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Quaternionic maps and minimal surfaces

JINGYI CHEN AND JIAYU LI

Abstract. Let (M, J% o = 1,2,3) and (N, J%, a = 1,2, 3) be hyperkéhler
manifolds. We study stationary quaternionic maps between M and N. We first
show that if there are no holomorphic 2-spheres in the target then any sequence of
stationary quaternionic maps with bounded energy subconverges to a stationary

quaternionic map strongly in WL2(M, N). We then find that certain tangent
maps of quaternionic maps give rise to an interesting minimal 2-sphere. At last
we construct a stationary quaternionic map with a codimension-3 singular set by

using the embedded minimal S in the hyperkihler surface A7Ig studied by Atiyah-
Hitchin.

Mathematics Subject Classification (2000): 53C26 (primary); 53C43, 58E12,
58E20 (secondary).

1. Introduction

A Riemannian manifold is called hyperkihler if it possesses covariant constant
complex structures /, J, K which satisfy the quaternionic relation

1> =J?=K?=1JK = — identity.

Associated to 7, J, K there is a natural family of covariant constant complex struc-
tures al + bJ + cK where (a, b, ¢) is a unit vector in R3. A hyperkéhler manifold
is Ricci-flat with dimension 4k. Let M and N be two hyperkidhler manifolds with
complex structures J¢ and J# respectively for a, 8 = 1, 2,3 which satisfy the
quaternionic identities. A smooth map f : M — N is called a quaternionic map if

3
> AwpTPodf o) =df (1.1)

o,f=1

where A,g denote the entries of a constant matrix A in SO (3). Since SO (3) pre-
serves the quaternionic identities, we can always choose complex structures J¢ for
M and JP for N such that Agp = 8qp in (1.1).
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Quaternionic maps arise from the higher dimensional gauge theory (c¢f. [C],
[DT], [FKS], [MS], [NN], [PG]). More precisely they naturally arise from the adi-
abatic limit of Hermitian Yang-Mills connections on SU (n)-bundles on a product
of two K3 surfaces. Its linear version in dimension four is the so-called Cauchy-
Riemann-Fueter equation (or quaternionic d-bar equations):

axlf_iaxzf_jBX3f_kBX4f=O

for f : H — H where H is the space of quaternions and x| +ix> + jx3 +kxq € H.
Assume M is compact. For any smooth map u : M — N, consider the energy

functional 1
E(u) = —/ Vul®
2Jm

and the functional
Er(u) = Aaﬂ/ (wje, u*w7p)
M

and set

1
I(u):—/ |du—Aalgj'Bodqua|2.
2 Jm

It is clear that /() = O if and only if u is a quaternionic map. Since u pulls
back the closed 2-form w 75 to a closed 2-form on M and wy« is closed, E7(u) is
homotopy invariant and depends on (Ayg). The following relation holds (cf. [C],
[CL1], [FKS])

1
E(w)+ Er(u) = Zl(u). (1.2)

If u is a quaternionic map, then it minimizes energy in its homotopy class so it is
harmonic.

Recall [Sc] that a map in the Sobolev space W!2(M, N) is a stationary har-
monic map if it is a critical point of the energy functional with respect to both of
the variations on M and N with compact supports. A stationary harmonic map is
smooth away from a closed set of zero (m — 2)-dimensional Hausdorff measure
where m = dim M. Let M and N be two hyperkéhler manifolds. A map u from M
to N is called a stationary quaternionic map if it is a stationary harmonic map and
it is a quaternionic map outside its singular set.

It is known that the existence harmonic 2-spheres plays an important role in
the study of stationary harmonic maps ([SU], [Lin]).

In this note we investigate the special minimal 2-spheres which arise from the
stationary quaternionic maps. We first show that if there are no holomorphic 2-
spheres in N then any sequence of stationary quaternionic maps with bounded en-
ergy subconverges to a stationary quaternionic map strongly in W!2(M, N). This
result was stated and proved in [CLL1] when M is of dimension four, and the proof
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we shall present here is essentially based on that in [CL1]. We then find that cer-
tain tangent maps of quaternionic maps give rise to an interesting minimal 2-sphere
equation:

3
dfJp = =Y x J*df
k=1

where f : S? - N, (x1,x2,x3) € S? and Jg is the standard complex structure
on S?. We construct a stationary quaternionic map with a codimension-3 singular
set by using the embedded minimal S? in the hyperkihler surface Mg studied by
Atiyah-Hitchin [AH], where 1\78 is the double cover of the space Mg of centred
2-monopoles on R? and it is a complete and simply connected hyperkihler surface.

There are interesting results on decomposition of differential forms in quater-
nionic geometry using representations of special groups (e.g. [Bo], [K], [Sa], [Sw],
[W], etc). It is commented in [W] that the quaternionic maps between hyperkihler
manifolds can be described by the splitting of Sp(1)-representations. The authors
thank the referee for his bringing this point and the related references in quater-
nionic geometry to their attention.

2. Compactness of stationary quaternionic maps

A sequence of stationary harmonic maps with bounded energies subconverges to
a stationary harmonic map strongly in W2 topology if there are no harmonic 2-
spheres in the target manifold [L]. For stationary quaternionic maps, the absence of
holomorphic 2-spheres is sufficient to conclude the strong convergence.

Theorem 2.1. Let M and N be compact hyperkihler manifolds with dim M = m.
Suppose that uy, is a sequence of stationary quaternionic maps with bounded ener-
gies. If N does not admit holomorphic S*’s with respect to the complex structure
a;J' on R? restricted to S* and the complex structure a; J' on N for some con-
stants a; (i = 1,2,3) with ), al.2 = 1, then there is a subsequence of {uy} which
converges strongly to a stationary quaternionic map u.

Proof. We can always assume that uy — u weakly in W'2(M, N) and that
|Vug)>dx — |Vu|*dx + v in the sense of measure as k — oo. Here v is a non-
negative Radon measure on M with support in 3, and X is the blow-up set of the
sequence u; which is m — 2 rectifiable [L]. We will prove the Hausdorff measure
H"2(X) = 0 which implies the strong convergence in W!2(M, N). Assume
H™2(X) # 0. Then [L] there is a nonconstant harmonic mapv : R" - N
with finite energy and Vxv = 0. Here we have identified the tangent space of
T at0 e R" = R" 2 x R? with R"2 x {0} so Vx means the differentiation
along R™~2 x {0}. The rescaling process for constructing v is taken place around
smooth points of u; which approach 0, therefore v is also a smooth quaternionic
map (cf. [CT]).

At the point 0 € R™, suppose that e is in the normal direction of X. Let K be the
linear space spanned by J%e fora = 1,2, 3,s0 K L e. Since rank dv = 2, we have
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dv(e) # 0. This implies, from the quaternionic map equation, Z?: \Jidv(Jie) #
0 and in turn dv(J'e) # O for some i. Hence dimdv(K) = 1. It then follows that
there are real constants ay, a, a3 with a% + a% + a% = 1 such thata; Jie € {0} x R?
and dv(a; J'e) # 0. Notice that we then have three vectors a; J/e — aj Jie,i # j
which are perpendicular to e and to Z?:l a;J'e, so they belong to T X. We there-
fore have (axJ! — a1J%)e € Ker(dv), (a3J' — a1J3)e € Ker(dv), (arJ> —
azJ?)e € Ker(dv), J%dvJ* = dv, thus dv(}_; a;J'e) can only have compo-
nents on J“(dv(e)). By a simple calculation, one easily checks that

3 3
dv (Za;]’é) = Z jja’v(a;JjJ"e)
i=1

ij=1

3
= — Zaijidv(e) + jldv(aleJz +a3J1J3)e
i=1

+T2dv(@ J* T + azJ? e + Tdv(a JP T + ar 73 T%)e

3
= — Zaijidv(e).

i=1

At any other point (0, x) in R”~2 x R2, the vectors e and Z?:l a;J e still belong
to {0} x R?, and the vectors (a17° — a2 J Ve, (@ J* — a3 T *)e, (a1 T> — a3 T Ve
lie in R"~2 x {x} hence in the kernel of dv at (0, x), so we can repeat the argument
above to conclude v is holomorphic at (x, 0) with respect to the same complex
structures 21'3:1 a;J' and Z?: 1aid ! It follows that v induces a holomorphic map
from S? to N. But no such holomorphic map can exist by assumption. So we must
have H"~2(%) = 0 and in turn u; converge strongly to u in W2 norm. O

Remark 2.2. The strong convergence is equivalent to H”~2(X) = 0 and is equiv-
alent to that the Hausdorff dimension of the singular set sing(u) of u is no bigger
than m — 3. Moreover sing(u) is rectifiable since N real analytic [Si].

3. Quaternionic minimal surfaces via quaternioinc maps

In this section we study a special class of minimal surfaces which arise from certain
tangent maps of the quaternionic maps.

Assume that M is 4-dimensional hyperkihler manifold and N is a 4n-dimen-
sional hyperkihler manifold. We can choose a coordinate system around a point
x in M so that the matrix expressions of the complex structures on M take the
following form:

—

| 0
o] » (o
ol =121
0 0

1

00 0
L oo 0 -
=101 0 7=
10 _

|l coco

—_
o= OO

co~o
coco |

0 10
- 01
0 00
100 100
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Note that the three Kéhler forms w,, i = 1, 2, 3 have variable coefficients in these
coordinates. For f : M — N, if we denote % by fi for k = 1,2,3,4 in the
coordinate system we have just chosen, the quaternionic map equation (1.1) reads

fi—a3 T for+ a2 T* 3+ a1 T fa =0 (3.1)

where we take summation over «.

Now assume that f is a homogeneous degree-0 quaternionic map from R* to
N and satisfies f(x1, x2, x3,x4) = f(x1,x2,x3,0). So f is singular along the
X4-axis or it is constant. Note that such an f is just a tangent map, with a line of
singularities, of a quaternionic map from M to N.

As a radially independent harmonic map, f induces a smooth harmonic map
from S? to N: ¢ (x) = f(x,x4) forx € S ¢ R3.

Lemma 3.1. With f and ¢ as above, then
dp Jgp = —agpxpJ* d¢. (3.2)

Proof. Because f is a homogeneous degree-0 map,

4
> xife=0
k=1

and this combined with (3.1) leads to
(X2 + x1003J%) f2 + (x3 — x1002J%) f3 = 0.
In the spherical coordinates
X] =rsinacosf
Xp = rsina sinf

X3 =rcosa,

it reads

(x2 + x1a03J%) <cosoz sinff, + cos@,f—e) + (x3 — x1a62J%) (—sinafy) = 0.
sin o

Multiplying this equation by sin(«) yields

(x2 + x1a43J%) <X3x2fa + x1 Jo ) — (x3 = X1802J*)(x] + X3) fou = 0

sin o

i.e.

fo
—xl(xz+x1aa3J“)m = (x2X3 (X2 + X103 %) — (X3 — X1d02J%) (x] + x§)> fa-
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Multiplying x> — x1a43J% from left on both sides of the equation above, we obtain,

Jo

—XI(X12 +X§)m = x1(x12 + x%) (xlao,l.]“ + xaaga J¢ +x3aa3J“) fa

here we have used aq3J% - agJ B = a,1J7 with the summation convention over
repeated indices applied. So we see ¢ satisfies the equation:

dp Jsp = —aupxpT*d¢.
This finishes the proof. O

Note that aggxg J“ is only defined along the image surface f (S?) and f cannot
be holomorphic with respect to any complex structure in the 2-sphere family of
complex structures on N.

Let ¥ be a Riemann surface, N** a hyperkihler manifold with the complex
structures J!, 72, J3 which satisfy the quaternion relation [ 172 — 73, Let
a = (ay, az, a3) be smooth functions ¥ — S?.

Definition 3.2. Let f : & — N*' be a smooth immersion which satisfies
3
df Js ==Y aJ"df, (3.3)
k=1

where a = (ay, a2, a3) : & — S?. We say f is a quaternionic surface in N 4 Ifin
addition f is harmonic, we say f is a quaternionic minimal surface.

Condition (3.3) requires the image of df lying in the span of J'df, J%df, J3df.
In the twistor space approach to minimal surfaces and harmonic maps, this condi-
tion is called "inclusive” (see [AM], [ES], [R], [Sa] and the references therein).

It is not difficult to see that if f satisfies (3.3) then f is conformal. Further-
more, any conformal immersion from (X, Jx) to a 4-dimensional hyperkihler man-
ifold satisfies the equation (3.3). In fact, suppose that e, e; is an orthonormal frame
of ¥. Because f is conformal and df (e1) L df (e2), we have

df (e1) = ¢;J'df(e2) and df(ez) = d; J'df (e1)
with ", ¢7 = land ), d? = 1. Itis clear that

cildf (e2)|* = (df (er), J'df (e2)) = —(J'df (1), df (e2)) = —dildf (en)]*.
Since |df (e2)|> = |df (e1)|> = 1/2|df|?, we have ¢; = —d; hence (3.3) holds.

Lemma 3.3. Letu : ¥1 — X be a holomorphic map between two Riemann sur-
faces with complex structures Jx, and Jx, respectively. Then for any smooth map
f : o — N which satisfies (3.3) witha : £1 — S?, fou : X1 — N satisfies
(B33) withaou : X1 — S?. If f(X,) is a quaternionic minimal surface, then
f ou(Xy) is also a quaternionic minimal surface.
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Proof. Then for any x € ¥
d(fou)eJs,(x) = dfuw) oduxts, (x)
= dfu(x) 0 Iz, W (x)) duy
= —da; (u(x))j;(x)dfu(x) oduy
= —Cli(u(x))jbf(x)d(f ou)y.

If f is harmonic and u is holomorphic, f o u is harmonic. 0

Proposition 3.4. A quaternionic surface in N*' is a minimal surface if and only if
a is holomorphic with respect to the complex structure on ¥ which makes the metric
g Hermitian and the standard complex structure on S*. a is constant if and only if
the quaternionic surface is a holomorphic curve.

Proof. Since f is conformal, a quaternionic surface in N*" is a minimal surface if
and only if f is a harmonic map from X to N. Let e, e be an orthonormal frame
on X which satisfies Ie; = en, Ie; = —ej. Note that, by the definition,

3 3
fi=df(e1) = Zaififz, f2i=df(e2) = —Zaififl-
i=1 i=1

Taking the normal coordinates centred at x and f(x), we have
Af ==V (Zai-ll> fi+Vi (ZaiJ’) f2
i=1 i=I
3 ' 3 . 3 _
= (—ZV%I:’Jl - (Z Vlaijl) (Zai-ﬂ)) N
i=l i=1 i=I

= (=Vaa) — a3Viay + axViaz) J' £y
+ (=Vaay — a1Viaz + azViay) J? fi
+ (=Vaaz — aaViay + a1 Via) J° fi. (3.4)

Since f is harmonic, it follows that
Voay +az3Viay — apViaz =0
Voar + a1Viaz —az3Via; =0 3.5
Voasz + apViar — aiViaa = 0.
Solving (3.5) and using a1 Voa; + axVoas + azVaaz = 0, one gets
Viai + ayVyasz — azVoar =0

Viaz + azVoar — a1Voaz =0 3.6)
Viaz + a1Voar — apVoar = 0.
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We can rewrite (3.5) as
Vod =a x Vid,

and rewrite (3.6) as
Vla = —3 X VZa.

Noting that the standard complex structure on S? at @ is ax, we can see that a
satisfies the equations (3.5) and (3.6) if and only if it is a holomorphic map with
respect to the complex structure on ¥ which makes the metric g Hermitian and the
standard complex structure on S 0

Remark that if we write the equation in b; = —a; then b is anti-holomorphic
and if N is 4-dimensional the above result was obtained in [ES] and by S.S. Chern
if N = R%.

In particular, when a quaternionic surface is minimal, the mapping d satisfies
the harmonic map equation to the standard sphere:

Ad + |Val*a = 0. (3.7)

The following theorem is known to be true for minimal surface in a Kéhler-Einstein
manifold of real dimension 4 (¢f. [CW]) by noticing that a; = cos oy where oy is
the Kéhler angle of the surface f(%) with respect to the Kéhler form w 7« in N.

Theorem 3.5. If a quaternionic surface in N** is a minimal surface with & =
(a1,a2,a3) : & — S, then

\V/ 2
Aak+2M=0.
1 —a;

Proof. We only need to prove the result for a;. First we compute the Laplacian
of aj as follows. Again we take the normal coordinates centred at x € M and at
f(x) € N. Differentiating in V3 of

Voay = arViaz — azViay

yields
2 2 2
V22a1 = VoayViaz + a2V12a3 — VoaszViay — a3V]2a2.

Multiplying a3, as, a1 accordingly to the following three equations

azVia; = Voar +a1Vias
arViay = aiViay — Vaas
aiViay = —axViay — az3Vias

then summing them up leads to

Via; = a3Vioay — arVisas.
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Differentiating in V| gives
2 2 2
Vijar = ViazVaaz + a3Vijay — ViayVaaz — axVsas3.

Now we conclude
Aay = 2(ViazVaay — Viaa Vaas)

and we may write the right hand side in terms which only involve V| as follows:
ViasVoay — ViaaVoasz = Vias(azViay —aiViasz)
—Viax(a1Viay — axViay)
= a3Via1Vias — a1|Vias|?
—a1|Viaa|* + a2 Via1Vias
= —a1(\Viai* + |Viaz|* + [V1a3]?).
So we have just shown
Aay = =2a1(|Via|* + |[Vias|* + |Vias[*). (3.8)
On the other hand, we have
Va1 1> = |Via1* + [Vaay |
= |Via1* + (@2Viaz — a3Via2)?
= |Via1* + a3|Via3|* + a3|Viaz|* — 2axa3V1a2 Vi a;3.
However,
(1 —ap))(\Viai]* + [Viaz* + |Vias|?) — [Vai |
=—a{|Via|*+ (1 —af — a3)|Viaz2[*+ (1 — af — a3)|Via3|*+ 2a2a3V1a, Va3
=—ai|Via1|* + a3 |Viax|* + a3 |Via3|* + 2a2a3V1a2 Va3
=0 3.9

by recalling a1 Via; = aaVias 4+ a3Vias.
Putting (3.8) and (3.9) together, we have

Va|%a;
Aay = =2——-,
I —aj
which completes the proof. O

Theorem 3.6. Suppose that f is a minimal quaternionic surface in N*. Then either
[ is constant or the Euler characteristic number % X (Nf(X)) of the normal bundle
of f(2)is2g —2—2deg a. In particular, if f € C*(S?, N*) satisfies the equation
3
dfJo = =Y x; J'df, (3.10)

i=1

where x € S* C R3, then either f is constant or the Euler characteristic number
of the normal bundle of f(S?) is —4.
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Proof. Let g = f(X). X is a minimal surface in N because f is harmonic
and conformal. Proposition 4.2 and Proposition 4.3 in [CT] assert, for a compact
minimal surface in a Kdhler-Einstein surface N, that the generalized adjunction
formula

1
X (T'Z0) 4+ x (N'Zp) :/912+szg4—§f |V Js, |
) )

1
:27‘(/ acl(N)——/ |V Js|?
) 2)s

holds for some function « on X, where Q17, Q34 are the curvature tensors of N
along the tangential and normal directions of X respectively. The term |V Jx, % is
equal to 2|ht, — i}, |* + 2|3, — hi,|* where h; are the second fundamental forms
of Xpin N.

Since ¢1(N) = 0, we have

1
x(TZo) + x(NZo) = —5/ IV Js, |2 (3.11)
o

In particular, an embedded holomorphic S? has self-intersection number —2 in M
with C; (M) = 0.

On the other hand, for any solution of (3.5), by Proposition 3.4 and Theorem
3.5 and Proposition 3.2 in [CL2] (specializing the general formula for cosine of
the Kéhler angle along the mean curvature flow to minimal surface) and (3.7), we
always have

.o 2|Val?
Vg, = (vaf? = 24T (3.12)
—a
fori =1, 2, 3. One then has
1 1 -
—x(NX) = —— |Va|”+2g -2
2w 4 PN
= 2g —2 —2dega.

Here we recall for holomorphic a to S?,

. 1 L1 L, 1 .
dega = ——- Jac(a) = — |oal” = — |Va|~.
VOI(S2) T 4 T 8 T

Now if ¥ = S% and a(x) = (x1, x2, x3), f S? — N is harmonic because
a:S? — S?is the identity map. We conclude

1 1 5
— x(NS)=—-2—— | |Vx>*=—4.
21 4 2

This completes the proof. O
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Based on the results we obtained so far, we next construct an example of sta-
tionary quaternionic map from R* with a line of singularities. For any smooth map
¢ : S* — N, we have an extension f(x,xq4) == ¢(x/]x]) for any x € R3\{0}.
Moreover, the proof of Lemma 3.1 can be reversed to produce a quaternionic map
with the x4-axis as its singular set from a map ¢ which satisfies (3.2).

In the monograph [AH], Atiyha and Hitchin considered the space Mg of cen-
tred 2-monopoles on R3 with finite action. It is a complete hyperkihler manifold
of dimension 4. SO (3) acts on Mg isometrically and this action lifts to a double
(also Riemannian universal) covering 1\73 The space of axisymmetric monopoles,
which constitute a special class of solutions to the monopole equations, defines an
embedded minimal RP? in Mg. This R P? lifts to an embedded minimal S? in the

hyperkihler manifold ]\718

Corollary 3.7. There does exist a nontrivial minimal quaternionic sphere ¢ in the
hyperkdhler manifold M, VO with @ = = (x1, X2, x3). The extended map f from ¢ is a

stationary quaternionic map from R* to M VIO with the entire X4-axis as singular set.

Proof. We take the nontrivial embedded minimal S? in ]\7[8 discussed above. The
Euler characteristic number of the normal bundle of this minimal 2-sphere is —4 as
shown in [AH].

By Theorem 3.6, we know that the minimal 2-sphere is a minimal quaternionic
sphere ¢ with a function dy in its definition, and deg dp = 1. Since dg : S? - §2
is holomorphic and of degree 1, it is diffeomorphic because the sum of orders of
the zeros of |dag| is — deg(ap)(2-0—2) + (2-0 —2) = 0, |ddp| has no zeros, and
therefore the inverse a, ! of g exists and is holomorphic. So, ¢ := ¢ o dy lisa
nontrivial minimal quaternionic sphere with @ = (x1, x2, x3) by Lemma 3.3.

Recall that action of the complex structure Jg at x € S? is given by the stan-
dard cross product x x. Write dg = (a1, o2, ao3). Then

(dgo(x x e), T'dgo(e))s
|dox (e)|?

ap;i (x) = —

and d¢y at x is the same as d¢ at —x because ¢y is the lift from RP2. We then
conclude

do(—x) = —do(x), dy'(—x) = —dy ' (x).

The chain rule implies
Vo (—x)|* = Vo (—x)*|Vay ' (—x)
= |Vgo(—dy ' () — Vag ' ()

= Vo (dy ' () *Viy ' () = Vo (1))
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because ¢y is the lift from R P2. Therefore fori = 1, 2, 3,

/ X |Vo? = 0.
SZ

The fact that the extended map f is stationary follows from the lemma below. [J

The lemma below is known to experts. For the sake of completeness, we
present a proof of it.

Lemma 3.8. Let ¢ be a smooth harmonic map from S* to a Riemannian manifold
N. Then the extended map f of ¢, which is defined by f(x,x") = ¢(x/|x|) for
x = (x1,x2,x3) # (0,0,0), x" € {0} x R"3 cR™ isa stationary harmonic map
if and only if ¢ satisfies

f x|Vo> =0, i=1,2,3, (x1,x2,x3) €S
§2

Proof. In fact, we have

a /
Vx/fzo,a—fzo,rz x12+x§+x%.
r

Define a cut-off function by

1 r>ce€
2
ne(r,a, B, x') = —<r—§> €/2<r<e
€
0 r<e)2

where x| = r sina cos B, xo = rsina sin 8, x3 = r cos .
For any smooth vector field X = (X1, -- -, X;;,) in R” with compact support,
because f is smooth away from {0} x R” 3, we have

0= i (VFI%8i; = 2Vi £V IV;(ne X:)
=/ (V£I?8i; —2Vi £V )Vine X;
+ /R (V£ P8 — 2V £V, eV X

It then follows

f (VfI28;; — 2Vi fV; IV, X; = lim | (Vf18;; — 2Vi £V f)neV; X
Rm

e—0 Jrm

~ lim / (Y F1285) — 2V3 £V, )V ne X
— Rm
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Therefore, f is stationary if and only if

lim | (Vf%8; = 2Vi fV; ))VineXi = 0.

—0 Jpm

Direct computation shows that the above condition is equivalent to

3
/ 3/S2|V¢|22x,~x,~(0, x)dodx' = 0.
R"’l*

i=1

Since X is arbitrary, we see the desired statement holds. O
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