 1 that is admissible for ↵, from which the result follows.

Case 2. v = 2p(u), p � 1. Write v = uau in our usual decomposition. By
hypothesis, d(k, v) gives a prefix of d↵

[1,1) for all ↵ 2 [⇣k,v,!k,v).
We have f(v) = ua, and the admissibility of v = uau implies the admissibility

of ua on [⇣k,v,!k,v). Thus for each ↵ 2 [⇣k,v,!k,v), there exists a maximal N =
N (↵) 2 N such that u(au)N gives a prefix of d↵

[1,1). Since !k,v corresponds to
the fixed point of Rua , the values N (↵) are unbounded. Furthermore, if N (↵) = ↵,
then for all ↵0 2 [↵,!k,v) we have N (↵0) � N (↵). Thus, (since the hypothesis
implies that N = 1 is realized) each N 2 N is realized as N (↵) for some ↵ 2 Ik,v ,
and we can partition Ik,v by subintervals identified from the value of N (↵).

Now,20(v)=vv00=u(au)2, and hence20(v) is admissible on [⇣k,20(v),!k,v).
Similarly, each2h

0(v) is admissible on [⇣k,2h
0(v),!k,v). By considering our ordering

on words, it is clear that ⇣k,2h
0(v) < ⌘k,2h

0(v) < !k,v . Therefore, the result holds for
all 2h

0(v).
The admissibility v on all of Ik,v and the admissibility of 20(v) on exactly

[⇣k,20(v),!k,v) implies that there must be a shortest extension of v = uau which is
admissible for those ↵ immediately to the left of ⇣k,20(v). Lemma 4.28 shows that
f(21(v) ) is this extension. The fixed point of Rk,f(21(v) ) is r0(!k,21(v)), and we
again argue that arbitrarily high powers of this word, f(21(v) ), must be admissible
just to the left of the corresponding value ↵, that is of !k,21(v).

Since any v = uau is always a prefix of the square of the corresponding f(v) =
ua, we find that all of 21(v) is admissible on an interval ending at !k,21(v). By
definition of ⇣k,21(v) it follows that this interval is all of [⇣k,21(v),!k,21(v)). We
iterate this argument for increasing q, to give that for each q, 2q(v) is admissible
on exactly [⇣k,2q (v),!k,2q (v)). The definition of ⌘k,2q (v) shows that it lies strictly
between ⇣k,2q (v) and !k,2q (v)).

Case 3. Suppose that v = 2h
0(uau) for some uau of Case 2. Thus, v = u(au)h+1.

By the proof of Case 2, we can also assume our result for2h+1
0 (uau) = 20(v).

In particular, the left boundary of Ik,20(v) does occur at ⇣k,20(v). By Lemma 4.28,
!k,21(v) = ⇣k,20(v). Arguments as in the previous case yield that all of 21(v)
is admissible on an interval ending at !k,21(v), and that this interval is indeed
[⇣k,21(v),!k,21(v)). In this case also, induction on q is successful. That J2q (v) ⇢
I2q (v) is here also straightforward.

Proof of Theorem 4.12. That (0, �3,n) = [1k=1 Ik,1 follows simply from the fact
that for ↵ 2 (0, �3,n) and x 2 I↵ , T↵(x) = AkC · x for some k. Proposi-
tion 4.31 shows that for all v 2 V , Ik,v = [⇣k,v,!k,v) can be partitioned by
Jk,v = [⇣k,v, ⌘k,v) and its complement. By Corollary 4.27 (and the complemen-
tary results proven in cases 1 and 3 of the proof of Proposition 4.31), we have
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have that !k,20(v) = !k,v . By Lemma 4.28, for all q 2 N, !k,2q (v) = ⇣k,2q�1(v).
Therefore, [1q=0 Ik,2q (v) is a subinterval of Ik,v \ Jk,v which has !k,v as its right
endpoint. Finally, the definition of 2q(v) combined with Lemma 4.26 shows that
limq!1 ⇣k,2q (v) = ⌘k,v . Therefore, the left endpoint of the union is in fact the right
endpoint of Jk,v

4.4. Potential synchronization intervals are intervals of synchronization

We now define Lk,v exactly so that the group identity of Proposition 5.2 gives that
Lk,v = C�1ACRk,v , and thus the main hypothesis of Lemma 4.5 will be satisfied.
That synchronization does occur along Jk,v is then only a matter of showing that
Lk,vA · `0(↵) is admissible at all ↵ 2 Jk,v .

For further ease, we set

w = w3,n = (�1)n�2,�2, (�1)n�3,�2.

Note that the length of w is |w| = 2n � 3. One of our first goals is to show that as
↵ tends to zero, d↵

[1,1) begins with ever higher powers of w. Recall from (2.2) that
(for any m, n) the element W = A�2C (A�1C)n�3

⇥
A�2C(A�1C)n�2

⇤m�2, equals
W = A�1C�1ACA. Just as this is fundamental to understanding the case of ↵ = 0,
so is it the key to the study of left-orbits for small values of ↵. For ease of reference,
the case of m = 3 is

W = A�2C (A�1C)n�3 A�2C(A�1C)n�2 .

In the particular cases of m = 3, [4] show that for all n the T3,n,↵=0-orbit of `0(↵)
is purely periodic of period w.

4.4.1. Left digits are admissible

For any natural number k, let

Ck = (�1)n�3,�2, wk�1. (4.3)

Accordingly, we let
C̃k = Wk�1A�2C(A�1C)n�3.

Definition 4.32. Suppose that v 2 V and k 2 N.
(1) For typographic ease, let

C = Ck,D = Ck+1 and C̃ = C̃k, D̃ = C̃k+1.

(2) The lower (simplified) digit sequence of k, v is

d(k, v) = wk,Cc1�1Dd1 · · ·Dds�1Ccs , (�1)n�2

= (�1)n�2,�2,Cc1Dd1 · · ·Dds�1Ccs , (�1)n�2 ,

of length
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(3)

S(k, v) = | d(k, v) |

=2n�3+[(k�1)(2n�3) + n�2]
sX

i=1
ci+ [k(2n�3) + n � 2]

s�1X

j=1
d j .

(4) The left matrix of k, v is

Lk,v = (A�1C)n�2 C̃cs D̃ds�1 · · · D̃d1 C̃c1�1Wk A�1

= (A�1C)n�2 C̃cs D̃ds�1 · · · D̃d1 C̃c1 A�2C(A�1C)n�2A�1.

Note that Proposition 5.2, below, states that Lk,v = C�1AC Rk,v .
Our aim is to show the admissibility of d(k, v) on Jk,v . In the following, we

give both the left and right simplified digit sequence for each of the endpoints of
Jk,v . The right sequences follow from the results above. We present them here for
ease of comparison.

Lemma 4.33. Let v = c1d1 · · · cs 2 V and k 2 N. Suppose that d(k, v) is admis-
sible on Jk,v . Set ⇣ = ⇣k,v and ⌘ = ⌘k,v . Then

d⇣
[1,1) = d(k, (

 �
v0 )1 ) ;

d⇣
[1,1) = d(k, v), d⇣

[1,1) ;

d⌘
[1,1) = wk,Cc1�1Dd1 · · ·Dds�1Ccs , (�1)n�3,�2 ;

d⌘
[1,1) = d(k, v(v0)1) .

Proof. Lemma 4.26 yields the expressions for d⇣
[1,1) and d

⌘
[1,1).

We first show that the expansions for `0(⇣ ), `0(⌘) are correct assuming admis-
sibility of d(k, v) for all ↵ 2 [⇣, ⌘).

Letting L=Lk,v , Lemma 4.5 gives A�2CLA·`0(⇣ )=`1(⇣ ). Thus, the digits of
`0(⇣ ) are periodic, with preperiod of length one. Sincew= (�1)n�2,�2, (�1)n�3,
�2, we find

d⇣
[1,1) =�1,(�1)n�3,�2, (�1)n�3,�2,wk�1,Cc1�1Dd1 · · ·Dds�1Ccs ,(�1)n�2,�2

=wk,Cc1�1Dd1 · · ·Dds�1Ccs ,(�1)n�2,�2,(�1)n�3,�2,(�1)n�3,�2,wk�1

=wk,Cc1�1Dd1 · · ·Dds�1Ccs , w, (�1)n�3,�2, wk�1

=wk,Cc1�1Dd1 · · ·Dds�1Ccs�1,D,C
=wk,Cc1�1Dd1 · · ·Dds�1Ccs�1,D,Cc1Dd1 · · ·Dds�1Ccs�1D .
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Since v is a palindrome, this last is indeed the infinite sequence d(k, (
 �
v0 )1 ).

Note that in the special case that v = c1, c > 1, we find d⇣k,c
[1,1) = wk,

Cc�1, w,C= wk,Cc�2,D,C and d⇣k,1
[1,1) = wk+1, (�1)n�3,�2, wk = wk+1,D.

Since LA · `0(⌘) = r0(⌘), we have that A�1LA fixes `0(⌘) and hence d⌘
[1,1)

is indeed purely periodic, with the indicated period.

Lemma 4.34. Fix j 2 N and 0  i < |w|. If there is some ↵  �3,n such that
d↵

[1, j |w|+i] = w j w[1,i], then d↵0

1, j |w|+i = w j w[1,i] for all ↵0 < ↵.

Proof. (Of course, if i = 0, then w[1,i] is the empty word.) Since it is shown in [4]
that all powers of W are admissible when ↵ = 0, there are thus branches of digits
corresponding to eachWk ·`0, A�1CWk ·`0, (A�1C)2Wk ·`0, . . . , (A�1C)n�3Wk ·
`0 and A�2C(A�1C)n�3Wk · `0 that continue to the right from ↵ = 0. For each,
by Lemma 1.6, admissibility at ↵ thus guarantees admissibility at each ↵0  ↵.

Lemma 4.35. Fix k 2 N. We have

d!k,1
[1,1) = wk, (�1)n�3,�2, wk�1 = wk,C .

The digits d↵
[1,n�3+k|w| ] = wk, (�1)n�3 are admissible for all ↵  !k,1.

Proof. Since f(1) = 1, the definition of !k,v yields Ak�1CA · `0(!k,1) = `0(!k,1).
Lemma 5.1 shows that Ak�1CA = C�1A�1C(A�1C)n�2Wk�1. For ↵  �3,n , we
certainly have that `1(↵) = A�1C ·`0(↵), thus `1(!k,1) = A�2C(A�1C)n�2Wk�1 ·
`0(!k,1). Thus, the T↵-orbit of `0(!k,1) is periodic, with minimal preperiod of
length one. Elementary manipulations give the claimed expression for the simpli-
fied digits, assuming admissibility.

We have that the graph of the function x 7! A�2C(A�1C)n�2Wk�1A�1 · x
meets the vertical line x = r0(!k,1) at y = `1(!k,1). Since the T!k,1-cylinder
1(�2, 1) is full, there is also a point y 2 I!k,1 where the graph of the function x 7!
(A�1C)n�2Wk�1A�1 · x meets x = r0(!k,1). By Lemma 4.34, this implies that
(A�1C)n�2Wk�1 · `0(!k,1) is admissible. It follows that A�2C(A�1C)n�2Wk�1 ·

`0(!k,1) is also admissible. The rest of wk, (�1)n�3,�2, wk�1 is determined by
periodicity and is thus also admissible.

The second statement now follows immediately from Lemma 4.34.

Remark 4.36. Note that the above yields d!k+1,1
[1,1) = d⇣k,1

[1,1), in accordance with the
fact that f(1) = 1 implies !k+1,1 = ⇣k,1.

In the following proof and occasionally thereafter, we will have need of the
following.
Definition 4.37. For any word z, let z[�2], z[�1] denote the excision of the last two
letters, or last letter, from z respectively.
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Proposition 4.38. Suppose that v 2 V and k 2 N. Then for all ↵ 2 Jk,v ,

d↵
[1,S)

= d(k, v) .

Proof. For all v, we will exhibit ↵0 < ⇣k,v and ↵00 > ⌘k,v such that both d↵0

[1,1) and
d↵00

[1,1) are known to be admissible (by induction), and share as a common prefix
all but the final letter of d(k, v ). By Lemma 1.6, the admissibility of these first
S(k, v) � 1 digits then holds on [↵0,↵00]. Since we already know the admissibility
of our right digits, Lemma 4.39, below, applies and we can conclude admissibility
of all of d(k, v ) on Jk,v . See Table 4.1 for a summary of the pairs ↵0,↵00 used for
the various cases of v.

v ↵0 ↵00

1 0 !k,1
c > 1 ⌘k,c�1 !k,c = !k,1

Base cases c 1 c, c � 1 ⌘k,c !k,c 1 c = ⇣k,c+1

2q(c), q � 2 ⌘k,c ⇣k,2q�1(c)

21(c), c > 1 ⌘k,c ⇣k,20(c)

Case 1 2h
0(c) ⌘k,2h�1

0 (c) ⇣k,c+1

Case 2 2q �2p(u), p, q � 1 ⌘k,2p(u) ⇣k,2q�1�2p(u)

Case 3 2h
0 �2p(u), p � 1 ⌘k,2h�1

0 �2p(u) ⇣k,2p�1(u)

Table 4.1. Admissibility of d(k, v) on Jk,v is shown by finding ↵0 < ⇣k,v < ⌘k,v < ↵00

such that d↵
[1,1) agrees with d(k, v) through to its penultimate digit for both ↵ = ↵0,↵00.

See the proof of Proposition 4.38.

Base cases. Consider v = c1 = c. The lower simplified digit sequence d!k,1
[1,1) =

wk,C agrees with d(k, c) = wk,Cc�1, (�1)n�2 through to its penultimate digit.
When v = 1, Lemma 4.35 shows that these shared digits are admissible for all ↵ 
!k,1 ; therefore our proof template succeeds in this case. For c > 1, by induction
d⌘k,c�1

[1,1) = wk,Cc�2, (�1)n�3,�2 is admissible, and has d(k, c) as a prefix.
Suppose v = c 1 c. Here we use ↵0 = ⌘k,c, and ↵00 = !k,c 1 c. Since d

⌘k,c
[1,1) =

wk,Cc�1D, it has the prefix wk,Cc�1DCc, w. This in turn has d(k, c 1 c) as a
prefix. Lemma 4.29 and Lemma 4.33 give that d!k,c 1 c

[1,1) = d⇣k,c+1
[1,1) = wk,Cc�1,D,C.

This agrees with d(k, c 1 c) through to the penultimate digit of this latter. Thus the
admissibility holds on Jk,c 1 c.
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Suppose v = 2q(c), q � 1 and c > 1. We again use ↵0 = ⌘k,c. The se-
quence d⌘k,c

[1,1) and D = C, w, here d↵0

[1,1) has the prefix wk, (Cc�1D)q+1Cc, w.
This in turn has d(k,2q(c)) as a prefix. Let ↵00 = ⇣k,2q�1(c). Then d↵00

[1,1) =

wk, (Cc�1D)q+1C, which has the prefix wk, (Cc�1D)q+1Cc, (�1)n�3,�2. It thus
agrees with d(k,2q(c)) through to the penultimate digit of this latter. Thus the
admissibility holds. One checks that the same form of ↵0,↵00 works for v =
2q(c), q � 2 and c = 1.

Case 1. Suppose v = 2h
0(c), h � 2 for some c > 1. We have v = c(1 c)h . We

induce on h, setting ↵0 = ⌘k,2h�1
0 (c). Then, d

↵0

[1,1) has the prefix wk,Cc�1, (DCc)h,
(�1)n�3,�2, which agrees through to the penultimate digit of d(k, v). One easily
checks that setting ↵00 = ⇣k,c+1 yields d↵00

[1,1) of prefix d(k, v).

Case 2. Suppose that the result holds for v = uau = 2p(u) with u 2 V and
p � 1. We prove that the result holds for 2q(v), q � 1. We take ↵0 = ⌘k,v and
↵00 = ⇣k,2q�1(v) if q � 1. To appropriately restrict the use of d(k, v) to prefixes u
of v 2 V , note that we must in particular suppress the final digit of �1; we denote
this by d 0(k, u). Recall that v0 = a

 �
u0 u, v00 = au and that u both begins and ends

with the letter c1.
When c1 > 1, from

 �
u0 = u[�1](c1 � 1) 1 we find

d⌘k,v
[1,1) = d(k, v(v0)1) = d(k, v(v0)qa

 �
u0 u (v0)1)

= d 0(k, v(v0)qau[�1])Cc1�1DCc1 · · · .

On the other hand, still with c1 > 1, we have

d(k,2q(v) ) = d 0(k, v(v0)qau[�1])Cc1 .

Recall that D = C, w, thus Cc1�1D = Cc1, w; we see that d(k,2q(v) ) is indeed a
prefix of d⌘k,v

[1,1).
When c1 = 1, d(k,2q(v) ) = d 0(k, v(v0)qau[�1])Dd1C while d⌘k,v

[1,1) =

d 0(k, v(v0)qau[�2])Dd1+1 C · · · . Thus, since C is a prefix of D, we find that here
also d(k,2q(v) ) is a prefix of d⌘k,v

[1,1).

Since 2q�1(v) = v(v0)q�1v00 is a palindrome,
 �������
(2q�1(v) )0 = v(v0)q�1a

 �
u0 .

By Proposition 4.13, v0v00 = a
 �
u0 v, we find

(
 �������
(2q�1(v) )0 )1 = v [(v0)q�1v0v00 ]1

= v [ (v0)qv00 ]1.
(4.4)

Thus Lemma 4.33 yields d
⇣k,2q�1(v)

[1,1) =d(k, v[(v0)qv00]1). Therefore, d 0(k, v(v0)qv00),

(�1)n�3,�2 is a prefix of d
⇣k,2q�1(v)

[1,1) . That is, d
⇣k,2q�1(v)

[1,1) agrees with d(k,2q(v))

exactly through to its penultimate digit.
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Case 3. Again suppose that v = 2p(u) = uau in our usual notation. Then v00 =
(u0)pu00, and one finds that 2h

0 �2p(u) = 2p(u) [(u0)pu00]h . For these words, we

use ↵00 = ⇣k,2p�1(u). Indeed, from (4.4), d
⇣k,2p�1(u)

[1,1) agrees with d(k,2h
0 � 2p(u) )

exactly through to its penultimate digit.
Since (2h�1

0 �2p(u) )0 = u0 [(u0)pu00]h , we find that

2h�1
0 (v) · (2h�1

0 (v) )0 = 2h
0(v) · u0[(u0)pu00]h . (4.5)

Therefore, Lemma 4.33 yields that ↵0 = ⌘k,2h�1
0 (v)

allows the proof to succeed.

Lemma 4.39. With notation as above, suppose that for all ↵ 2 [⇣k,v, ⌘k,v], both

(a) d↵
[1,S] = d(k, v);

(b) d↵
[1,S�1] agrees with the initial subword of length S � 1 of d(k, v).

Then for all ↵ 2 [⇣k,v, ⌘k,v) we have d↵
[1,S] = d(k, v).

Proof. By the first hypothesis, there is some � = �k,v such that Rv · r0(�v) = 0.
Since C�1ACRk,v = Lk,v and it is trivially verified that C�1AC fixes zero, we find
that Lk,v · `0(�) = 0. In particular, we find that d�

[1,S] = d(k, v).
Now by continuity and the fact that Möbius functions are increasing functions,

we can invoke the second conclusion of Lemma 4.2 on an interval around � to find
in particular that Lk,v · `0(↵) > Rv · r0(↵) holds from ↵ = ⇣k,v until Lk,v · `0(↵) =
r0(↵). But, this describes exactly the interval [⇣k,v, ⌘k,v).

4.5. There are no other points of synchronization

Suppose that ↵ < �3,n is not in any Jk,v and is also not equal to any ⌘k,v . There
is some k such that ↵ 2 Ik,1, but of course ↵ /2 Jk,1; there is thus a unique q1
such that ↵ 2 Ik,2q1 (1). Again, ↵ /2 Jk,2q1 (1) and thus there is a unique q2 with
↵ 2 Ik,2q2�2q1 (1). Clearly this process iterates, and we find that there is an infinite
sequence of qi such that ↵ 2 \1j=1 Ik,2q j �···�2q1 (1). Recall that for any v 2 V
and any q, 2q(v) has v as a prefix. Therefore, the sequence of the qi uniquely
determines both d↵

[1,1) and d
↵
[1,1). In particular, d

↵
[1,1) has digits only in {k, k +

1}, while d↵
[1,1) has digits only in {�1,�2}. Therefore, the two orbits cannot

synchronize.
Note that when ↵ is some ⌘k,v then again d↵

[1,1) has digits only in {k, k + 1},
while d↵

[1,1) has digits only in {�1,�2}.

4.6. The non-synchronization set is of measure zero

Although we have proven that the complement of the Jk,v is a Cantor set, it is then
still possible that it could be a so-called fat Cantor set thus one of positive measure.
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The non-synchronization points have left expansions that involve only �1 and �2
as simplified digits. We will argue by way of the maps of [4] that the set of such ↵
is of measure zero.

The T↵-orbit of `0(↵) is always in the set of points whose simplified digits
are �1 or �2. In particular, this orbit certainly remains in [�t, 0). But [�t, 0)
is the interval of definition of the map g = g3,n studied in [4], where g(x) =
AkC · x with k defined exactly so that this image lies in [�t, 0). Therefore, for
any ↵ whose T↵ orbit of `0(↵) remains in the set with simplified digits �1 or �2
(note that every point in such an orbit is less than zero), this T↵-orbit is the g-
orbit of � = `0(↵). Furthermore, [4] shows that g is ergodic with respect to what
is naturally called a Gauss measure, although this measure is infinite. A so-called
acceleration of g, a map f on [�t, 0) is then shown in [4] to be ergodic with respect
to finite measure (which is equivalent to Lebesgue). The process of acceleration
involves taking well-defined subsequences of g-orbits. We thus find that the f -orbit
of � remains of small digits, and due to the Ergodic Theorem, � lies in a measure
zero subset.

5. The group element identities for the setting ↵ < �3,n

We thank the referee for suggesting a rewriting of this section, with an emphasis on
group element conjugations.

Recall that C̃k = Wk�1A�2C(A�1C)n�3, with W as in (2.1).

Lemma 5.1. The following identities in G3,n hold for each k 2 Z.

(i) CA Wk (CA)�1 = Ak;

(ii) Ak�1CA = C�1A�1C(A�1C)n�2Wk�1;

(iii) (C�1AC)(AkC)a(C�1AC)�1=(A�1C)n�2 C̃ ak (A�1C)�(n�2) for all a2 Z;

Proof. It suffices to prove (i) in the case of k = 1, as that conjugacy relation then
implies the others. By (2.2) we haveCAW (CA)�1= CA(A�1C�1ACA) (CA)�1,
and thus CA W (CA)�1 = A.

From (i), and the facts that A�1C = B has order n while C has order three, we
find

Ak�1CA = CAWk�1

= CA(A�1C)nWk�1

= C2AC(A�1C)n�2Wk�1

= C�1AC(A�1C)n�2Wk�1,

and thus (ii) holds.
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It suffices to show the conjugacy relation in (iii) in the case of a = 1.

(C�1AC)(AkC) (C�1AC)�1 = (C�1AC)Ak�1C

= (C�1AC) C�1A�1C(A�1C)n�2Wk�1 A�1

= (A�1C)n�2 (Wk�1) A�1

= (A�1C)n�2 ( C̃k(A�1C)�(n�3)C�1A2) A�1

= (A�1C)n�2C̃k(A�1C)�n+2,

and thus (iii) holds.

Recall that for v = c1d1 · · · ds�1cs and k 2 N, we have

Rk,v = (AkC)cs (Ak+1C)ds�1(AkC)cs�1 · · · (Ak+1C)d1(AkC)c1

and
Lk,v = (A�1C)n�2 C̃cs D̃ds�1 · · · D̃d1 C̃c1 A�2C(A�1C)n�2A�1,

where C̃ = C̃k and D̃ = C̃k+1.

Proposition 5.2. For each k 2 N and each v = c1d1 · · · ds�1cs 2 V ,

Lk,v = C�1AC Rk,v .

Proof. Since in any group, the conjugate of a product is the product of the conju-
gates, and C̃ = C̃k and D̃ = C̃k+1, Part (iii) of the previous lemma yields

(C�1AC)Rk,v (C�1AC)�1 = (A�1C)n�2 C̃cs D̃ds�1 · · · D̃d1 C̃c1 (A�1C)�(n�2).

Since also

(A�1C)�(n�2) C�1AC = A�1C2

= A�1C2 (CA�1)n = A�2(CA�1)n�1

= A�2C(CA�1)n�2A�1,

we indeed have that C�1AC Rk,v = Lk,v .

6. Synchronization for ↵ > ✏3,n, n � 3

Fix m = 3 and n � 3. Let ✏ = ✏3,n be such that A�1C · `0(✏) = r0(✏). Then
the parameter subinterval [✏, 1) is partitioned by subintervals indexed by k � 2 and
characterized by `1(↵) = A�kC · `0(↵). (When n = 3, one finds that ✏3,3 = G/2,
see Figure 4.1.)



SYNCHRONIZATION IS FULL MEASURE 991

Theorem 6.1. For m = 3 and n � 3, let ✏ = ✏3,n . The set of ↵ 2 (✏, 1) such that
there exists i = i↵, j = j↵ with T i3,n,↵( r0(↵) ) = T j

3,n,↵( `0(↵) ) is of full measure.

Synchronization for these large values of ↵ holds in a manner closely analogous to
that for small ↵. We will find that the intervals indexed by exactly the same set of
words V , although the indexing will depend on negative integers and be given in
terms of left digits. There are differences: in particular, each potential synchroniza-
tion interval is the union of what could fairly be called two distinct synchronization
intervals. On one of the subintervals, the right orbit requires an extra step before
synchronization.

It will naturally be important to know the initial digits of r0(↵) in this range.
For this, define � = �3,n as the value of ↵ such that C�1 · `0(�) = A�1C · `0(�).
(Note that �3,n < ✏3,n , see Figure 4.1.) Thus, CA�1CA�1 · r0(�) = `0(�). That is,
(AC2)n�2 · r0(�) = `0(�). By Proposition 3.1, (AC2)n�2 · r0(↵) is admissible for
↵ = 1 and we conclude that (AC2)n�2 · r0(↵) is admissible for all ↵ 2 ( �, 1] and
in particular for all ↵ > ✏3,n .

6.1. Synchronization intervals have Cantor set complement

For these large ↵, synchronization is signaled by left and right digits being related
by C�1AC�1.

Lemma 6.2. Fix m = 3. Suppose that ↵ is such for all x 2 I↵ , d↵(x) = (k, `) with
` 2 {1, 2}. Fix i, j 2 N. Suppose that `i�1 = C�1AC�1 · r j�1 and C · r j�1 2 I↵ .
Then

(i) If r j = AC2 · r j�1 then `i = r j+1;
(ii) otherwise, `i = r j .

Proof. Since C · r j�1 2 I↵ , there is some u such that r j = AuC2 · r j�1.
If r j = AC2 ·r j�1 then C ·`i�1 = C ·(C�1AC�1 ·r j�1) 2 I↵ . Therefore, there

is some s such that `i = AsC2 · `i�1. But then `i = AsC2 · (C�1AC�1 · r j�1) =
AsC AC2 · r j�1 = AsC · r j . By definition, A�s · `i /2 I↵ , it follows that C · r j /2 I↵

and therefore we conclude that r j+1 = AsC · r j = `i .
If r j = AuC2 · r j�1 with u 6= 1, then C · `i�1 = AC2 · r j�1 /2 I↵ . Therefore,

there is some s such that `i = AsC · `i�1. We find that `i = AsC · (C�1AC�1 ·
r j�1) = As+1C2 · r j�1. We conclude that u = s + 1 and `i = r j .

The result (ii) below leads to the conclusion that synchronization intervals for
large ↵ can be described by the same set of words as for small ↵.

Lemma 6.3. Fix m = 3, an interval [⌘, ⇣ ] of ↵ such that r1 = AC2 · r0 holds on
this interval, and i, j 2 N. Suppose that there are matrices R, L (neither of which
is the identity) such that
(a) L = C�1AC2R;
(b) R · r0 = r j�1 and L 0 · `0 = `i�2, for all ↵ 2 [⌘, ⇣ ];
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2 ω 2 η 2 ζ2 δ

L

R

x

y = x

y = x – 2
Figure 6.1. Determining the synchronization interval [⌘, ⇣ ), when ↵ > ✏3,n . Here,
m = 3, n = 3, and k = 2, v = 1. The labels L , R mark respectively the curves
y = L�2,1 · r0(↵), y = R�2,1 · r0(↵) where ↵ = x/2 = x/t3,3. These are y = `1(↵)

(in light gray) and y = r2(↵) (in dark gray) for G < x < (�1 +
p
21/2). The dotted

curve is the image of the left endpoint under C�1 (giving the values of b↵). The x-axis
is shown as a dashed line. For ↵ > � = ��2,1, synchronization occurs after an extra
step in the orbit of r0.

(c) LA · `0 = `i�1 for all ↵ 2 [⌘, ⇣ ), while `i�1(⇣ ) = A�1LA · `0(⇣ ) = `0(⇣ );
(d) R · r0(⌘) = C�1 · `0(⌘).

Suppose further that A�kC · `0(⌘) = `1(⌘). Then

(i) r j (⌘) = A�kC2 · r j�1(⌘) = `1(⌘);
(ii) `i (⌘) = A�(k+1)C · `i�1(⌘) = `1(⌘);
(iii) r j (⇣ ) = AC2 · r j�1(⇣ ) and r j+1(⇣ ) = AC · r j (⇣ ) = r1(⇣ ).

Proof. The equality r j�1(⌘) = C�1 ·`0(⌘) implies that r j (⌘) = A�kC2 ·r j�1(⌘) =
`1(⌘). At ↵ = ⌘ we also have r j�1 = CA�1C · `i�1, therefore A�kC2 · r j�1 =
A�(k+1)C ·`i�1 allows one to easily confirm the admissibility of this expression for
`i (⌘), as well as that `i (⌘) = `1(⌘).

Finally, r j�1(⇣ ) > C�1 · `0(⇣ ) and hence r j (⇣ ) = AsC2 · r j�1(⇣ ) for some s.
This gives r j (⇣ ) = AsC2 · (CA�1C · r0(⇣ ) ) = As�1C · r0(⇣ ). But, r1 = AC2 · r0
holds throughout this region of large ↵; in particular, C ·r0(↵) 2 I↵ here. Therefore,
s = 1 and r j (⇣ ) = C · r0(⇣ ). It then follows that r j+1(⇣ ) = AC · (C · r0(⇣ ) ) =
r1(⇣ ).

Definition 6.4. Let V be as in the treatment of ↵ < �3,n . For each k 2 N and
v = c1d1 · · · ds�1cs 2 V , we define the following.

(1) the lower (simplified) digit sequence of �k, v is

d(�k, v) = (�k)c1, (�k � 1)d1, · · · , (�k � 1)ds�1, (�k)cs ;
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(2) the ↵-cylinder of �k, v is

I�k,v = {↵ | d
↵

[1,|v| ] = d(�k, v)} ;

(3) the left matrix of �k, v is

L�k,v = (A�kC)cs (A�k�1C)ds�1(A�kC)cs�1 · · · (A�k�1C)d1(A�kC)c1 A�1 ;

(4) the synchronization interval associated to �k, v is J�k,v = [⌘, ⇣ ) where ⌘ =
⌘k,v and ⇣ = ⇣k,v are such that

L�k,vA · `0(⇣ ) = r0(⇣ ) and CA�1CL�k,v · r0(⌘) = C�1 · `0(⌘) .

The following implies that the complement of the union of the Jk,v is a Cantor set.
This is the main result of this subsection.

Theorem 6.5. We have the following partition

[✏3,n, 1) =
1[

k=2
I�k,1 .

Furthermore, for each k � 2 and each v 2 V , the following is a partition:

I�k,v = J�k,v [
1[

q=q 0
I�k,2q (v) ,

where q 0 = 0 unless v = c1, in which case q 0 = �1.

Note that one extends the definition of d(�k, v) to infinite words in the obvious
fashion.

Lemma 6.6. Let k 2 N and v 2 V . Assume that ⌘�k,v, ⇣�k,v 2 I�k,v . Then
d⌘�k,v

[1,1) = d(�k, v(v0)1) and d⇣�k,v
[1,1) is purely periodic of period d(�k,

 �
v0 ).

Proof. The result for ⌘�k,v follows from Lemma 6.3 (ii).
The definition of ⇣�k,v gives the second result, since d(�k,

 �
v0 ) = (�k)c1,

(�k � 1)d1, · · · , (�k � 1)ds�1, (�k)cs�1, (�k � 1).

The following is an immediate implication of the definition of the ordering
(1.8).

Lemma 6.7. Fix m = 3. For any v,w words and for any k 2 N, we have

v � w if and only if d(�k, v) � d(�k, w) .

Definition 6.8. Define !�k,v such that d!�k,v
[1,1) is purely periodic of period

d(�k, ( f(v) ), where f(v) is the full branched prefix of v.
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Lemma 6.9. Let v 2 V and fix k � 2. The ↵-cylinder set I�k,v is a subset of
(!�k,v, ⇣�k,v].

Proof. The set of ↵ such that d↵
[1,|v|] = d(k, v) is contained in the interval (!, ⇣ ]

such that L�k,vA · `0(!) = `0(!) and L�k,vA · `0(⇣ ) = r0(⇣ ). The right endpoint
here is exactly ⇣ = ⇣�k,v .

Due to the order reversing relationship between words and simplified digits
with �k < 0, the proof of Lemma 4.22 shows that !�k,v is a greatest lower bound
for I�k,v .

Lemma 6.10. Suppose that v = 2p(u) for some u 2 V and some p � 1. Fix
k � 2. Then for q 2 N, ⇣�k,2q�1(v) = !�k,2q (v).

Proof. From Lemma 4.28, f(2q(v)) =
 �������
(2q�1(v) )0. Now Lemma 6.6 and the defi-

nition of !�k,2q (v) yield the result.

Lemma 6.11. For all v 2 V and all h 2 N, !�k,2h
0(v) = !�k,v .

Proof. Proposition 4.25 shows that f(2h
0(v) ) = f(v) for all v 2 V . The result thus

holds.

The following result, and its proof, are completely analogous to Proposi-
tion 4.31 where the case of small ↵ is treated.

Proposition 6.12. For all v 2 V , and all k � 2, both

I�k,v = (!k,v, ⇣�k,v] and I�k,v � J�k,v .

Proof. Fix k. We argue by induction of the length of the word v. We have already
seen that ⌘�k,v 2 I�k,v implies d(�k, v(v0)1) gives the sequence of simplified
digits of `0(⌘�k,v). The base cases, given by v = c1, are easily verified.

Case 1. Suppose v = 2h
0(c) for some h � 1 and some c > 1. We have v = c(1 c)h .

The argument as for Proposition 4.31 goes through (compare with the remaining
cases).

Case 2. Suppose v = uau in our usual decomposition. Since f(v) = ua, we have
L�k,ua A · `0(!�k,v) = `0(!�k,v). This equality then implies that given N , there
are ↵ sufficiently close to, and larger than, !�k,v such that d(�k, u(au)N ) is ad-
missible for ↵. It follows that we can partition I�k,v by subintervals corresponding
to the values N . Now, 20(v) = vv00 = uauau, and hence 20(v) is admissible
on [!�k,v, ⇣k,20(v)). Similarly, each 2h

0(v) is admissible on [!�k,v, ⇣k,2h
0(v)). By

considering our ordering on words, it is clear that ⇣k,2h
0(v) > ⌘k,2h

0(v) > !k,v .
We now proceed inductively for larger values of q. To begin, the admissi-

bility v on all of I�k,v and the admissibility of 20(v) on exactly [!�k,v, ⇣k,20(v))
implies that there must be a shortest extension of v = uau admissible for those
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↵ immediately to the right of ⇣k,20(v). Lemma 6.10 shows that f(21(v) ) is this
extension. Since d

!�k,21(v)

[1,1] is purely periodic of period d(�k, ( f(21(v)) ), arbitrar-
ily high powers of this period give admissible expansions for ↵ just to the right of
!�k,21(v). Recall that Proposition 4.25 shows that any v = uau is always a pre-
fix of the square of the corresponding f(v) = ua; we hence find that all of 21(v)
is admissible on an interval beginning at !�k,21(v). We iterate this argument for
increasing q, to give that for each q, 2q(v) is admissible on [⇣k,2q (v),!k,2q (v)).

From Lemmas 4.30 and 6.7 we can conclude that ⌘�k,2q (v) > !�k,2q (v). It
follows that J�k,2q (v) ⇢ I�k,2q (v).
Case 3. As in the proof of Proposition 4.31, the remaining case is that v =
2h
0(uau). Thus, v = u(au)h+1 in our usual decomposition. The right endpoint

of I�k,2h+1
0 (uau) is at ⇣�k,u(au)h+2 . Lemma 6.6 now yields that the left endpoint

of Ik,2h
0(uau)

\ Ik,2h+1
0 (v)

is the point with purely periodic lower simplified digit
expansion of period d(k, vu0a). In the proof of Proposition 4.31 we showed that
f(21 �2

h
0(u) ) = vu0a. Therefore, !�k,21(v) = ⇣�k,2h+1

0 (uau) and also since21(v)

is a prefix of the square of vu0a, it follows that d(�k,21(v) ) is admissible on
[!�k,21(v), ⇣�k,21(v)). That ⌘�k,21(v) belongs to this interval is easily shown.

Induction shows the result for 2q(v) when q � 1.

Proof of Theorem 6.5. That [✏3,n, 1) = [1k=1 I�k,1 is simply a consequence of the
fact that for each ↵ in this range, there is some k such that T↵( `0(↵) ) = A�kC · x .

Proposition 6.12 shows that for all v 2 V , I�k,v = [!�k,v, ⇣�k,v) can be par-
titioned by J�k,v = [⌘�k,v, ⇣�k,v) and its complement. Recall Lemma 6.11 states
that for all h, we have !�k,2h

0(v) = !�k,v . By Lemma 6.10 (and the complemen-
tary results in the proof of Proposition 6.12), for all q 2 N, !k,2q (v) = ⇣k,2q�1(v).
Therefore, [1q=0 I�k,2q (v) is a subinterval of I�k,v \ J�k,v which has !�k,v as its
left endpoint. Finally, the definition of 2q(v) combined with Lemma 6.6 shows
that limq!1 ⇣k,2q (v) = ⌘k,v . Therefore, the right endpoint of the union is in fact
the left endpoint of Jk,v .

6.2. Synchronization holds on a set of full measure

6.2.1. Right digits are admissible; synchronization occurs on each J�k,v

We now define R�k,v exactly so that the group identity of Proposition 8.2, below,
gives that L�k,v = C�1AC2R�k,v , and thus the main hypothesis of Lemma 6.3
is satisfied. That synchronization does occur along J�k,v is then only a matter of
showing that Rk,v · r0(↵) is admissible at all ↵ 2 J�k,v .

Since m = 3, (3.1) gives that U = AC(AC2)n�2. We set

u = u3,n = (1, 2)n�2, (1, 1).

As ↵ tends to one, b↵
[1,1) begins with ever higher powers of u, compare with Propo-

sition 3.1.
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For typographic ease, for k � 2 let

Ek = (1, 1)uk�2(1, 2)n�3 and Ẽk = (AC2)n�3Uk�2AC.

One easily verifies that that uk�1(1, 2)n�3 = (1, 2)n�2Ek .
We also let

G = (1, 2)(1, 1)(1, 2)n�3 and G̃ = (AC2)n�3ACAC2.

One easily verifies that that G̃ = Ẽk+1Ẽ�1k .
Definition 6.13. Suppose that v = c1d1 · · · cs 2 V and k � 2.

(1) for further typographic ease, let E = Ek,F = Ek+1 and Ẽ = Ẽk, F̃ = Ẽk+1;
(2) the upper digit sequence of �k, v is

b(�k, v) = (1, 2)n�2Ec1Fd1 Ec2 Fd2 · · ·Ecs�1 Fds�1 Ecs ,

whose length is denoted;
(3) S(�k, v) = | b(�k, v) |;
(4) the right matrix of �k, v is

R�k,v = Ẽcs F̃ds�1 Ẽcs�1F̃ds�2 · · · Ẽc2F̃d1 Ẽc1(AC2)n�2.

Note that Proposition 8.2, below, implies that L�k,v = C�1AC2 R�k,v .
We will prove admissibility of b(�k, v) on J�k,v by induction, similar to our

proof of admissibility of d(k, v) on J�k,v . However, the role of the various ⌘k,v
will now be played by certain points lying to the left of the corresponding ⌘�k,v ,
the ��k,v,N introduced in the next statement.

Lemma 6.14. Let v = c1d1 · · · cs 2 V and k 2 N. Suppose that b(�k, v) is
admissible on J�k,v . Set ⇣ = ⇣�k,v and ⌘ = ⌘�k,v . Then for each N 2 N, there
exists ��k,v,N less than ⌘ such that

b��k,v,N
[1,(1+S)N ]

= [ b(�k, v)(1, 1) ]N .

Furthermore,

b⇣
[1,1) =

8
><

>:

b(�k, v),GEc1 if v = c1

b(�k, (
 �
v0 )1 ) otherwise.

Proof. The definition of ⌘�k,v shows that ACR�k,v fixes r0(⌘�k,v). Therefore, for
each N 2 N, there exists ↵ = ↵0N < ⌘�k,v and sufficiently close, with b↵

[1,(1+S)N ]
=

[ b(�k, v)(1, 1) ]N .
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Lemma 6.3, (iii) yields b⇣
[1,1) = b(�k, v), (1, 2)(1, 1)b⇣

[2,1). This sequence
is of course periodic. The prefix uk�1(1, 2)n�3 of b(�k, v) can be rewritten as
(1, 2)n�2 (1, 1) uk�2 (1, 2)n�3, thus (1, 2) (1, 1) b⇣

[2,1) has the prefix (1, 2)(1, 1)
(1, 2)n�3(1, 1)uk�2(1, 2)n�3 = G E . This prefix is followed by the complement
of the prefix uk�1(1, 2)n�3 of b(�k, v). The case of v = c1 is now easily verified.

For general v, b⇣
[1,1) = b(�k, v),G E Ec1�1Fd1 Ec2 Fd2 · · ·Ecs�1 Fds�1 Ecs .

This last equals b(�k, (c1d1 · · · ds�1(cs � 1)1)1 ). Since v is a palindrome, this in
turn equals b(�k, (csds�1 · · · d1(c1 � 1)1)1 ). Since csds�1 · · · d1(c1 � 1)1 =

 �
v0 ,

the result holds.

Lemma 6.15. Fix j 2 N and 0  i < |u|. If there is some ↵ � ✏3,n such that
b↵

[1, j |u|+i] = u ju[1,i], then b↵0

[1, j |u|+i] = u ju[1,i] for all ↵0 > ↵.

Proof. (Of course, if i = 0, then w[1,i] is the empty word.) Using Proposition 3.1
with Lemma 1.7, one has that all powers of U are admissible when ↵ = 1, there
are thus branches of digits corresponding to each power and appropriate suffix ofU
that continue to the left from ↵ = 1. For any of these, admissibility at any given ↵
thus guarantees admissibility at each ↵0 � ↵.

Lemma 6.16. Fix k � 2. We have

b!�k,1
[1,1) = uk�1(1, 2)n�3 E .

Furthermore, the digits b↵
[1,n�3+(k�1)|u| ] = uk�1(1, 2)n�3 are admissible for all

↵ � !k,1.

Proof. We first give one proof for k � 3. Since f(1) = 1, ⇣�k,1 = !�(k+1),1. From

b⇣�k,1
[1,1) = uk�1, (1, 2)n�3 GEk = uk�1, (1, 2)n�3G EkG

= uk(1, 2)n�3 Ek+1.

The following works for all k. For typographical ease, let ! = !�k,1. Since f(1) =
1, by definition, A�kC · `0(!) = `0(!). By Lemma 8.1, CA�1CA�kC A�1 =
(AC2)n�3Uk�1. By Lemma 6.16, (AC2)n�3Uk�1 · r0(!) is an admissible expan-
sion if it has value in I!.

For any ↵, CA�1C · `0(↵) = CA�1CA�1 · r0(↵) = (AC2)n�2 · r0(↵). Hence,
(AC2)n�3Uk�1 · r0(!) = CA�1CA�kC A�1 · `0(!) = CA�1CA�1 · `0(!) =
(AC2)n�2 · r0(!). Since (AC2)n�2 is a suffix of U , we have that (AC2)n�2 · r0(!)
is admissible. In particular it has value in I!. It follows that (AC2)n�3Uk�1 ·
r0(!) is an admissible expansion. Furthermore, the equality (AC2)n�2 · r0(!) =
(AC2)n�3Uk�2AC(AC2)n�2 · r0(!) shows that (AC2)n�2 · r0(!) is fixed by
(AC2)n�3Uk�2AC . Therefore,

b!�k,1
[1,1) = (1, 2)n�2(1, 1)uk�2(1, 2)n�3 = uk�1(1, 2)n�3(1, 1)uk�2(1, 2)n�3

= uk�1(1, 2)n�3 E .
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Lemma 6.15 yields that the digits b↵
[1,n�3+(k�1)|u| ] = uk�1(1, 2)n�3 are admissible

for all ↵ � !�k,1.

Proposition 6.17. Suppose that v 2 V and k � 2. Then for all ↵ 2 J�k,v ,

b↵

[1,S ]
= b(�k, v) .

Proof. By Lemma 1.7, for each v it suffices to find ↵0 < ⌘�k,v and ↵00 > ⇣�k,v
such that b↵0

[1,S ]
= b↵00

[1,S ]
= b(�k, v). See Table 6.1 for a summary of the choices of

↵0,↵00 in the various cases.

v ↵0 ↵00

1 1 !�k,1
c > 1 ��k,c�1,2 !�k,1

Base cases c 1 c, c � 1 ��k,c,3 ⇣�k,c+1

2q(c), q � 2 ��k,c,q+3 ⇣�k,2q�1(c)

21(c), c > 1 ��k,c,4 ⇣�k,20(c)

Case 1 2h
0(c) ��k,2h�1

0 (c),2 ⇣�k,c+1

Case 2 2q �2p(u), p, q � 1 ��k,2p(u),q+3 ⇣�k,2q�1�2p(u)

Case 3 2h
0 �2p(u), p � 1 ��k,2h�1

0 �2p(u),3 ⇣�k,2p�1(u)

Table 6.1. Admissibility of d(�k, v) on J�k,v is shown by finding ↵0 > ⇣�k,v >

⌘�k,v > ↵00 such that b↵
[1,1) has prefix b(�k, v) for both ↵ = ↵0,↵00. See the proof of

Proposition 6.17. Compare with Table 4.1.

Since ↵0 is always of the general form ��k,u,N , we note immediately that the iden-
tity F = EG yields

[ b(�k, v)(1, 1) ]N

= b(�k, v)[FEc1�1Fd1 Ec2 Fd2 · · ·Ecs�1 Fds�1 Ecs ]N�1(1, 1)
= b(�k, v)[EGEc1�1Fd1 Ec2 Fd2 · · ·Ecs�1 Fds�1 Ecs ]N�1(1, 1)
= b(�k, v)E[GEc1�1Fd1 Ec2 Fd2 · · ·Ecs�1 Fds�1 Ecs+1]N�2

· EGEc1�1Fd1 Ec2 Fd2 · · ·Ecs�1 Fds�1 Ecs (1, 1)
= b0(�k, v(v0)N�2)X,

(6.1)

where X = EGEc1�1Fd1 Ec2 Fd2 · · ·Ecs�1 Fds�1 Ecs (1, 1) and we admit to our
abuse of notation by writing b0.
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Base cases. Consider v=c1=c. Since b!�k,1
[1,1) has b(�k, 1) as a prefix, Lemma 6.15

yields the result when v = 1. From (6.1), one finds that for c � 2, b(�k, c) is a
prefix of [b(�k, c � 1)(1, 1)]2, which in turn is a prefix of b��k,c�1,2

[1,1) . Lemma 6.16
shows that also the right digit sequence of !�k,1 has each b(�k, c) as a prefix.
Therefore, the result holds for all v of length one.

When v = c 1 c, we use ↵0 = ��k,c,3, and ↵00 = ⇣�k,c+1. Since b(�k, v) =
uk�1, (1, 2)n�3 (EcG)1 Ec, (6.1) leads to [ b(�k, v)(1, 1) ]3 having b(�k, v) as a
prefix. Lemma 6.14 yields that b⇣�k,c+1

[1,1) also has b(�k, v) as a prefix.
Suppose v = 2q(c), q � 1 and c > 1.

Thus, b(�k, v) = uk�1, (1, 2)n�3(EcG)q+1 Ec. We set ↵0 = ��k,c,N , with N =

q + 2. Using (6.1), one shows that b↵0

[1,(1+S)N ]
has b(�k, v) as a prefix. We set ↵00 =

⇣�k,2q�1(c). Lemma 6.14 yields that b↵00

[1,1) has prefix b(�k,2q�1(c))GEc+1. The
result thus holds in this case.

Since c = 1 gives b(�k, v) = uk�1, (1, 2)n�3 EGFq�1 E , again using (6.1)
shows that the same argument succeeds.

Case 1. Suppose v = 2h
0(c), h � 2 for some c > 1. We have v = c(1 c)h and

thus b(�k, v) = uk�1, (1, 2)n�3 EcG (Ec+1G)h�1 Ec. Lemma 6.14 easily yields
that b⇣�k,c+1

[1,1) has b(�k, v) as a prefix. That is, we can take ↵00 = ⇣�k,c+1. With
↵0 = ��k,2h�1

0 (c),2 from (6.1) one finds that b
↵0

[1,1) also has b(�k, v) as a prefix.

Case 2. Suppose that the result holds for v = uau = 2p(u) with u 2 V and p � 1.
We prove that the result holds for 2q(v), q � 1. By Lemma 6.14, for general

k and v, one has b⇣�k,v
[1,1) = b(�k, (

 �
v0 )1 ), and thus (4.4) gives b

⇣�k,2q�1(v)

[1,1) =

b(�k, v [ (v0)qv00 ]1 ), which clearly has b(�k,2q(v) ) as a prefix. Therefore, we
can take ↵00 = ⇣�k,2q�1(v).

We first specialize to c > 1, that v0 = a
 �
u0 u = au[�1](c1�1) 1 u, v00 = au and

that u both begins and ends with the letter c1. Since terms in general b(�k, v) corre-
sponding to any d j = 1 vanish, a final v0 appearing inside of b0 in (6.1) has a prefix
coming from v00. From this, one finds that [b(�k, v)(1, 1)]q+3 has b(�k,2q(v) )
as a prefix. That is, we can take ↵0 = ��k,v,q+3.

We now consider the case of c = 1, where v0 = au[�2](d1 + 1) and v00 = au.
In (6.1) we can let the first Fd1 corresponding to the final power of v0 revert to
E G Fd1�1 so as to confirm that here also a final v0 contributes a subword that has as
a prefix the contribution of v00. Using this, [b(�k, v)(1, 1) ]q+3 has b(�k,2q(v) )
as a prefix. That is, we can take ↵0 = ��k,v,q+3.

Case 3. Suppose that 2p(u) = uau in our usual notation. Recall that 2h
0 �

2p(u) = u [(u0)pu00]h+1. As in Case 2, Lemma 6.14 and (4.4) give b
⇣�k,2p�1(u)

[1,1) =
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b(�k, u [ (u0)pu00 ]1 ). Thus, we use ↵00 = ⇣�k,2p�1(u). From (4.5) and (6.1), we
can take ↵0 = ��k,2h�1

0 �2p(u),3.

6.2.2. There are no other points of synchronization

That all ↵ > ✏3,n for which there is synchronization lie in the union of the J�k,v
is shown as for the case of small ↵. We find that there is some sequence of qi
such that ↵ 2 \1j=1 Ik,2q j �···�2q1 (1). But, this implies that b

↵
[1,1) has digits only

in {(�k, 1), (�k � 1, 1)}, while b↵
[1,1) has digits only in {(�1, 1), (�2, 1), (1, 2)},

with the digit (1, 2) appearing infinitely often. Therefore, the two orbits obviously
cannot synchronize.

6.2.3. The non-synchronization set is of measure zero

For ↵ > ✏3,n not in any J�k,v , there is some k such that the T↵-orbit of `0(↵) is
always in the set of points whose simplified digits are �k or �k � 1. In particular,
this orbit certainly remains in [�t, 0) and we can argue as in Subsection 4.6 to
conclude that the set of these ↵ values has measure zero.

7. Synchronization for �3,n < ↵ < ✏3,n , n � m

Recall that � = �3,n is characterized by C�1 · `0(� ) = r0(� ). Recall also that
`1 = A�1C · `0 for all ↵ 2 [0, ✏3,n). Thus, for �3,n < ↵ < ✏3,n we use the notation
of Section 6, but now with k = 1 (and certain further technical adjustments as noted
below).

Theorem 7.1. Fix m = 3 and n � m. If n = 3, then there is synchronization for
all ↵ 2 (�3,3, ✏3,3). If n > 3, then the set of ↵ 2 (�3,n, ✏3,n) for which there is not
synchronization is uncountable, but of Lebesgue measure zero.

For n � 3, define V̌n ⇢ V to be the trimming of V such that for all v = c1d1 · · · cs 2
V̌n , ci  n�2 and furthermore such that the only word with prefix n�2 is v = n�2
itself. Define each I�1,c1 to be as above, except that we insist on a left endpoint at
least � .

Theorem 7.2. Fix m = 3 and n � m. We have the following equality

[�3,n, ✏3,n) =
n�2[

v=1
I�1,v .

Furthermore, for each v 2 V̌n \ {n � 2}, the following is a partition:

I�1,v = J�1,v [
1[

q=q 0
I�1,2q (v) ,

where q 0 = 0 unless v = c1, in which case q 0 = �1. Moreover, I�1,n�2 =
J�1,n�2 = [�3,n, ⇣�1,n�2).
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Proof. Note that for ↵ = ⇣�1,1, we have A�1C ·`0(↵) = r0(↵), which is exactly the
definition of ↵ = ✏3,n . Arguing as we did for ↵ > ✏3,n shows that first equality of
the theorem, giving the basic partition, holds. Similarly, that J�1,v with the union of
the I�1,2q (v) partition I�1,v holds since the proof of Theorem 6.5 is easily checked
to extend to this case.

Recall that ⌘�k,v is such that R�k,v · r0(⌘) = C�1 · `0(⌘), and thus ⌘�1,n�2 is
such that r0(⌘�1,n�2) = C�1 · `0(⌘�1,n�2). That is, ⌘�1,n�2 = �3,n . The statement
I�1,n�2 = J�1,n�2 = [�3,n, ⇣�1,n�2) thus follows.

Proposition 7.3. Fix m = 3 and n � m. For all v 2 V̌n , synchronization occurs
along J�1,v .

Sketch. Here also the arguments of the previous section give the proof, how-
ever we must make minor adjustments. Note that U�1 = [AC(AC2)n�2]�1 =
(AC2)2�n(AC)�1. Thus in this setting of k = 1, any term of the form
[(AC2)n�3Uk�2AC]a as in the statements of Lemma 8.1 and Proposition 8.2 be-
comes [(AC2)�1]a . Note that each such term is followed by an appearance of
(AC2)n�3; since each exponent a will arise as either c j or c j + 1 for some c j letter
of some v 2 V̌ , we have a  n � 2. Since an exponent of the form c j + 1 occurs
only when the block is also preceeded by an occurrence of AC2, the identity guar-
antees an expression that has only positive powers of AC and of AC2. (Example 7.4
exhibits this phenomenon.) Thus our definition of R�k,v extends to include the case
of d = �1. Similarly, E1 must now denote (1, 2)�1 where we recognize that oc-
currences of E1 are surrounded by (1, 2) occurring to a sufficiently high power so
that the usual arithmetic of exponents results in a sensible word. Note that the key
relation EG = F thus holds in this setting.

Finally, both that synchronization only occurs along the J�1,v and that this is a
set of full measure follow from the arguments of the previous section.

Example 7.4. Note first that R�1,n�2 = CA�1C (A�1C)n�2A�1 = Id holds for
all n � 3. We also have R�1,1 = (AC2)�1 · (AC2)n�2 = (AC2)n�3. Note that
these calculations agree when n = 3. Let n > 3 and let us calculate one longer
right matrix:

R�1,111 = ẼF̃ Ẽ(AC2)n�2 = (AC2)�1 · (AC2)n�3AC · (AC2)�1 · (AC2)n�2

= (AC2)n�4AC(AC2)n�3.

8. Group element identities for the setting ↵ > �3,n

Here also, we thank the referee for suggesting an emphasis on group element con-
jugation. Recall that U = AC(AC2)n�2.
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Lemma 8.1. Suppose that m = 3, and k, a 2 N. Then

CA�1C(A�kC)a(CA�1C)�1 = [(AC2)n�3Uk�2AC]a .

Proof. To prove this, it suffices to show that the conjugacy relation holds when
a = 1. As a base case, we consider k = 1. The left hand side reduces to CA�1.
But, CA�1 = (AC2)�1 = (AC2)n�3[AC (AC2)n�2]�1AC . This case thus holds.

Now suppose that the identity holds for a = 1 and some value of k. We find

CA�1C(A�k�1C)C�1AC�1 = CA�1CA�kC�1

= CA�1C(A�kC)(CA�1C)�1 (CA�1C C�2)

= (AC2)n�3Uk�2AC CA�1C�1

= (AC2)n�3Uk�2AC CA�1C2

= (AC2)n�3Uk�2AC (AC2)n�2AC

= (AC2)n�3Uk�1AC.

The result thus holds.

Recall that for k 2 N and v = c1d1 . . . , cs�1ds�1cs 2 V

L�k,v = (A�kC)cs (A�k�1C)ds�1(A�kC)cs�1 · · · (A�k�1C)d1(A�kC)c1 A�1 and

R�k,v = Ẽcs F̃ds�1 Ẽcs�1F̃ds�2 · · · Ẽc2F̃d1 Ẽc1(AC2)n�2,

where Ẽ = (AC2)n�3Uk�2AC and F̃ = (AC2)n�3Uk�1AC .

Proposition 8.2. Fix k 2 N and v = c1d1 . . . , cs�1ds�1cs 2 V , then

CA�1C L�k,v = R�k,v .

Proof. Since in any group, the conjugate of a product is the product of the conju-
gates, the previous lemma yields

(CA�1C) L�k,vA (CA�1C)�1 = R�k,v(AC2)�n+2.

Since (AC2)�n+2 CA�1CA�1 = Id, the result follows.

9. Planar extensions

As we prove in upcoming work, the detailed results of this current paper are key in
describing planar extensions of the interval maps. We thank the referee for suggest-
ing that we include in the present work an indication of these results.
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Figure 9.1. Sixty thousand points in the T3,3,0.14-orbit of (⇡/103, 0.1).
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Figure 9.2. Planar extension of the one-dimensional system indexed by m = n =
3,↵ = 0.14 (see Figure 1.1), given as domain (left) and image (right). On the left side,
an index j such as j = �1 denotes the region fibering above1↵( j, 1), the indices�i, i
indicate unions of similar regions; the image of each such region is marked with the
corresponding symbol. The various `i , r j denote the images of the endpoints under T↵ ,
as usual. The value ↵ = 0.14 is an interior point of J1,1. The two bottom heights of
the region are y�2 = �r0(⌘1,1) and y�1 = �r1(⌘1,1). The top heights of the region
y1, . . . , y5 are similarly given as negative one times entries in the T⇣1,1 -orbit of `0(⇣1,1).
Each ↵ in the interior of J1,1 has a planar extension similarly described, so that the areas
of the regions vary continuously.

9.1. Two-dimensional maps and measure

The standard number theoretic planar map associated to a Möbius transformation
M is defined by

TM(x, y) :=

✓
M · x, N · y

◆
:=

✓
M · x, RMR�1 · y

◆
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where R =
⇣
0 �1
1 0

⌘
and there are of course niceties of domain of definition. Thus,

TM(x, y) = (M ·x,�1/(M ·(�1/y)) ). An elementary Jacobian matrix calculation
verifies that the measure µ on R2 given by

dµ =
dx dy

(1+ xy)2

is (locally) TM -invariant.
For simplicity of notation, fixing m, n, we set T↵ := Tm,n,↵ and I↵ := [ (↵ �

1)t,↵t ). Each T↵ is piecewise Möbius, so that there is some partition of its domain
into subintervals, I↵ = [� K� , such that T↵(x) = M� · x for all x 2 K� . We thus
set

T↵(x, y)=T3,n,↵(x, y)=
✓
M� ·x, RM�R�1 · y

◆
for x 2 K�, y 2 R\{N�1 ·1}.

See Figure 9.1 for a portion of the orbit of a point under a particular T3,n,↵ .

9.2. Planar extensions of the interval maps

In upcoming work we prove results of the following form. See Figure 9.2; a similar
result holds for larger values of ↵ as well, see Figure 9.3 for a hint of this.

Theorem 9.1. Fix n � m = 3, k 2 N and v 2 V . Let ↵ be in the interior of Jk,v .
Then

(1) T3,n,↵(x, y) is ergodic;
(2) there is a union of finitely many rectangles, �3,n,↵ , upon which the map

T3,n,↵(x, y) is bijective, up to µ-measure zero;
(3) the set of heights of these rectangles is constant along the interior of Jk,v , while

the widths are determined by the T↵-orbits of the various r0(↵) and `0(↵) and
thus vary continuously with ↵;

(4) the µ-measure of �3,n,↵ varies continuously with ↵;
(5) the entropy h( T3,n,↵ ) varies continuously with ↵.

9.3. An example

We sketch the above result in the setting of the synchronization interval containing
↵ = 0.14 when m = n = 3, see Example 1.2, as well as Figures 1.1, 9.1 and
9.2. One verifies that T3,3,↵ is bijective modulo zero on the planar region, � =
�↵ , represented by (say the left hand side of) Figure 9.2. Therefore, dµ = (1 +
xy)�2dxdy is an invariant measure for this map here, and one verifies that the µ-
measure of � is finite, which we can then normalize to be a probability measure.
The resulting probability measure on I↵ , the marginal measure which is simply the
push-forward under the vertical projection, hence obtained by “integrating along
fibers", is invariant for T . Call this measure ⌫. We then have that ⌫ is equivalent to
Lebesgue measure, and also is bounded above and below with respect to it.
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Figure 9.3. Planar extension of the one-dimensional system indexed by m = n =
3,↵ = 0.86, given as domain and image. Labelling similar to that of Figure 9.2. Here
↵ is an interior point of J�2,1.

9.3.1. Ergodicity of T↵

We now sketch how to adjust Luzzi-Marmi’s proof in [15] showing that the Nakada
↵-continued fraction maps have an exact (and hence ergodic) invariant measure, so
as to show that ⌫ has this property for our T . Recall that they prove that the full
cylinders generate the Borel sets, and then verify a form of bounded distortion for
the invariant measure, and then recall that together these are sufficient for a result
of Rohlin to give exactness.

Luzzi and Marmi first show that the ↵-continued fraction maps have bounded
distortion with respect to Lebesgue measure on full cylinders. Unlike the Nakada
maps, our T itself is not expanding, so we invoke reasoning of Adler, given in his af-
terword to Bowen’s [3]. This reasoning shows that it is sufficient for T to be eventu-
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ally expansive to obtain a bound for all n on log |(T n)0(x)/(T n)0(y)| whenever x, y
are in any fixed cylinder of rank n; bounded distortion (with respect to Lebesgue
measure) of full cylinders then follows, as in [15] (see their subsection 5.1). Since ⌫
is bounded above and below with respect to Lebesgue measure, bounded distortion
of the type necessary for the Rohlin result holds.

It only remains to show that the full cylinders for T generate; here again the ap-
proach of [15] must be adjusted for our setting. Let En be the collection of non-full
cylinders of rank n such that T j sends the cylinder to a non-full cylinder for every
1  j  n. We wish to show that the Lebesgue measure of En goes to zero with n.
The only non-full cylinders of rank one are 1↵(�1, 1) and 1↵(1, 1). The T -image
of each of these does not meet itself. Hence, each cylinder lying in En is indexed
by a sequence of length n of simplified digits which are alternatingly 1 and �1.
There are thus two such cylinders. Applying T 2 to each of these cylinders consists
of applying ACA�1C and A�1CAC , respectively. In the first case, the cylinder lies
to the right of (ACA�1C)�1 · `0 and calculation shows that the derivative of T 2 at
this endpoint is greater than 32.7; similarly, in the second case T 2 has derivative at
least its value at (A�1CAC)�1 · r0, which calculation shows is greater than 23.4. It
follows that the measure of the various E2m decreases to zero. Since each cylinder
of E2m+1 lies in a cylinder of E2m , the measure of En goes to zero as n!1, and
hence the full cylinders do indeed generate. Therefore, T is ergodic with respect
to ⌫.

9.3.2. Quilting shows ergodicity for ↵0 in the interior of J1,1

The ergodicity of T with respect to ⌫ implies that of T↵ = T3,3,↵ with respect
to µ normalized to be a probability measure on �↵ . With our ↵ = 0.14 when
m = n = 3, we have ↵ 2 J1,1. One can show that a variant of quilting as used
in [13] succeeds for relating planar extensions �↵ and �↵0 for ↵,↵0 both in the
interior of some Jk,v . Recall that quilting is a matter of beginning with say �↵ and
solving for �↵0 (on which T↵0 is bijective up to µ-measure zero). This is done by
deleting all forward T↵-images of that part of�↵ fibering over I↵ \I↵0 , while adding
in an appropriate translate of this initial deleted region, as well all forward images
under T↵0 . Synchronization makes this an essentially finite procedure. In particular,
any set of positive measure contained in �↵0 is partitioned into a piece upon which
T↵0 agrees with T↵ and a piece that T↵0 eventually brings to the set where these two
maps agree. Ergodicity of T↵ thus implies that of T↵0 .

9.3.3. Continuity of entropy

The quilting also shows that�↵0 is the union of rectangles in the manner announced
in Theorem 9.1. For clarity’s sake, we denote the invariant measure for T↵ by ⌫↵ .
Using Rohlin’s entropy formula, we have

h(T↵) =
Z

I↵
log | T 0↵(x) | d⌫↵ =

1
µ(�↵)

Z

�↵

�2 log | x | dµ.
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From the above, we see that the entropy, just as µ(�↵ ), varies continuously with
↵ in the interior of J1,1. When ↵ = 0.14, numeric integration over the explicit
region as given in Figure 9.2 gives approximate values of µ(�3,3,0.14 ) ⇠ 3.30023
and h(T3,3,0.14) ⇠ 1.99372. The product of these two values should be compared
with the volume of the unit tangent bundle of the hyperbolic surface (orbifold)
G3,3\H, which is 2⇡2/3 ⇠ 6.57974. Indeed, similar calculation indicates that
µ(�3,3,↵ )h(T3,3,↵) equals this volume for all ↵ in the interior of J1,1. Of course,
as in [14] or [11], one can expect that an application of Abramov’s formula will
show that h(T3,3,↵)µ(�3,3,↵ ) = 2⇡2/3 for any ↵ 2 Jk,v for any k, v. Furthermore,
as in [1], one can expect that each of these maps is a factor of a Poincaré section for
the geodesic flow on the unit tangent bundle of G3,3\H. We discuss such matters
in appropriate generality in our upcoming work.
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