p-Harmonic measure is not additive on null sets

JOSÉ G. LLORENTE, JUAN J. MANFREDI AND JANG-MEI WU

Dedicated to the memory of Tom Wolff. Without his work this note would not have been possible.

Abstract. When $1 and <math>p \neq 2$ the *p*-harmonic measure on the boundary of the half plane \mathbb{R}^2_+ is not additive on null sets. In fact, there are finitely many sets $E_1, E_2, ..., E_K$ in \mathbb{R} , of *p*-harmonic measure zero, such that $E_1 \cup E_2 \cup ... \cup E_K = \mathbb{R}$.

Mathematics Subject Classification (2000): 31A15 (primary); 35J70, 60G46 (secondary).

1. Introduction

We consider the *p*-harmonic measure associated to the operator

$$L_p(u) = \operatorname{div}\left(|\nabla u|^{p-2}\nabla u\right),$$

the *p*-Laplacian of a function *u*, for 1 . A*p* $-harmonic function in a domain <math>\Omega \subseteq \mathbb{R}^n (n \ge 2)$ is a weak solution of $L_p u = 0$; that is, $u \in W^{1,p}_{loc}(\Omega)$ and

$$\int_{\Omega} \langle |\nabla u|^{p-2} \nabla u, \nabla \varphi \rangle \, dx = 0$$

whenever $\varphi \in C_0^{\infty}(\Omega)$. Weak solutions of $L_p(u) = 0$ are indeed in the class $C_{\text{loc}}^{1,\alpha}$, where α depends only on p and n ([DB], [L1].) A lower semicontinuous $v: \Omega \to \mathbb{R} \cup \{\infty\}$ is p-superharmonic provided that $v \neq \infty$, and for each open $D \subset \overline{D} \subset \Omega$ and each u continuous on \overline{D} and p-harmonic in D, the inequality $v \geq u$ on ∂D implies $v \geq u$ in D.

Let *E* be a subset of $\partial \Omega$. Consider the class $C(E, \Omega)$ of nonnegative *p*-superharmonic functions *v* in Ω such that

$$\liminf_{X\in\Omega, X\to\zeta} v(X) \ge \chi_E(\zeta)$$

Pervenuto alla Redazione il 20 gennaio 2005 e in forma definitiva il 18 maggio 2005.

for all $\zeta \in \partial \Omega$. The *p*-harmonic measure of the set *E* relative to the domain Ω is the function $\omega_p(., E, \Omega)$ whose value at any $X \in \Omega$ is given by

$$\omega_p(X, E, \Omega) = \inf \{ v(X) : v \in \mathcal{C}(E, \Omega) \}.$$

We often omit the variable X and the domain Ω and write $\omega_p(E, \Omega)$ or just $\omega_p(E)$. The function $\omega_p(E, \Omega)$ is *p*-harmonic in Ω , satisfies

$$0 \le \omega_p(E, \Omega) \le 1,$$

and $\omega_p(E, \Omega)$ has boundary values 1 at all regular points interior to *E* and boundary values 0 at all regular points interior to $\partial \Omega \setminus E$. For these and additional potential-theoretic properties of the *p*-Laplacian see [GLM] and the book [HKM].

When p = 2 harmonic functions have the mean value property. Suppose Ω is a Dirichlet regular domain, then $\omega_2(X, \cdot, \Omega)$ is a probability measure on $\partial \Omega$ and the integral

$$\int_{\partial\Omega} f(\zeta) \, d\omega_2(X,\zeta,\Omega)$$

gives the solution to the Dirichlet problem for a given boundary data function f.

When $p \neq 2$, due to the nonlinearity of the *p*-Laplacian, *p*-harmonic functions need not satisfy the mean value property and the sum of two *p*-harmonic functions need not be *p*-harmonic. Consequently $\omega_p(X, \cdot, \Omega)$ is not additive on $\partial \Omega$, hence not a measure.

Very little is known about measure-theoretic properties of *p*-harmonic measure when $p \neq 2$. Assume that Ω is Dirichlet regular. Then for all compact subsets *E* of the boundary $\partial \Omega$ we have

$$\omega_p(E,\Omega) + \omega_p(\partial\Omega \backslash E,\Omega) = 1; \tag{1.1}$$

and if E and F are both compact, disjoint, and $\omega_p(E, \Omega) = \omega_p(F, \Omega) = 0$ then

$$\omega_p(E \cup F, \Omega) = 0. \tag{1.2}$$

These results can be found in [GLM] and also in [HKM].

Some conditions on the smallness of a compact set *F* in terms of Hausdorff dimension or capacity that imply $\omega_p(E \cup F, \Omega) = \omega_p(E, \Omega)$ can be found in [AM], [K] and [BBS].

Martio asked in [M1] whether p-harmonic measure defines an outer measure on the zero level; i.e., whether (1.2) remains true when E and F are allowed to intersect and to be noncompact.

In this note we answer Martio's question negatively by showing that ω_p is not additive on null sets when $p \neq 2$. We construct an example when $\Omega = \mathbb{R}^2_+$ is the upper half-space and $\partial \Omega = \mathbb{R}$. We may consider the point at infinity as a part of the boundary but it is not difficult to see that $\omega_p(\{\infty\}, \mathbb{R}^2_+) = 0$. Points in \mathbb{R}^2_+ will be denoted by (x, y) or X interchangeably.

Theorem 1.1. Let $1 and <math>p \neq 2$. Then there exist finitely many sets $E_1, E_2, \ldots, E_{\kappa}$ on \mathbb{R} such that

$$\omega_p(E_k, \mathbb{R}^2_+) = 0, \quad \omega_p\left(\mathbb{R} \setminus E_k, \mathbb{R}^2_+\right) = 1, \quad and \quad \bigcup_{k=1}^{\kappa} E_k = \mathbb{R}.$$

Furthermore, the sets E_k verify $|\mathbb{R} \setminus E_k| = 0$.

Here |.| stands for Lebesgue measure on the real line.

Corollary 1.2. *There exist* A *and* $B \subseteq \mathbb{R}$ *such that*

$$\omega_p(A, \mathbb{R}^2_+) = \omega_p(B, \mathbb{R}^2_+) = 0 \quad and \quad \omega_p(A \cup B, \mathbb{R}^2_+) > 0.$$

Thus $\omega_p(\cdot, \mathbb{R}^2_+)$ is not additive on null sets.

Corollary 1.3. Let $1 and <math>p \neq 2$. Then $\omega_p(X, \cdot, \mathbb{R}^2_+)$ is not a Choquet capacity for each $X \in \Omega$. In fact there exists an increasing sequence of sets $B_1 \subseteq B_2 \subseteq \cdots \subseteq B_j \subseteq \cdots \subseteq \mathbb{R}$ so that

$$\lim_{j\to\infty}\omega_p(B_j)<\omega_p\bigg(\bigcup_{j=1}^\infty B_j\bigg).$$

To prove Corollary 1.2, choose $k_0 = \min\{k : \omega_p(E_1 \cup E_2 \cup ..., E_k) > 0\}$ and let $A = E_1 \cup E_2 \cup ... \in E_{k_0-1}, B = E_{k_0}$.

Corollary 1.3 follows from Theorem 1.1 as in the tree case given in [KLW]. The definition of Choquet capacity can be found in [HKM].

Both the Theorem and its corollaries can be extended to \mathbb{R}^n_+ ($n \ge 3$) by adding n-2 dummy variables.

Until recently, there has been no ground for conjecturing the answer to Martio's and some other questions about *p*-harmonic measures. A sequence of papers [CFPR], [KW], [ARY] and [KLW], is devoted to studying *p*-harmonic measure and Fatou theorem for bounded *p*-harmonic functions in an overly simplified model – forward directed regular κ -branching trees. On such trees, Theorem 1 is proved and for each fixed *p* the exact value of the minimum of Hausdorff dimension of Fatou sets over all bounded *p*-harmonic functions is given in [KW] and [KLW].

In [KLW] the construction of the sets in Theorem 1 for trees starts with a basic *p*-harmonic function *u* that does not satisfy the mean value property, follows with a Riesz product and then a stopping time argument. It is really quite simple. In \mathbb{R}^2_+ we follow the same procedures. The basic *p*-harmonic function is infinitely more complicated and is provided by remarkable examples of Wolff for $2 , and of Lewis for <math>1 ([Wo1], [Wo2] and [L2]). On a tree there is a perfect independence among branches and the Riesz product includes all generations; in <math>\mathbb{R}^2_+$ we obtain an approximate independence by introducing large gaps in the Riesz product. Finally, instead of a stopping time argument, we use an ingenious lemma of Wolff [Wo1] on gap series of *p*-harmonic functions, to estimate the *p*-harmonic function whose boundary values are given by an infinite product.

ACKNOWLEDGEMENTS. First author partially supported by grants DGICYT BFM 2002-04072-102-02 1 and SGR 149275, 149255. Second author supported in part by NSF award DMS-0500983. Third author supported in part by NSF award DMS-0400810.

This research was initiated when the first author visited the University of Illinois and the University of Pittsburgh in February 2004. He wishes to thank both institutions for their hospitality.

2. Preliminaries

In this section we recall several properties of *p*-harmonic functions which are needed in the proofs.

If u(X) is *p*-harmonic and $c \in \mathbb{R}$, then c + u(X), cu(X) and u(cX) are *p*-harmonic. If *u* is a nonnegative *p*-harmonic function in Ω and *B* is a ball such that $2B \subseteq \Omega$, then $\sup_B u \leq C \inf_B u$ for some C = C(n, p) > 0 (Harnack inequality). A nonconstant *p*-harmonic function in a domain cannot attain its supremum or infimum (Strong Maximum Principle). If a sequence of *p*-harmonic functions converges uniformly then the limit is also *p*-harmonic.

We list now some basic properties of *p*-harmonic measure.

- 1. If $\omega_p(X, E, \Omega) = 0$ at some $X \in \Omega$ then $\omega_p(Y, E, \Omega) = 0$ for any other $Y \in \Omega$ by Harnack inequality.
- 2. If $E_1 \subseteq E_2 \subseteq \partial \Omega$ then $\omega_p(E_1, \Omega) \leq \omega_p(E_2, \Omega)$ (monotonicity).
- 3. If $\Omega_1 \subseteq \Omega_2$ and $E \subseteq \partial \overline{\Omega}_1 \cap \partial \Omega_2$ then $\omega_p(E, \Omega_1) \leq \omega_p(E, \Omega_2)$ (Carleman's principle).
- 4. If $E_1 \supseteq E_2 \supseteq, \ldots, \supseteq E_j \supseteq \ldots$ are closed sets on $\partial \Omega$, then

$$\omega_p\left(\bigcap_{j=1}^{\infty} E_j, \Omega\right) = \lim_{j \to \infty} \omega_p(E_j)$$

(upper semicontinuity on closed sets).

See chapter 11 in [HKM] for these properties.

We follow [Wo1] and let $W^{p|\lambda}$ be the class of all functions $f : \mathbb{R}^2_+ \to \mathbb{R}$ which are λ -periodic in the *x* variable $(f(x + \lambda, y) = f(x, y))$ and satisfy

$$\|f\|_{p|\lambda}^{p} = \int_{[0,\lambda)\times(0,\infty)} |\nabla f(x, y)|^{p} dx dy < \infty,$$

where the gradient is taken in the sense of distributions. If $f \in W^{p|\lambda}$ then the function f has a well-defined trace on \mathbb{R} ; and among the functions g such that $g - f \in W^{p|\lambda}$ has trace 0 on \mathbb{R} , there is a unique g, denoted by \hat{f} , which minimizes $\|g\|_{p|\lambda}$. The function \hat{f} is the unique p-harmonic function in \mathbb{R}^2_+ with boundary values f on \mathbb{R} . Moreover, there exists $\xi \in \mathbb{R}$ so that

$$|\hat{f}(x, y) - \xi| \le 2e^{-\frac{\gamma y}{\lambda}} ||f||_{\infty}$$

for some $\gamma = \gamma(p) > 0$, [Wo1]. Extend then \hat{f} to \mathbb{R} by its boundary values. The comparison principle holds in this setting: let $f, g \in W^{p|\lambda}$ satisfy $f \leq g$ in the Sobolev sense on \mathbb{R} , then $\hat{f} \leq \hat{g}$ in \mathbb{R}^2_+ ([Ma], [Wo1]).

The following lemma of Wolff ([Wo1]) is a substitute for a "local comparison principle" (unknown for $p \neq 2$) for *p*-harmonic functions. It is not difficult to prove (2.1) below for $y < Av^{-1}$ and (2.3) below for y > 1. However, a much deeper analysis is needed to obtain (2.1) and (2.3) below on the two sides of the line $y = Av^{-\alpha}$ for some $0 < \alpha < 1$. We shall need the full force of Wolff's lemma. **Wolff's Lemma** [Wo1]. Let $1 . Define <math>\alpha = 1 - 2/p$ if $p \ge 2$ and $\alpha = 1 - p/2$ if p < 2. Let $\epsilon > 0$ and $0 < M < \infty$. Then there are small $A = A(p, \epsilon, M) > 0$ and large $v_0 = v_0(p, \epsilon, M) < \infty$ so that the following are true:

If $v > v_0$ is an integer, $f, g, q \in Lip_1(\mathbb{R})$ are periodic with periods 1, 1, v^{-1} respectively, and

 $\max(\|f\|_{\infty}, \|g\|_{\infty}, \|q\|_{\infty}, \|f\|_{Lip_{1}}, \|g\|_{Lip_{1}}, \nu^{-1}\|q\|_{Lip_{1}}) \leq M,$

then for $(x, y) \in \mathbb{R}^2_+$ we have

$$|(qf+g)(x,y) - (\hat{q}(x,y)f(x) + g(x))| < \epsilon \quad \text{if} \quad y < A\nu^{-\alpha}.$$
 (2.1)

If, in addition to the above, $\hat{q}(x, y) \rightarrow 0$ *as* $y \rightarrow \infty$ *, then*

$$|(\widehat{qf} + \widehat{g})(x, A\nu^{-\alpha}) - g(x)| < \epsilon$$
(2.2)

and

$$|(\widehat{qf+g})(x,y) - \widehat{g}(x,y)| < \epsilon \quad if \quad y > A\nu^{-\alpha} .$$
(2.3)

The key to [Wo1] and [L2] is the existence of a basic function Φ which shows the failure of the mean value property for periodic *p*-harmonic functions in the class $W^{p|\lambda}(\mathbb{R}^2_+)$ when $p \neq 2$. The mean of $\Phi(x, 0)$ on [0, 1] equals the limit of Φ at ∞ when p = 2.

Theorem 2.1. (Wolff and Lewis [Wo1], [L2]) For $1 and <math>p \neq 2$ there exists a Lipschitz function $\Phi : \mathbb{R}^2_+ \to \mathbb{R}$ such that $L_p \Phi = 0$, Φ has period 1 in the *x* variable $\Phi(x + 1, y) = \Phi(x, y)$,

$$\int_{[0,1)\times(0,\infty)} |\nabla\Phi|^p dx dy < +\infty,$$
$$\int_0^1 \Phi(x,0) dx > 0, \quad but \quad \Phi(x,y) \to 0 \quad as \quad y \to \infty$$

Note that when $p \neq 2$, the *p*-harmonic function $|X|^{\frac{p-n}{p-1}}$ if $p \neq n$, or $\log |X|$ if p = n, fails to have the mean value property on any sphere or half plane in $\mathbb{R}^n \setminus \{0\}$ $(n \geq 2$.) But these functions are not periodic.

3. Proofs

Proof of Theorem 1.1. Fix $p \neq 2$, $1 . Let <math>\Phi$ be the basic function of Wolff and Lewis. Note that $\Phi(x, 0)$ must take both positive and negative values by the comparison principle. Replacing Φ by $c\Phi$ (c > 0 small constant), if necessary, we may assume

$$\|\Phi\|_{\infty} < \frac{1}{2} \tag{3.1}$$

and

$$\int_0^1 \log(1 + \Phi(x, 0)) dx > 0.$$

Fix a positive integer κ such that

$$\sum_{k=1}^{\kappa} a_k > 0 \quad \text{and} \quad \prod_{k=1}^{\kappa} (1+a_k) > 1,$$

where

$$a_k = \min\left\{\Phi(x, 0) : x \in \left[\frac{k-1}{\kappa}, \frac{k}{\kappa}\right]\right\}$$
(3.2)

Let

$$L = \|\Phi\|_{Lip_1}$$

and fix $\Lambda > 1$ and an integer $n_0 > 5$ so that

$$1 < \Lambda < \prod_{k=1}^{\kappa} (1+a_k)^{\frac{1}{\kappa}}$$
(3.3)

and

$$3^{-n_0} < \min\left\{1 + \max\{a_k\} - \Lambda, \frac{L}{\kappa}\right\}.$$
 (3.4)

For convenience we write f(x) for f(x, 0) and $\omega_p(E)$ for $\omega_p(E, \mathbb{R}^2_+)$ from now on.

We shall choose *inductively* an increasing sequence of positive powers of the integer κ

$$1 < v_1 < v_2 < \dots$$

and shall define for each $k \in [1, \kappa]$ two sequences of functions on \mathbb{R}

$$q_1^k(x) = \Phi\left(x + \frac{k-1}{\kappa}\right), \ f_1^k(x) = 1 + q_1^k(x)$$
 (3.5)

and

$$q_j^k(x) = \Phi\left(\nu_j x + \frac{k-1}{\kappa}\right), \ f_j^k(x) = f_{j-1}^k(x)(1+q_j^k(x)).$$
(3.6)

After these are defined, we observe from (3.2), (3.3) and the periodicity of $\Phi(x)$ that

$$\prod_{k=1}^{\kappa} f_j^k(x) = \prod_{i=1}^j \prod_{k=1}^{\kappa} \left(1 + \Phi\left(\nu_i x + \frac{k-1}{\kappa}\right) \right) > \Lambda^{\kappa j} \quad \text{for all} \quad x.$$
(3.7)

Next, it follows from (3.1) that for $j \ge 1$

$$\|q_j^k\| < \frac{1}{2},\tag{3.8}$$

$$2^{-j} < f_j^k < \left(\frac{3}{2}\right)^j, \tag{3.9}$$

$$\|q_{j}^{k}\|_{Lip_{1}} \le L\nu_{j}, \tag{3.10}$$

and

$$\|f_j^k\|_{Lip_1} \le L\nu_j 2^j \,. \tag{3.11}$$

We then define for each $k \in [1, \kappa]$ a set

$$E_k = \{x \in \mathbb{R} : f_j^k(x) > \Lambda^j \text{ for infinitely many } j's\}$$

Observe that (3.7) implies

$$\bigcup_{k=1}^{\kappa} E_k = \mathbb{R}$$

To finish the proof we need to establish

$$\omega_p(E_k) = 0, \quad \omega_p\left(\mathbb{R} \setminus E_k, \mathbb{R}_2^+\right) = 1, \quad \text{and} \quad |\mathbb{R} \setminus E_k| = 0$$

for each *k*.

We start by discussing the choice of $\{v_j\}$ and two other sequences $\{r_j\}$ and $\{t_j\}$; we always assume $\{v_j\}$ are positive powers of κ , and $\{r_j\}$ and $\{t_j\}$ are negative powers of κ .

Set $r_0 = t_0 = 1$ and $v_1 = 1$. After $\{v_1, v_2, ..., v_j\}, \{r_0, r_1, ..., r_{j-1}\}$ and $\{t_0, t_1, ..., t_{j-1}\}$ are chosen, the functions

$$\{q_1^k, q_2^k, \dots, q_j^k\}$$

 $\{f_1^k, f_2^k, \dots, f_j^k\}$

and

are then defined by (3.5) and (3.6) for each $k \in [1, \kappa]$. We then choose $r_j > 0$ so that

$$r_j < \min\{t_{j-1}, (L\nu_j 6^{j+1})^{-1}\}$$
 (3.12)

and that

$$|\widehat{f_j^k}(x, y) - f_j^k(x)| < 3^{-j-1} \quad \text{if} \quad 0 \le y \le r_j$$
 (3.13)

for all $k \in [1, \kappa]$.

Let $f = g = f_j^k$, $q = q_{j+1}^k$, $M = Lv_j 2^j$ and $\epsilon = 3^{-j-1}$ in Wolff's lemma; then v_{j+1} and t_j can be chosen from (2.1) and (2.3) so that

$$\nu_{j+1}^{-1} < t_j < r_j \tag{3.14}$$

$$|\widehat{f_{j+1}^k}(x,y) - f_j^k(x)(1 + \widehat{q_{j+1}^k}(x,y))| < 3^{-j-1} \quad \text{if} \quad 0 < y \le t_j \tag{3.15}$$

and

$$|\widehat{f_{j+1}^k}(x,y) - \widehat{f_j^k}(x,y)| < 3^{-j-1} \quad \text{if} \quad y \ge t_j$$
 (3.16)

for all $k \in [1, \kappa]$. The fact that $0 < \alpha < 1$ in Wolff's lemma is needed here to ensure that we can always find a t_j such that $v_{j+1}^{-1} < t_j < r_j$. We also need the fact that $\widehat{q_{j+1}^k}(x, y) \to 0$ as $y \to \infty$ to obtain (3.16). This ends the induction procedure.

For each $k \in [1, \kappa]$ the sequence $\{\widehat{f}_j^k\}$ converges to a *p*-harmonic function f^k on \mathbb{R}^2_+ uniformly on compact subsets. Since $\{t_j\}$ is decreasing, it follows from (3.16) that

$$|\widehat{f_N^k}(x, y) - \widehat{f_j^k}(x, y)| < 3^{-j} \quad \text{if} \quad y \ge t_j$$
 (3.17)

for all $N \ge j$ and $k \in [1, \kappa]$; and from (3.15) and (3.17) that

$$\widehat{f_N^k}(x, y) > \frac{1}{2} f_j^k(x) - 3^{-j} \quad \text{if} \quad t_{j+1} \le y \le t_j$$
(3.18)

for all $N \ge j + 1$ and $k \in [1, \kappa]$. To see (3.18), observe that, since $y \ge t_{j+1}$, we get by (3.17),

$$|\widehat{f_N^k}(x, y) - \widehat{f_{j+1}^k}(x, y)| < 3^{-j-1}$$

On the other hand, since $y \le t_i$, by (3.15) and (3.1) we have

$$\widehat{f_{j+1}^k}(x, y) > \frac{1}{2}f_j^k(x) - 3^{-j-1}.$$

364

We are now ready to prove $\omega_p(E_k) = 0$ and $\omega_p(\mathbb{R} \setminus E_k) = 1$ for all $k \in [1, \kappa]$. In view of the Harnack inequality and the strong maximum principle, it is enough to prove $\omega_p(X_0, E_k, \mathbb{R}^2_+) = 0$ and $\omega_p(X_0, \mathbb{R} \setminus E_k, \mathbb{R}^2_+) = 1$ for a fixed point $X_0 \in \mathbb{R}^2_+$. We take $X_0 = (0, 1)$. We fix k and from now on, we omit k in the subscripts and superscripts of E_k , q_j^k and f_j^k . Let $G_j = \{x : f_j(x) > \Lambda^j\}$, so that we have

$$E = \bigcap_{n=1}^{\infty} \bigcup_{j=n}^{\infty} G_j.$$

By monotonicity we get $\omega_p(E) \le \omega_p \left(\bigcup_{j=n}^{\infty} G_j\right)$. Therefore to show $\omega_p(E) = 0$ it suffices to prove that for some C > 0,

$$\omega_p\left(X_0, \bigcup_{j=n}^{\infty} G_j\right) \le C\Lambda^{-n} \quad \text{for all} \quad n > n_0.$$
(3.19)

In fact it is enough to show that for some C > 0,

$$\omega_p\left(X_0, \bigcup_{j=n}^N G_j\right) < C\Lambda^{-n} \quad \text{for all} \quad N > n > n_0 \tag{3.20}$$

Let us see how (3.20) implies (3.19). Observe that $\mathbb{R} \setminus \bigcup_{j=n}^{N} G_j$, $N \ge n$ is a decreasing sequence of closed sets on \mathbb{R} . Since the characteristic function of an open set is bounded and lower semicontinous, it is resolutive. Thus, we have

$$\omega_p\left(\bigcup_{j=n}^N G_j\right) = 1 - \omega_p\left(\mathbb{R} \setminus \bigcup_{j=n}^N G_j\right)$$

and

$$\omega_p\left(\bigcup_{j=n}^{\infty}G_j\right) = 1 - \omega_p\left(\mathbb{R}\setminus\bigcup_{j=n}^{\infty}G_j\right)$$

(See (9.31) and (11.4) of [HKM].) By the upper semicontinuity of *p*-harmonic measure on closed sets, we can let N go to ∞ to get

$$\lim_{N\to\infty}\omega_p\left(\bigcup_{j=n}^N G_j\right) = 1 - \omega_p\left(\mathbb{R}\setminus\bigcup_{j=n}^\infty G_j\right).$$

Therefore we conclude

$$\lim_{N \to \infty} \omega_p \left(\bigcup_{j=n}^N G_j \right) = \omega_p \left(\bigcup_{j=n}^\infty G_j \right).$$

By monotonicity we have $\omega_p(\mathbb{R} \setminus E) \ge \omega_p\left(\mathbb{R} \setminus \bigcup_{j=n}^{\infty} G_j\right)$; the equality $\omega_p(\mathbb{R} \setminus E) = 1$ follows again from (3.20).

We need to establish (3.20). Define for each $j > n_0$ a set

$$H_j = \bigcup \left\{ I : \kappa \text{-adic closed interval of length } t_j, \max_{x \in I} f_j(x) \ge \Lambda^j - 3^{-j-1} \right\}$$

and let

$$T_j = H_j \times [0, t_j]$$

Observe that from the definition of H_i we have

$$f_j(x) < \Lambda^j - 3^{-j-1}$$
 on $H_j \setminus \overset{o}{H}_j$ (3.21)

where $\overset{o}{H}_{j}$ is the relative interior of H_{j} . Hence, it follows that

$$G_j \subseteq \overline{G_j} \subseteq \overset{o}{H}_j \subseteq H_j.$$

Note from (3.8), (3.9), (3.10), (3.11), (3.12), and (3.14) that we have

$$|f_j(x) - f_j(x')| \le L v_j 2^j t_j < 3^{-j} 6^{-1} \quad \text{if} \quad |x - x'| \le t_j.$$
(3.22)

Therefore the inequality

$$\min_{H_j} f_j \ge \Lambda^j - 3^{-j} 2^{-1} \tag{3.23}$$

holds. Finally, from (3.13) and (3.14) we deduce

$$\widehat{f}_j(x, y) > \Lambda^j - 3^{-j}$$
 on T_j (3.24)

We pause for a remark. If the statement

$$\widehat{f_N}(x, y) > C\Lambda^j$$
 on $\partial T_j \setminus \overset{o}{H}_j$ for all $N \ge j > n_0$ (3.25)

were true, then it would follow from the comparison principle applied on the domain $\mathbb{R}^2_+ \setminus \bigcup_{i=1}^N T_j$ and the convergence of $\{\widehat{f}_j\}$ that

$$\omega_p\left(X_0,\bigcup_{j=n}^N G_j\right) \le \omega_p\left(X_0,\bigcup_{j=n}^N \partial T_j \setminus \stackrel{o}{H}_j\right) \le C^{-1}\Lambda^{-n}\widehat{f_N}(X_0) < C(X_0)\Lambda^{-n}.$$

This would give (3.20) and thus $\omega_p(E) = 0$. Since (3.25) need not be true on vertical edges in ∂T_i , we need to modify the sets T_i .

The connected components of T_j are mutually disjoint rectangles Q of height t_j and of widths integer multiples of t_j . This class of rectangles is mapped to itself by the family of mappings $(x, y) \mapsto (mv_j^{-1} + x, y), m \in \mathbb{Z}$.

Suppose $Q = [a, b] \times [0, t_j]$ is such a component. Then

$$f_j(a), \ f_j(b) < \Lambda^j - 3^{-j-1}$$
 (3.26)

by (3.21). There are two possibilities.

Case I: $\max_{[a,b]} f_j \leq \Lambda^j$. In this case define Q^* to be the empty set \emptyset , and note from (3.26) and the definition of G_j that

$$\overline{G_i} \cap [a, b] = \emptyset. \tag{3.27}$$

Case II: $\max_{[a,b]} f_j > \Lambda^j$.

In this case let $I_j^Q = [a, a + t_j]$ and $J_j^Q = [b - t_j, b]$, and note from (3.22), (3.23), and (3.26) that

$$\Lambda^j - 3^{-j} < f_j(x) < \Lambda^j - 3^{-j-2} \quad \text{on} \quad I_j^{\mathcal{Q}} \cup J_j^{\mathcal{Q}},$$

so that we have

$$\overline{G_j} \cap (I_j^{\mathcal{Q}} \cup J_j^{\mathcal{Q}}) = \emptyset.$$
(3.28)

To modify Q in Case II, we need the following fact.

Fact. If *I* is a κ -adic closed interval of length t_{ℓ} ($\ell > n_0$) on which $f_{\ell}(x) \ge \Lambda^{\ell} - 3^{-\ell}$, then *I* contains a κ -adic closed subinterval of length $t_{\ell+1}$ on which $f_{\ell+1}(x) > \Lambda^{\ell+1}$.

To see this, we write $f_{\ell+1} = (1 + q_{\ell+1})f_{\ell}$ and note that *I* contains $t_{\ell}v_{\ell+1}$ periods of $q_{\ell+1}$. So from (3.2), the interval *I* has at least $t_{\ell}v_{\ell+1}\kappa$ -adic subintervals of length $\kappa^{-1}v_{\ell+1}^{-1}$ on which $q_{\ell+1} \ge \max\{a_k\}$. Let *I''* be any one of such subintervals and let *I'* be any κ -adic subinterval of *I''* of length $t_{\ell+1}$. Then

$$f_{\ell+1} \ge (\Lambda^{\ell} - 3^{-\ell})(1 + \max\{a_k\}) > \Lambda^{\ell+1}$$
 on I'

by (3.4).

Therefore, we may choose two sequences of κ -adic closed intervals:

$$I_j^Q \supseteq I_{j+1}^Q \supseteq I_{j+2}^Q \supseteq \dots$$

and

$$J_j^Q \supseteq J_{j+1}^Q \supseteq J_{j+2}^Q \supseteq \dots$$

such that $|I_{\ell}^{Q}| = |J_{\ell}^{Q}| = t_{\ell}$ and

$$f_{\ell}(x) > \Lambda^{\ell} - 3^{-\ell} \quad \text{on} \quad I_{\ell}^{\mathcal{Q}} \cup J_{\ell}^{\mathcal{Q}}$$
(3.29)

for all $\ell \geq j$. Let

$$a^* = \bigcap_{\ell=j}^{\infty} I_\ell^Q$$
 and $b^* = \bigcap_{\ell=j}^{\infty} J_\ell^Q$. (3.30)

Clearly we have the inclusion $[a + t_j, b - t_j] \subseteq [a^*, b^*] \subseteq [a, b]$. Finally replace Q by

$$Q^* = [a^*, b^*] \times [0, t_j]$$

in Case II.

Set

$$T_j^* = \bigcup \{Q^* : Q \text{ a component of } T_j\},$$

and

$$H_j^* = T_j^* \cap \{y = 0\}.$$

Then it follows from (3.27) and (3.28) that

$$G_j \subseteq \overline{G_j} \subseteq \overset{o}{H_j^*} \subseteq H_j^* \subseteq T_j^* \subseteq T_j.$$

Claim. $\widehat{f_N}(x, y) > \Lambda^j/3$ on $\partial T_j^* \setminus \overset{o}{H_j^*}$ for all $N \ge j$.

To establish the claim, note first that $\partial T_j^* \setminus \overset{o}{H_j^*} \subseteq T_j$, so that (3.24) implies

$$\widehat{f}_j(x, y) > \Lambda^j - 3^{-j} > \frac{\Lambda^j}{3}$$
 on $\partial T_j^* \setminus \overset{o}{H_j^*}$.

Next assume $N \ge j + 1$. On $T_j^* \cap \{t_{j+1} \le y \le t_j\}$, it follows from (3.18) and (3.23) that

$$\widehat{f_N}(x,y) > \frac{1}{2}f_j(x) - 3^{-j} > \frac{1}{2}(\Lambda^j - 3^{-j}2^{-1}) - 3^{-j} > \frac{\Lambda^j}{3}.$$

The portion $V = (\partial T_j^* \setminus H_j^*) \cap \{0 \le y \le t_{j+1}\}$ consists of vertical line segments only. Suppose $(x, y) \in V$, then $x = a^*$ or b^* , associated with some component $[a, b] \times [0, t_j]$ of T_j , as defined in (3.30). If $(x, y) \in V \cap \{t_{\ell+1} \le y \le t_\ell\}$ for some $\ell \in [j + 1, N - 1]$, then

$$\widehat{f_N}(x, y) > \frac{1}{2} f_\ell(x) - 3^{-\ell} > \frac{1}{2} (\Lambda^\ell - 3^{-\ell}) - 3^{-\ell} > \frac{\Lambda^j}{3}$$

by (3.18) and (3.29). Finally, if $(x, y) \in V \cap \{0 \le y \le t_N\}$, then

$$\widehat{f_N}(x, y) > f_N(x) - 3^{-N-1} > \Lambda^N - 3^{-N} - 3^{-N-1} > \frac{\Lambda^j}{3}$$

by (3.13), (3.14) and (3.29). This proves the claim.

From the claim we deduce that the function $u(x, y) = 3\Lambda^{-n} \widehat{f_N}(x, y)$ has values u(x, y) > 1 on

$$\overline{\bigcup_{j=n}^{N} \partial T_j^* \cap \{y > 0\}} = \bigcup_{j=n}^{N} (\partial T_j^* \setminus H_j^{*o}).$$

We can now pass to a subset to conclude

$$u(x, y) > 1$$
 on $\overline{\partial \left(\bigcup_{j=n}^{N} T_{j}^{*}\right) \cap \{y > 0\}},$

for $N \ge n > n_0$.

Repeat now the argument after (3.25). The statement (3.20) follows by applying the comparison principle to the functions u and $\omega_p\left(\bigcup_{j=n}^N G_j\right)$ on the domain $\mathbb{R}^2_+ \setminus \bigcup_{j=n}^N T_j^*$. This completes the proof of $\omega_p(E_k, \mathbb{R}^2_+) = 0$ and $\omega_p(\mathbb{R} \setminus E_k, \mathbb{R}^2_+) = 1$. It remains to prove $|\mathbb{R} \setminus E_k| = 0$ for all $k \in [1, \kappa]$. Define Ψ on [0, 1) so that

$$\Psi(x) = \log(1 + a_{\ell})$$
 on $\left[\frac{\ell - 1}{\kappa}, \frac{\ell}{\kappa}\right), 1 \le \ell \le \kappa$

and extend Ψ periodically to \mathbb{R} so that $\Psi(x+1) = \Psi(x)$ for all x. Recall that $a_{\ell} = \min \left\{ \Phi(x) : x \in \left[\frac{\ell-1}{\kappa}, \frac{\ell}{\kappa}\right] \right\}$. Define for each $k \in [1, \kappa]$ a sequence of functions h_1^k , h_2^k , h_3^k , ... so that

$$h_j^k(x) = \Psi\left(v_j x + \frac{k-1}{\kappa}\right) - m,$$

where $m = \frac{1}{\kappa} \sum_{k=1}^{\kappa} \log(1 + a_{\ell}).$

Fix *k* in [1, κ]. Note that h_j^k is constant on each interval $\left[\frac{i-1}{\kappa \nu_j}, \frac{i}{\kappa \nu_j}\right)$, *i* an integer, and has average zero with respect to the Lebesgue measure μ on each interval

$$\left[\frac{i-1}{\kappa\nu_{j-1}},\frac{i}{\kappa\nu_{j-1}}\right).$$

Here we have set $\nu_{-1} = \kappa^{-1}$. Therefore the functions $h_1^k, h_2^k, h_3^k, \ldots$ are orthogonal in L^2 . Since the sequence is uniformly bounded, it has partial sums

$$h_1^k + h_2^k + \dots + h_j^k = o(j^{3/4}) \quad \mu - a.e.$$

Since

$$\log f_j^k \ge \sum_{\ell=1}^j \Psi\left(\nu_\ell x + \frac{k-1}{\kappa}\right) = mj + \sum_1^j h_\ell^k(x)$$

and $1 < \Lambda < e^m$, therefore for μ -almost every *x* there exist an integer j(x) > 0 so that

$$f_j^k(x) > \Lambda^j$$
 for all $j > j(x)$.

This says that $|\mathbb{R}^1 \setminus E_k| = 0$.

4. Questions and Comments

Many questions concerning *p*-harmonic measure and *p*-harmonic functions remain unanswered.

4.1. Are there *compact* sets $A \subseteq \mathbb{R}$ and $B \subseteq \mathbb{R}$ so that we have

$$\omega_p(A, \mathbb{R}^2_+) = \omega_p(B, \mathbb{R}^2_+) = 0,$$

but $\omega_p(A \cup B, \mathbb{R}^2_+) > 0$?

4.2. Can the number κ of sets in Theorem 1.1 be as small as 2?

Based on a theorem of Baernstein [B], we conjecture that when p is close to 2 and $p \neq 2$, $\kappa = 5$ suffices. In the tree case, κ must be and can be any integer ≥ 3 [KLW].

Theorem 4.1. (Baernstein [B]) Let \mathbb{D} be the unit disk in \mathbb{R}^2 . For a set $S \subseteq \partial \mathbb{D}$ let S^* be the closed arc on $\partial \mathbb{D}$ centered at 1 of length |S|. Suppose that $E \subseteq \partial \mathbb{D}$ is the union of two disjoint closed arcs of equal positive length, and that the two components of $\partial \mathbb{D} \setminus E$ have unequal length, then there exist p_1 and p_2 (depending on E) with $1 < p_1 < 2 < p_2 < \infty$ such that

$$\omega_p(0, E, \mathbb{D}) > \omega_p(0, E^*, \mathbb{D}) \quad for \quad p_1$$

and

$$\omega_p(0, E, \mathbb{D}) < \omega_p(0, E^*, \mathbb{D}) \quad for \quad 2 < p < p_2.$$
 (4.2)

If $E \subseteq \partial \mathbb{D}$ is the union of two disjoint closed arcs of unequal positive length for which the components of $\partial \mathbb{D} \setminus E$ do have equal length, then inequalities opposite to (4.1) and (4.2) are true.

According to Baernstein's theorem, there exist $1 < p_1 < 2 < p_2 < \infty$ so that for each $p \in (p_1, 2) \cup (2, p_2)$, there is one set J among the four $\{e^{i\theta} : \theta \in [0, \frac{4\pi}{5}]\}, \{e^{i\theta} : \theta \in [0, \frac{2\pi}{5}] \cup [\frac{4\pi}{4}, \frac{6\pi}{5}]\}, \{e^{i\theta} : \theta \in [0, \frac{6\pi}{5}]\}$ and $\{e^{i\theta} : \theta \in [0, \frac{4\pi}{5}] \cup [\frac{6\pi}{5}, \frac{8\pi}{5}]\}$, which satisfies

$$\omega_p(0, J, \mathbb{D}) < |J|/2\pi. \tag{4.3}$$

From this, a *p*-harmonic function $\hat{\Psi}$ on \mathbb{D} having Lipschitz continuous boundary values Ψ may be constructed so that $\hat{\Psi}(0) = 0$ and

$$\sum_{k=1}^{5} \Psi(e^{i(\theta + k2\pi/5)}) > c > 0 \quad \text{for every} \quad \theta \in [0, 2\pi];$$
(4.4)

370

consequently,

$$\frac{1}{2\pi}\int_0^{2\pi}\Psi(e^{i\theta})d\theta>c>0.$$

On the other hand, using *p*-capacity estimates we can show that if 1 and*J* $is an arc of the unit circle then (4.3) holds provided <math>|J| < \delta_0(p)$. This implies that for $1 , there exists <math>\hat{\Psi}$ for which $\hat{\Psi}(0) = 0$ and (4.4) holds with 5 replaced by some $\kappa = \kappa(p)$.

Let $\Psi_n(e^{i\theta}) = \Phi(e^{in\theta})$ for integers $n \ge 1$. It is not clear, and probably false, whether $\Psi_n(0) = 0$. Therefore it is unclear how to adapt Wolff's lemma to disks. Unlike in the half plane, shortening the period of the boundary function on $\partial \mathbb{D}$ complicates the *p*-harmonic solution in \mathbb{D} .

4.3. Given any Lipschitz function Ψ on $\partial \mathbb{D}$, let $\widehat{\Psi}$ be the *p*-harmonic function in \mathbb{D} with boundary values Ψ , and let $\Psi_n(e^{i\theta}) = \Psi(e^{in\theta})$ shortening the period. Suppose $\widehat{\Psi}(0) \leq \frac{1}{2\pi} \int_0^{2\pi} \Psi(e^{i\theta}) d\theta$. We ask whether

$$\widehat{\Psi(0)} \le \widehat{\Psi}_n(0) \le \frac{1}{2\pi} \int_0^{2\pi} \Psi(e^{i\theta}) d\theta \quad \text{for} \quad n \ge 2;$$

and what the value $\lim_{n\to\infty} \widehat{\Psi}_n(0)$ might be.

4.4. Not much is known about the structure of the sets having *p*-harmonic measure zero. Sets $E \subseteq \mathbb{R}^n$ of absolute *p*-harmonic measure zero, $\omega_p(E \cap \partial\Omega, \Omega) = 0$ for all bounded domains Ω , are exactly those of *p*-capacity zero. There exist sets on $\partial \mathbb{R}^n_+$ of Hausdorff dimension n-1 that have zero *p*-harmonic measure with respect to \mathbb{R}^n_+ when $p \neq 2$. There are also sufficient conditions on sets $E \subseteq \partial \mathbb{R}^n_+$ in terms of porosity, that imply $\omega_p(E, \mathbb{R}^n_+) = 0$. For these and more, see [HM], [M2] and [W].

Further questions and discussions on *p*-harmonic measures can be found in [B] and [HKM].

4.5. Given a function u in \mathbb{R}^n_+ , denote by $\mathcal{F}(u)$ the Fatou set

$$\left\{ x \in \mathbb{R}^{n-1} \colon \lim_{y \to 0} u(x, y) \text{ exists and it is finite } \right\}$$

Fatou's Theorem states that $\mathbb{R}^{n-1} \setminus \mathcal{F}(u)$ has zero (n-1)-dimensional measure for any bounded 2-harmonic function u in \mathbb{R}^n_+ . When $1 and <math>p \neq 2$, the Hausdorff dimension of the Fatou set of any bounded p-harmonic function in \mathbb{R}^n_+ is bounded below by a positive number c(n, p) independent of the function [FGMS], [MW].

Deep and unexpected examples in [Wo1], [Wo2] and [L2] show that Fatou Theorem relative to the Lebesgue measure fails when $p \neq 2$. **Theorem 4.2.** (Wolff and Lewis [Wo1], [L2]) For $1 and <math>p \neq 2$, there exists a bounded *p*-harmonic function *u* on \mathbb{R}^2_+ such that the Fatou set $\mathcal{F}(u)$ has zero length, and there exists a bounded positive *p*-harmonic function *v* on \mathbb{R}^2_+ such that the set

$$\left\{x \in \mathbb{R} : \lim_{y \to 0} \sup v(x, y) > 0\right\}$$

has zero length.

Define the infimum of the dimensions of Fatou sets to be

$$\dim_{\mathcal{F}}(p) = \inf \left\{ \dim \mathcal{F}(u) : u \text{ bounded p-harmonic in } \mathbb{R}^2_+ \right\},\$$

and the dimension of the p-harmonic measure to be

$$\dim \omega_p = \inf \left\{ \dim E : E \subseteq \mathbb{R}^1, \ \omega_p(E, \mathbb{R}^2_+) = 1 \right\}.$$

We ask what the values of $\dim_{\mathcal{F}}(p)$ and $\dim \omega_p$ are, and conjecture that $\dim \omega_p = \dim_{\mathcal{F}}(p) < 1$ when $p \neq 2$.

The question and the conjecture are based on results in [KW]. In the case of forward directed regular κ -branching trees ($\kappa > 1$) whose boundary is normalized to have dimension 1, the infimum of the dimensions of Fatou sets dim_{\mathcal{F}}(κ , p) is attained and is given by

$$\dim_{\mathcal{F}}(\kappa, p) = \min\left\{\frac{\log\sum_{i=1}^{\kappa} e^{x_j}}{\log\kappa} : \sum_{i=1}^{\kappa} x_j |x_j|^{p-2} = 0\right\};$$

furthermore $0 < \dim_{\mathcal{F}}(\kappa, p) < 1$ except when p = 2 or $\kappa = 2$, and in the exceptional case $\dim_{\mathcal{F}}(\kappa, p) = 1$.

References

- [ARY] V. ALVAREZ, J. M. RODRÍGUEZ and D. V. YAKUBOVICH, Estimates for nonlinear harmonic "measures" on trees, Michigan Math. J. 48 (2001), 47–64.
- [AM] P. AVILÉS and J. J. MANFREDI, On null sets of p-harmonic measure, In: "Partial Differential Equations with minimal smoothness and applications", Chicago, IL 1990, B. Dahlberg et al. (eds.), Springer Verlag, New York, 1992, 33–36.
- [B] A. BAERNSTEIN, Comparison of p-harmonic measures of subsets of the unit circle, St. Petersburg Math. J. 9 (1998), 543–551.
- [BBS] A. BJÖRN, J. BJÖRN and N. SHANMUGALINGAM, A problem of Baernstein on the equality of the p-harmonic measure of a set and its closure, Proc. AMS, to appear.
- [DB] E. DIBENEDETTO, $C^{1+\alpha}$ -local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal., 7 (1983), 827–850.
- [CFPR] A. CANTÓN, J. L. FERNÁNDEZ, D. PESTANA and J. M. RODRÍGUEZ, *On harmonic functions on trees*, Potential Anal. **15** (2001), 1999–244.

- [FGMS] E. FABES, N. GAROFALO, S. MARÍN-MALAVE and S. SALSA, Fatou theorems for some nonlinear elliptic equations, Rev. Mat. Iberoamericana 4 (1988), 227–251.
- [GLM] S. GRANLUND, P. LINDQUIST and O. MARTIO, *F*-harmonic measure in space, Ann. Acad. Sci. Fenn. Math. Diss. **7** (1982), 233–247
- [HM] J. HEINONEN and O. MARTIO, *Estimates for F-harmonic measures and Øksendal's* theorem for quasiconformal mappings, Indiana Univ. Math. J. **36** (1987), 659–683.
- [HKM] J. HEINONEN, T. KILPELÄINEN and O. MARTIO, "Nonlinear potential theory of degenerate elliptic equations", Clarendon Press, New York, 1993.
- [KW] R. KAUFMAN and J.-M. WU, *Fatou theorem of p-harmonic functions on trees*, Ann. Probab. **28** (2000), 1138–1148.
- [KLW] R. KAUFMAN, J. G. LLORENTE and J.-M. WU, Nonlinear harmonic measures on trees, Ann. Acad. Sci. Fenn. Math. Diss. 28 (2003), 279–302.
- [K] J. KURKI, Invariant sets for A-harmonic measure, Ann. Acad. Sci. Fenn. Math. Diss. 20 (1995), 433–436.
- [L1] J. L. LEWIS, Regularity of the derivatives of solutions to certain elliptic equations, Indiana Univ. Math. J. 32 (1983), 849-856.
- [L2] J. L. LEWIS, "Note on a theorem of Wolff", Holomorphic Functions and Moduli, Vol. 1, Berkeley, CA, 1986, D. Drasin et al. (eds.), Math. Sci. Res. Inst. Publ., Vol. 10, Springer-Verlag, 1988, 93–100.
- [MW] J. J. MANFREDI and A. WEITSMAN, *On the Fatou theorem for p-harmonic functions*, Comm. Partial Differential Equations **13** (1988), 651–658.
- [M1] O. MARTIO, Potential theoretic aspects of nonlinear elliptic partial differential equations, Bericht Report 44, University of Jyväskylä, Jyväskylä, 1989.
- [M2] O. MARTIO, Sets of zero elliptic harmonic measures, Ann. Acad. Sci. Fenn. Math. Diss. 14 (1989), 47–55.
- [Ma] V. G. MAZ'JA, On the continuity at a boundary point of solutions of quasi-linear elliptic equations (English translation), Vestnik Leningrad Univ. Math. 3(1976), 225– 242. Original in Vestnik Leningrad. Univ. 25 (1970), 42–45 (in Russian).
- [Wo1] T. WOLFF, *Gap series constructions for the p-Laplacian*, Preprint, 1984.
- [Wo2] T. WOLFF, Generalizations of Fatou's theorem, Proceedings of the International Congres of Mathematics, Berkeley, CA, 1986, Vol. 2, Amer. Math. Soc., Providence, RI, 1987, 990–993.
- [W] J.-M. WU, Null sets for doubling and dyadic doubling measures, Ann. Acad. Sci. Fenn. Math. 18 (1993), 77–91.

Department de Matemàtiques Universitat Autònoma de Barcelona 08193 Bellaterra, Spain jgllorente@mat.uab.es

Department of Mathematics University of Pittsburgh Pittsburgh, PA 15260, USA manfredi@pitt.edu

Department of Mathematics University of Illinois 1409 West Green Street Urbana, IL 61801, USA wu@math.uiuc.edu