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Riesz transform on manifolds and Poincaré inequalities

PASCAL AUSCHER AND THIERRY COULHON

Abstract. We study the validity of the L p inequality for the Riesz transform
when p > 2 and of its reverse inequality when 1 < p < 2 on complete Rieman-
nian manifolds under the doubling property and some Poincaré inequalities.
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Introduction

Let M be a non-compact complete Riemannian manifold. Denote by µ the Rie-
mannian measure, and by ∇ the Riemannian gradient. Denote by |.| the length in
the tangent space, and by ‖.‖p the norm in L p(M, µ), 1 ≤ p ≤ ∞. One defines �,
the Laplace-Beltrami operator, as a self-adjoint positive operator on L2(M, µ) by
the formal integration by parts

(� f, f ) = ‖|∇ f |‖2
2

for all f ∈ C∞
0 (M), and its positive self-adjoint square root �1/2 by

(� f, f ) = ‖�1/2 f ‖2
2.

As a consequence,
‖ |∇ f | ‖2

2 = ‖�1/2 f ‖2
2. (E2)

To identify the spaces defined by (completion with respect to) the seminorms
‖ |∇ f | ‖p and

∥∥ �1/2 f
∥∥

p on C∞
0 (M) for some p ∈ (1, ∞), it is enough to prove

that there exist 0 < cp ≤ C p < ∞ such that for all f ∈ C∞
0 (M)

cp

∥∥∥ �1/2 f
∥∥∥

p
≤ ‖ |∇ f | ‖p ≤ C p

∥∥∥ �1/2 f
∥∥∥

p
. (E p)

Research partially supported by the European Commission (IHP Network “Harmonic Analysis
and Related Problems” 2002-2006, Contract HPRN-CT-2001-00273-HARP). This research be-
gan at the Centro De Giorgi of the Scuola Normale Superiore de Pisa on the occasion of a special
program of the network. The authors thank the organizers for their kind invitation.

Pervenuto alla Redazione l’11 aprile 2005 e in forma definitiva il 13 settembre 2005.



532 PASCAL AUSCHER AND THIERRY COULHON

This equivalence splits into two inequalities of different nature. The right-hand in-
equality may be reformulated by saying that the Riesz transform ∇�−1/2 is bounded
from L p(M, µ) to the space of L p vector fields,1 in other words∥∥∥ |∇�−1/2 f |

∥∥∥
p

≤ C p‖ f ‖p . (Rp)

The left-hand inequality is what we call the reverse inequality∥∥∥ �1/2 f
∥∥∥

p
≤ C p ‖ |∇ f | ‖p . (R Rp)

It is well-known (see [5], Section 4, or [10], Section 2.1) that (Rp) implies (R Rp′)
where p′ is the conjugate exponent of p but the converse is not clear (in fact, it is
false, see below). We mention a partial converse which we shall use and prove in
the sequel.

Lemma 0.1. The conjunction of (R Rp′) and (�p) implies (Rp).

Here, (�p) is the inequality describing the boundedness on L pT ∗M of the
orthogonal projector d�−1δ of 1-forms onto exact forms. Namely, for all ω ∈
C∞

0 (T ∗M), ∥∥∥ |d�−1δω|
∥∥∥

p
≤ C p ‖ ω ‖p , (�p)

where d is the exterior derivative and δ is its formal adjoint.

The question is to find which geometrical properties on M insure each of these
inequalities, and in the end (E p) for a range of p’s.

We first recall the result of [9] which deals with (Rp) for 1 < p < 2. Denote
by B(x, r) the open ball of radius r > 0 and center x ∈ M , and by V (x, r) its
measure µ(B(x, r)). One says that M satisfies the doubling property if there exists
C > 0 such that, for all x ∈ M and r > 0,

V (x, 2r) ≤ C V (x, r). (D)

By an observation in [23], the non-compactness of M together with (D) implies
that µ(M) = ∞. We were not aware of this remark in [2]. Let pt (x, y), t > 0,
x, y ∈ M be the heat kernel of M , that is the kernel of the heat semigroup e−t�.

Theorem 0.2 ([9]). Let M be a complete non-compact Riemannian manifold satis-
fying (D). Assume that for all x ∈ M, t > 0 and some constant C > 0,

pt (x, x) ≤ C

V (x,
√

t)
. (DUE)

Then (Rp) holds for 1 < p < 2, hence (R Rp) for 2 < p < ∞.

1 In the case where M has finite measure, one should replace L p(M) by the subspace L p
0 (M) of

functions with zero mean. However, we shall work in a situation where M has infinite measure.
See below.
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It is also shown in [9] that the Riesz transform is unbounded on L p for eve-
ry p > 2 on the manifold consisting of two copies of the Euclidean plane glued
smoothly along their unit circles, although this manifold satisfies (D) and (DUE).

A stronger assumption is therefore required to obtain (Rp) when p > 2.
It is natural to assume in addition the Poincaré inequalities, although it is

known that they are not sufficient for (Rp) to hold for all p > 2 ([22, 11]), nor
necessary for (Rp) to hold for some p > 2 ([7]). One says that M satisfies the
(scaled) Poincaré inequalities (P2) if there exists C > 0 such that, for every ball
B = B(x, r), x ∈ M , r > 0, and every f with f, ∇ f locally in L2,∫

B
| f − fB |2 dµ ≤ Cr2

∫
B

|∇ f |2 dµ, (P2)

where fE denotes the mean of f on the set E .
Even under (D) and (P2) alone, it is not clear that (Rp) holds for some p > 2

because of the following result proved in [2] which tells us that the gradient of the
semigroup should have some boundedness properties (it is also shown there that
these properties are equivalent to some L p estimates of the gradient of the heat
kernel).

Theorem 0.3. Let M be a complete non-compact Riemannian manifold satisfying
(D) and (P2). Let p0 ∈ (2, ∞]. The following assertions are equivalent:

1. For all p ∈ (2, p0), there exists C p such that for all t > 0

‖|∇e−t�|‖p→p ≤ C p√
t
.

2. (Rp) holds for p ∈ (2, p0).

Our main result states that, in the situation of Theorem 0.3, there always exists
a p0 = 2 + ε > 2 such that condition 2 is satisfied.

Theorem 0.4. Let M be a complete non-compact Riemannian manifold satisfying
(D) and (P2). Then there exists ε > 0 such that (Rp) holds for 2 < p < 2 + ε.

Our proof does not rely on Theorem 0.3, and in fact we shall add a list of
assertions equivalent to condition 2, one of them being easier to check. But in
view of Theorem 0.3, this also says that there is an automatic improvement of L p

estimates for the gradient of the semigroup, which is reminiscent (and, as we shall
see, equivalent) to the self-improvement “à la Meyers” of Sobolev W 1,p estimates
for weak solutions of elliptic equations (see [24]).

It is well-known (see [25, 26]) that the conjunction of (D) and (P2) is equiva-
lent to the full Li-Yau type estimate

c

V (y,
√

t)
exp

(
−C

d2(x, y)

t

)
≤ pt (x, y)≤ C

V (y,
√

t)
exp

(
−c

d2(x, y)

t

)
,

(LY )
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for all x, y ∈ M , t > 0 and some constants C, c > 0. Hence, (D) and (P2) imply
(D) and (DUE). Therefore combining Theorems 0.2 and 0.4, we obtain

Corollary 0.5. Let M be a complete non-compact Riemannian manifold satisfying
(D) and (P2). Then there exists p0 ∈ (2, ∞) such that (E p) holds when p′

0 < p <

p0.

A crucial step towards Theorem 0.4 consists in giving a sufficient condition for
the reverse inequality (R Rp) for 1 < p < 2 in terms of the L p version of (P2). Let
1 ≤ p < ∞. One says that M satisfies (Pp) if there exists C > 0 such that, for
every ball B = B(x, r) and every f with f, ∇ f locally p-integrable,∫

B
| f − fB |p dµ ≤ Cr p

∫
B

|∇ f |p dµ. (Pp)

It is known that (Pp) implies (Pq) when p < q (see for instance [18]). Thus the set
of p’s such that (Pp) holds is, if it is not empty, an interval unbounded on the right.
A recent deep result asserts in a general context of metric measured spaces that this
interval is open in [1, +∞[. In our case, it states as follows.

Lemma 0.6 ([21]). Let M be a complete non-compact Riemannian manifold satis-
fying (D). Assume p > 1. Then (Pp) self-improves to (Pp−ε) for some ε > 0.

We shall prove

Theorem 0.7. Let M be a complete non-compact Riemannian manifold satisfying
(D) and (Pq) for some q ∈ [1, 2]. Then (R Rp) holds for q < p < 2. If q = 1,
there is a weak-type (1, 1) estimate.

Define q0 = inf{p ∈ [1, 2]; (Pp) holds}. Note that if (Pp) holds for some
p ∈ (1, 2], then q0 < p according to Lemma 0.6. As a consequence of Theorem 0.7
and Lemma 0.6, if q0 < 2, that is to say if (P2) holds, (R Rp) holds for p ∈ (q0, 2].

As a corollary of Theorems 0.2, 0.4 and 0.7 we obtain for instance

Corollary 0.8. Let M be a complete non-compact Riemannian manifold satisfying
(D) and (P1). Then (E p) holds when 1 < p < 2 + ε for some ε > 0.

One may observe that our proofs do not use completeness in itself, but rather
stochastic completeness, that is the property∫

M
pt (x, y) dµ(y) = 1, (0.1)

for all x ∈ M and t > 0, which does hold for complete manifolds satisfying (D)

(see [15]), but also for instance for conical manifolds with closed basis (see [22]).
Note that the class of manifolds satisfying (D) and (P1) (therefore also (P2))

contains all complete manifolds that are quasi-isometric to a manifold with non-
negative Ricci curvature (see [26]).
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It is proved in [10] that for any q ∈ (1, 2), there exists a complete Riemannian
manifold with (D) such that (R Rp) fails for all 1 < p < q.2 The point is that
there are manifolds satisfying an L2 Sobolev inequality at infinity associated with
a certain dimension, but, for p close to 1, only a L p Sobolev inequality associated
with a much lower dimension, and, for p = 1, a trivial isoperimetric inequality,
whereas (R Rp) would impose a tighter connection between L2 and L p Sobolev
inequalities. In other words, (R Rp) imposes that the heat kernel dimension and the
isoperimetric dimension cannot differ too much.

It has been proved by Li Hong-Quan in [22] that, on conical manifolds with
closed basis, (Rp) holds if and only if 1 < p < p0, where the threshold p0 > 2
depends on the λ1 of the basis. Now, all these manifolds satisfy (P2) (see [11]) and
one can see that they even satisfy (P1) by using the methods in [17]. In particular,
there is no hope that the assumptions of Corollary 0.8 suffice for (Rp) to hold for
all p > 2.

In view of Corollary 0.8, this also shows that, as we mentioned above, (R Rp)

does not imply (Rp′), even in the class of manifolds with doubling, in the range
1 < p < 2.

Let us summarize the situation for (stochastically) complete Riemannian man-
ifolds, satisfying (D), going from weakest to strongest hypotheses.

1. It is known that (Rp) may be false for 2 < p and that (R Rp) may be false for
1 < p < 2. What can be said about the other cases, that is (Rp) for 1 < p < 2
and (R Rp) for p > 2?

2. Assume (DUE). Then (Rp) holds for 1 < p ≤ 2, (R Rp) for p ≥ 2 and (Rp)

may be false for all p > 2. What can be said about (R Rp) for 1 < p < 2?

3. Assume (P2). Then (Rp) holds for 1 < p < p0 with some p0 > 2, (R Rp) for
q0 < p < ∞ with some 1 ≤ q0 < 2. Can one give estimates on p0 and q0?

4. Assume (P1). Then (Rp) holds for 1 < p < p0 with some p0 > 2, (R Rp) for
1 < p < ∞. Can one give estimates on p0?

The proof of Theorem 0.7 in Section 1 uses methods of the first author in [1] adapted
to the present situation and in particular a Calderón-Zygmund lemma for Sobolev
functions, which allows us to do a Marcinkiewicz type interpolation.

As said before, we do not rely on Theorem 0.3 to prove Theorem 0.4. Instead,
we use ideas of Shen in [27] developed for elliptic operators on Euclidean space
and extend them to the class of manifolds we consider. This yields a new charac-
terization of the L p boundedness of Riesz transforms for p > 2 (with a restriction

2 We remark that the positive result in [10] concerning (R Rp), namely Theorem 6.1, has a gap,
since it depends on another result in the same paper, Proposition 5.4, which has a mistake in
the argument. The mistake is located in the last line of p. 1744 where it is said that the (usual)
Calderón-Zygmund decomposition preserves exact forms. This is exactly the obstacle that we get
around in Section 1 with a modified Calderón-Zygmund decomposition and it is not clear that the
same ideas can be employed under the assumption taken in [10].
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that p should be close to 2) in terms of local, scale invariant estimates on harmonic
functions (Theorem 2.1) which are more tractable in practice.

In passing, we show that this is also equivalent to the L p boundedness of
d�−1δ. Actually the main tool in [27] is a theorem (Theorem 3.1) for bounded-
ness of operators with no kernels which is essentially similar to Theorem 2.1 in [2].

ACKNOWLEDGEMENTS. This work was triggered by a question of Theo Sturm to
the second author after a talk he gave in Banff in April 2004. The two authors would
like to thank him for this.

1. Reverse inequalities (R Rp) for 1 < p < 2

In this section, we prove Theorem 0.7. Let 1 ≤ q < 2. We assume that (D) and
(Pq) hold and prove (R Rp) for q < p < 2.

We first establish a Calderón-Zygmund lemma for Sobolev functions. Next,
we apply this lemma to establish the preliminary weak-type estimate∥∥∥ �1/2 f

∥∥∥
q,∞ ≤ Cq ‖ |∇ f | ‖q , ∀ f ∈ C∞

0 (M). (1.1)

Finally, we proceed via an interpolation argument.

1.1. A Calderón-Zygmund lemma for Sobolev functions

We present here in the Riemannian context a result first proved by one of us [1] in
the Euclidean setting with Lebesgue measure (see also the extension to weighted
Lebesgue measure in [3]).

Proposition 1.1. Let M be a complete non-compact Riemannian manifold satisfy-
ing (D).3 Let 1 ≤ q < ∞ and assume that (Pq) holds. Let f ∈ C∞

0 (M)4 be such
that ‖ |∇ f | ‖q < ∞. Let α > 0. Then one can find a collection of balls Bi , C1

functions bi and a (almost everywhere) Lipschitz function g such that the following
properties hold:

f = g +
∑

i

bi , (1.2)
|∇g(x)| ≤ Cα, for µ − a.e. x ∈ M, (1.3)

supp bi ⊂ Bi and
∫

Bi

|∇bi |q dµ ≤ Cαqµ(Bi ), (1.4)∑
i

µ(Bi ) ≤ Cα−q
∫

|∇ f |q dµ, (1.5)∑
i

1Bi ≤ N , (1.6)

where C and N only depend on q and on the constant in (D).

3 Recall that this implies µ(M) = ∞.
4 Of course, f can be taken more general than this.
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Proof. Let f ∈ C∞
0 (M) and α > 0. Consider � = {x ∈ M;M(|∇ f |q)(x) > αq},

where M is the uncentered maximal operator over balls of M . If � is empty, then
set g = f , bi = 0; (1.3) is satisfied thanks to Lebesgue differentiation theorem.
Otherwise, the maximal theorem gives us

µ(�) ≤ Cα−q
∫

|∇ f |q dµ. (1.7)

Let F be the complement of �. Again by the Lebesgue differentiation theorem,
|∇ f | ≤ α µ-almost everywhere on F . Since � is open, let (Bi ) be a Whitney
decomposition of �. That is, � is the union of the Bi ’s, and there are constants
C2 > C1 > 1 depending only on the metric such that the balls Bi = C1 Bi are
contained in � and have the bounded overlap property, but each ball Bi = C2 Bi in-
tersects F (see [8]). As usual, C B is the ball co-centered with B with radius Cr(B).
Condition (1.6) is nothing but the bounded overlap property and (1.5) follows from
(1.6) and (1.7). Furthermore, Bi ∩ F �= ∅ and the doubling property imply∫

Bi

|∇ f |q dµ ≤
∫

Bi

|∇ f |q dµ ≤ αqµ(Bi ) ≤ Cαqµ(Bi ).

Let us now define the functions bi . Let (Xi ) be a partition of unity of � subordinated
to the covering (Bi ) so that for each i , Xi is a C1 function supported in Bi with
‖∇Xi‖∞ ≤ C

ri
, ri = r(Bi ). Set

bi = ( f − fBi )Xi .

It is clear that bi is supported in Bi . Let us estimate
∫

Bi
|∇bi |q dµ. Since

∇ (
( f − fBi )Xi

) = Xi∇ f + ( f − fBi )∇Xi ,

we have by (Pq) and the above estimate on ∇ f that

∫
Bi

|∇ (
( f − fBi )Xi

) |q dµ ≤ Cαqµ(Bi ).

Thus (1.4) is proved.
Set g = f − ∑

i bi . Then g is defined µ-almost everywhere since the sum
is locally finite on � and vanishes on F , and g is also defined in the sense of
distributions on M (not just on � which is trivial: in fact the argument shows that
g is a locally integrable function on M). For the latter claim, if ϕ ∈ C∞

0 (M), we
observe that for x in the support of bi , we have d(x, F) ≥ ri , so that

∫ ∑
i

|bi ||ϕ| dµ ≤
( ∫ ∑

i

|bi |
ri

dµ

)
sup
x∈M

(d(x, F)|ϕ(x)|).
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By the Hölder inequality and (Pq),

∫ |bi |
ri

dµ ≤ (µ(Bi ))
1/q ′

(∫
Bi

|∇ f |q dµ

)1/q

≤ Cαµ(Bi ).

Hence ∫ ∑
i

|bi ||ϕ| dµ ≤ Cα µ(�) sup
x∈M

(d(x, F)|ϕ(x)|),

which proves the claim.
It remains to prove (1.3). Note that

∑
i Xi (x) = 1 and

∑
i ∇Xi (x) = 0 for

x ∈ �. It follows that

∇g = ∇ f −
∑

i

∇bi

= ∇ f − (
∑

i

Xi )∇ f −
∑

i

( f − fBi )∇Xi

= 1F (∇ f ) +
∑

i

fBi ∇Xi .

Note that by the definition of F , |1F (∇ f )| ≤ α. We claim that a similar estimate
holds for h = ∑

i fBi ∇Xi , that is |h(x)| ≤ Cα for all x ∈ M for some constant
C independent of x . Note that this sum vanishes on F and is locally finite on �.
Fix now x ∈ �. Let B j be some Whitney ball containing x and let Ix be the set
of indices i such that x ∈ Bi . We know that 
Ix ≤ N . Also for i ∈ Ix we have
that C−1ri ≤ r j ≤ Cri where the constant C depends only on doubling (see [28,
Chapter I, 3] for the Euclidean case). We also have | fBi − fB j | ≤ Cr jα. Indeed,
one has Bi ⊂ AB j with A = 2C + 1, so that by (Pq) one obtains

| fBi − f AB j | ≤ 1

µ(Bi )

∫
Bi

| f − f AB j |

≤ C

µ(B j )

∫
AB j

| f − f AB j |

≤ C Ar j ((|∇ f |q)AB j )
1/q

≤ C Ar jα

and similarly for | f AB j − fB j |. Hence,

|h(x)| =
∣∣∣∣∣
∑
i∈Ix

( fBi − fB j )∇Xi (x)

∣∣∣∣∣ ≤ C
∑
i∈Ix

| fBi − fB j |r−1
i ≤ C Nα.

This proves (1.3), and finishes the proof of Proposition 1.1.
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Remarks. 1) It follows from the construction that
∑ ∇bi ∈ Lq with norm bounded

by C ‖ |∇ f | ‖q , hence ‖ |∇g| ‖q ≤ (C + 1) ‖ |∇ f | ‖q .
2) g is equal almost everywhere to a Lipschitz function on M and |g(x) −

g(y)| ≤ Cαd(x, y) almost everywhere. The point is that the Lipschitz constant is
controlled by α. This can be shown by similar arguments as for obtaining (1.2).
Alternatively, once (1.2) is proved, one can show that g satisfies (Pq) on arbitrary
balls by using the definition of g as f − ∑

bi since f and each bi do. At this point,
we invoke Theorem 3.2 in [18] and the L∞ bound on |∇g| to conclude.

3) Observe that g = 1F f +∑
fBiXi so that, in particular, f is equal almost ev-

erywhere to a Lipschitz function on F . Hence, g is some sort of Whitney extension
of the restriction of f to F where averages of f on Bi (since f was already defined
on the complement of F) replace evaluation at some point inside F at distance Cri
to Bi .

1.2. A weak-type estimate

Assume (Pq) for some q ∈ [1, 2). Let f ∈ C∞
0 (M). We wish to establish the

estimate

µ
({

x ∈ M; |�1/2 f (x)| > α
})

≤ C

αq

∫
M

|∇ f |q dµ, (1.8)

for all α > 0. We use the following resolution of �1/2:

�1/2 f = c
∫ ∞

0
�e−t� f

dt√
t

where c = π−1/2 is forgotten from now on. It suffices to obtain the result for the
truncated integrals

∫ R
ε

. . . with bounds independent of ε, R, and then to let ε ↓ 0 and
R ↑ ∞. For the truncated integrals, all the calculations are justified. We henceforth
assume that �1/2 is replaced by one of the truncations above but we keep writing
�1/2 and the limits of the integral as 0, ∞ to keep the notation simple.

Apply the Calderón-Zygmund decomposition of Proposition 1.1 to f at height
α with exponant q and write f = g + ∑

i bi .
Since g and bi are no longer C∞

0 (M), we have to give a meaning to �1/2g
and �1/2bi . As �1/2 is replaced by approximations, it suffices to define �e−t�g
and �e−t�bi for t > 0. Since (D) and (Pq) imply (D) and (P2), we have the
Gaussian upper bounds for the kernel of e−t� and by analyticity for the kernel of
t�e−t�. As bi has support in a ball and is integrable (see the proof of Proposition
1.1), �e−t�bi (x) is defined by the convergent integral

∫
M ∂t pt (x, y)bi (y) dµ(y).

As for g, we know it equals almost everywhere a Lipschitz function with Lip-
schitz constant bounded by Cα (see Remarks 1 and 2 at the end of Section 1.1).
We fix any point z where g(z) exists and we have that

∫
M ∂t pt (x, y)g(y) dµ(y)

is a smooth function bounded by Cαt−1(d(x, z) + t1/2) (we use the fact that∫
M ∂t pt (x, y) dµ(y) = 0). We take this as our definition of �e−t�g(x).



540 PASCAL AUSCHER AND THIERRY COULHON

Next, we prove

µ
{

x ∈ M; |�1/2g(x)| >
α

3

}
≤ C

αq

∫
M

|∇ f |q dµ.

Since

µ
{

x ∈ M; |�1/2g(x)| >
α

3

}
≤ 9

α2

∫
M

|�1/2g|2 dµ,

it remains to justify ∫
M

|�1/2g|2 dµ ≤
∫

M
|∇g|2 dµ. (1.9)

Indeed, once this is done, we conclude by using
∫

M |∇g|2dµ≤Cα2−q
∫

M |∇ f |q dµ

which follows from ‖ |∇g| ‖q ≤ C ‖ |∇ f | ‖q and (1.3) since q < 2.
Note that (1.9) (since we have replaced �1/2 by truncations) would be valid if

g were in C∞
0 (M). For ϕ ∈ C∞

0 (M), we have by the Fubini’s theorem

∫
M

�e−t�g(x)ϕ(x) dµ(x) =
∫

M
g(y)�e−t�ϕ(y) dµ(y)

= lim
r→+∞

∫
M

ηr (y)g(y)�e−t�ϕ(y) dµ(y).

Here ηr is a smooth function which is bounded by 1 on M , equal to 1 on a ball
Br of radius r , 0 outside the ball 2Br , and with ‖ |∇ηr | ‖∞ ≤ C/r . By the Stokes
theorem, the last integral is equal to∫

M
ηr∇g · ∇e−t�ϕ dµ +

∫
M

g∇ηr · ∇e−t�ϕ dµ.

Under our assumptions, we have the weighted L2 estimate from [16] (see also [9]):
for some γ > 0 and all y ∈ M, t > 0,∫

M
|∇x pt (x, y)|2eγ

d2(x,y)
t dµ(x) ≤ C

t V (y,
√

t)
(1.10)

where ∇x means that the gradient is taken with respect to the x variable. Given the
fact that ∇g is square integrable and g is Lipschitz, it is not difficult to pass to the
limit as r → ∞ and to conclude that∫

M
�e−t�g ϕ dµ =

∫
M

∇g · ∇e−t�ϕ dµ.

Thus, we obtain (again, �1/2 is replaced by truncated integrals)

〈�1/2g, ϕ〉 = 〈∇g, ∇�−1/2ϕ〉,
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so that a duality argument from the equality (E2) (or rather its approximation) yields
(1.9).

To compute �1/2bi , let ri =2k if 2k ≤r(Bi )<2k+1 and set Ti = ∫ r2
i

0 �e−t� dt√
t

and Ui = ∫ ∞
r2

i
�e−t� dt√

t
. It is enough to estimate A = µ{x ∈ M; | ∑i Ti bi (x)| >

α/3} and B = µ{x ∈ M; | ∑i Ui bi (x)| > α/3}.
First

A ≤ µ(∪i 4Bi ) + µ

({
x ∈ M \ ∪i 4Bi ;

∣∣∣∣∣
∑

i

Ti bi (x)

∣∣∣∣∣ >
α

3

})
,

and by (1.5) and (D), µ(∪i 4Bi ) ≤ C
αq

∫
M |∇ f |q dµ.

For the other term, we have

µ

({
x ∈ M \ ∪i 4Bi ;

∣∣∣∣∣
∑

i

Ti bi (x)

∣∣∣∣∣ >
α

3

})
≤ C

α2

∫
M

∣∣∣∣∣
∑

i

hi

∣∣∣∣∣
2

dµ

with hi = 1(4Bi )
c |Ti bi |. To estimate the L2 norm, we follow ideas in [6, 19] and

dualize against u ∈ L2(M, µ) with ‖u‖2 = 1 and write

∫
M

|u|
∑

i

hi dµ =
∑

i

∞∑
j=2

Ai j

where

Ai j =
∫

C j (Bi )

|Ti bi ||u| dµ

with C j (Bi ) = 2 j+1 Bi \ 2 j Bi . By the Minkowski integral inequality

‖Ti bi‖L2(C j (Bi ))
≤

∫ r2
i

0
‖�e−t�bi‖L2(C j (Bi ))

dt√
t

and by the Gaussian upper bounds for the kernel of �e−t� (see above),

|�e−t�bi (x)| ≤
∫

M

C

tV (y,
√

t)
e− cd2(x,y)

t |bi (y)| dµ(y).

Now, y is in the support of bi , that is Bi , and x ∈ C j (Bi ), hence one may replace
d(x, y) by 2 j ri in the Gaussian term since ri ∼ r(Bi ). Also, if yi denotes the center
of Bi , write

V (yi ,
√

t)

V (y,
√

t)
= V (yi ,

√
t)

V (yi , ri )

V (yi , ri )

V (y, ri )

V (y, ri )

V (y,
√

t)
.
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By (D) and V (z,r)
V (z,s) ≤ c( r

s )
β for r > s, as t ≤ r2

i , we have

V (yi ,
√

t)

V (y,
√

t)
≤ c

(
ri√

t

)β

.

Using this estimate,
∫

Bi
|bi | dµ ≤ Cµ(Bi )riα and µ(Bi ) ∼ V (yi , ri ), we obtain

|�e−t�bi (x)| ≤ C

tV (yi ,
√

t)

(
ri√

t

)β

e− c4 j r2
i

t

∫
Bi

|bi | dµ

≤ Cri

t

(
ri√

t

)2β

e− c4 j r2
i

t α.

Thus,

‖�e−t�bi‖L2(C j (Bi ))
≤ Cri

t

(
ri√

t

)2β

e− c4 j r2
i

t (µ(2 j+1 Bi ))
1/2α.

Plugging this estimate inside the integral, we obtain

‖Ti bi‖L2(C j (Bi ))
≤ Ce−c4 j

(µ(2 j+1 Bi )
1/2α

for some C, c > 0.
Now remark that for any y ∈ Bi and any j ≥ 2,(∫

C j (Bi )

|u|2 dµ

)1/2

≤
(∫

2 j+1 Bi

|u|2 dµ

)1/2

≤ µ(2 j+1 Bi )
1/2(M(|u|2)(y)

)1/2
.

Applying Hölder inequality and doubling, one obtains

Ai j ≤ Cα2 jβe−c4 j
µ(Bi )

(
M(|u|2)(y)

)1/2
.

Averaging over y ∈ Bi yields

Ai j ≤ Cα2 jβe−c4 j
∫

Bi

(
M(|u|2))1/2

dµ.

Summing over j ≥ 2 and i , we have∫
M

|u|
∑

i

hi dµ ≤ Cα

∫
M

∑
i

1Bi

(
M(|u|2))1/2

dµ.

Using finite overlap (1.6) of the balls Bi and Kolmogorov’s inequality, one obtains∫
M

|u|
∑

i

hi dµ ≤ C ′Nαµ
( ∪i Bi

)1/2‖|u|2‖1/2
1 .



RIESZ TRANSFORM ON MANIFOLDS AND POINCARÉ INEQUALITIES 543

Hence, by (1.6) and (1.5),

µ

{
x ∈ M \ ∪i 4Bi ;

∣∣∣∣ ∑
i

Ti bi (x)

∣∣∣∣ >
α

3

}
≤ Cµ

( ∪i Bi
) ≤ C

αq

∫
M

|∇ f |q dµ.

It remains to handle the term B. Define

βk =
∑

i,ri =2k

bi

ri

for k ∈ Z. With this definition, it is easy to see that

∑
i

Ui bi =
∑
k∈Z

∫ ∞

4k

(
2k

√
t

)
t�e−t�βk

dt

t
=

∫ ∞

0
t�e−t� ft

dt

t

where

ft =
∑

k ;4k≤t

(
2k

√
t

)
βk .

By using duality from the well-known Littlewood-Paley estimate∥∥∥∥∥
(∫ ∞

0
|t�e−t� f |2 dt

t

)1/2
∥∥∥∥∥

q ′
≤ C‖ f ‖q ′

(see [29]), we find that∥∥∥∥∥
∑

i

Ui bi

∥∥∥∥∥
q

≤ C

∥∥∥∥∥
(∫ ∞

0
| ft |2 dt

t

)1/2
∥∥∥∥∥

q

.

Now, by the Cauchy-Schwarz inequality,

| ft |2 ≤ 2
∑

k ;4k≤t

(
2k

√
t

)
|βk |2

and it is easy to obtain∥∥∥∥∥
(∫ ∞

0
| ft |2 dt

t

)1/2
∥∥∥∥∥

q

≤ C

∥∥∥∥∥∥
(∑

k∈Z

|βk |2
)1/2

∥∥∥∥∥∥
q

.

Using the bounded overlap property (1.6), one has that∥∥∥∥∥∥
(∑

k∈Z

|βk |2
)1/2

∥∥∥∥∥∥
q

q

≤ C
∫

M

∑
i

|bi |q
rq

i

dµ
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and by a similar argument to the one in the proof of Proposition 1.1,∫
M

∑
i

|bi |q
rq

i

dµ ≤ Cαq
∑

i

µ(Bi ).

Hence, by (1.5)

µ

{
x ∈ M;

∣∣∣∣ ∑
i

Ui bi (x)

∣∣∣∣ >
α

3

}
≤ C

∑
i

µ(Bi ) ≤ C

αq

∫
M

|∇ f |q dµ.

This concludes the proof of (1.8).

1.3. An interpolation argument

It is not known whether the spaces defined by the seminorms ‖ |∇ f | ‖q interpolate
by the real method. So it is not immediate to obtain (R Rp) for q < p < 2 directly
from (E2) and (1.1). We next prove this fact by adapting the Marcinkiewicz theorem
argument which bears again on our Calderón-Zygmund decomposition.

Fix q < p < 2 and f ∈ C∞
0 (M). We want to show that

∥∥∥ �1/2 f
∥∥∥

p
≤ C p ‖ |∇ f | ‖p .

Choose 0 < δ < 1 so that q < pδ. For α > 0, we can apply the Calderón-
Zygmund decomposition of Proposition 1.1 with exponent pδ and threshold α. We
may do this since ‖ |∇ f | ‖pδ < ∞ and (Ppδ) holds. Of course we do not want to
use ‖ |∇ f | ‖pδ in a quantitative way. We obtain that f = gα +bα with bα = ∑

i bi .
Write

∥∥∥ �1/2 f
∥∥∥p

p
= p2p

∫ ∞

0
α p−1µ{x ∈ M; |�1/2 f (x)| > 2α} dα

≤ p2p
∫ ∞

0
α p−1µ{x ∈ M; |�1/2gα(x)| > α} dα

+ p2p
∫ ∞

0
α p−1µ{x ∈ M; |�1/2bα(x)| > α} dα

≤ I + I I

with

I = Cp2p
∫ ∞

0
α p−1 ‖ |∇gα| ‖2

2

α2
dα

and

I I = Cp2p
∫ ∞

0
α p−1 ‖ |∇bα| ‖q

q

αq
dα,
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where we used (E2) and assumption (1.1). To estimate these integrals, we need
to come back to the construction of ∇gα and ∇bα . Write Fα as the complement
of �α = {M(|∇ f |pδ) > α pδ}. Then recall that ∇gα = 1Fα (∇ f ) + 1�α h where
|h| ≤ Cα and |∇ f | ≤ α on Fα . Thus I splits into I1 + I2 according to this
decomposition. The treatment of I1 is done using the definition of Fα , Fubini’s
theorem and p < 2 as follows:

I1 = Cp2p

2 − p

∫
M

|∇ f |2 (
M(|∇ f |pδ)

) p−2
pδ dµ

≤ Cp2p

2 − p

∫
M

|∇ f |p dµ,

where we used |∇ f |2 = |∇ f |p |∇ f |2−p ≤ |∇ f |p
(
M(|∇ f |pδ)

) 2−p
pδ almost ev-

erywhere. For I2, we only use the bound of h to obtain

I2 ≤ Cp2p
∫ ∞

0
α p−1µ(�α) dα

= C2p
∫

M

(
M(|∇ f |pδ)

) 1
δ dµ

≤ C
∫

M
|∇ f |p dµ

using the strong type ( 1
δ
, 1

δ
) of the maximal operator.

Next, we turn to the term I I . We have ∇bα = 1�α(∇ f ) − 1�α h, so that
I I ≤ 2q(I I1 + I I2). For I I1, we have by using Hölder’s inequality and the strong
type ( 1

δ
, 1

δ
) of the maximal operator

I I1 = Cp2p

p − q

∫
M

|∇ f |q (
M(|∇ f |pδ)

) p−q
pδ dµ

≤ Cp2p

p − q

(∫
M

|∇ f |p dµ

)q/p (∫
M

(
M(|∇ f |pδ)

)(
p−q
pδ

)(
p
q )′

dµ

)1/(
p
q )′

≤ C
∫

M
|∇ f |p dµ.

The treatment of the term I I2 is similar to the one of I2.

2. (Rp) for p > 2

In this section, we prove Theorem 0.4 as a consequence of the next two results.

Theorem 2.1. Let M be a complete non-compact Riemannian manifold satisfying
(D) and (P2). Then there exists p0 ∈ (2, ∞] such that for any q ∈ (2, p0) the
following assertions are equivalent.
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1. (Rp) holds for 2 < p < q,
2. (�p) holds for 2 < p < q,
3. For any p ∈ (2, q), there exists a constant C > 0 such that for any ball B and

any harmonic function u in 3B, one has the reverse Hölder inequality

(
1

µ(B)

∫
B

|∇u|p dµ

) 1
p ≤ C

(
1

µ(2B)

∫
2B

|∇u|2 dµ

) 1
2

. (R Hp)

Proposition 2.2. Let M be a complete non-compact Riemannian manifold satisfy-
ing (D) and (P2). Then there is p1 ∈ (2, ∞] such that (R Hp) holds for 2 < p <

p1.

The value of p1 in Proposition 2.2 is not known. The same is true for p0 in
Theorem 2.1. However, if we assume (Pq) for q ∈ (1, 2) then the argument shows
that p0 > q ′ and for q = 1, p0 = ∞.

We shall first prove Proposition 2.2. Of course, harmonic functions are smooth,
but the point of (RHp) is that the estimate is scale invariant. Then we shall prove
Theorem 2.1, in establishing successively that 3. =⇒ 2. =⇒ 1. =⇒ 3. This will
prove (Rp) for 2 < p < inf(p0, p1).

2.1. Reverse Hölder inequality for the gradient of harmonic functions

Assume (D) and (P2). First we have a Caccioppoli inequality: Let u be a harmonic
function on 3B where B is some fixed ball. Let B ′ be a ball such that 3B ′ ⊂ 3B.
Then, we have

(
1

µ(B ′)

∫
B′

|∇u|2 dµ

) 1
2 ≤ C

r(B ′)

(
1

µ(2B ′)

∫
2B′

|u − u2B′ |2 dµ

) 1
2

. (2.1)

The proof of this fact is entirely similar to the one in the Euclidean setting under
(D) and (P2). We skip details and refer, e.g., to Giaquinta’s book [14].

Next, we use Lemma 0.6 which tells us that (P2−ε) holds for some ε > 0.
According to [12], Corollary 3.2, we have the L2−ε − L2 Poincaré inequality

(
1

µ(2B ′)

∫
2B′

|u − u2B′ |2 dµ

) 1
2 ≤ Cr(B ′)

(
1

µ(2B ′)

∫
2B′

|∇u|2−ε dµ

) 1
2−ε

(2.2)

provided for any ball B and subball B ′

r(B ′)
r(B)

�
(

µ(B ′)
µ(B)

) 1
2−ε

− 1
2

. (2.3)

Admit (2.3) and combine (2.2) with (2.1) to obtain a reverse Hölder inequality,

(
1

µ(B ′)

∫
B′

|∇u|2 dµ

) 1
2 ≤ C

(
1

µ(2B ′)

∫
2B′

|∇u|2−ε dµ

) 1
2−ε

.
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Applying Gehring’s self-improvement of reverse Hölder inequality [13] (see also
[20], [14]), which holds since we work in a doubling space, we conclude that there
is δ > 0 and a constant C such that

(
1

µ(B)

∫
B

|∇u|2+δ dµ

) 1
2+δ ≤ C

(
1

µ(2B)

∫
2B

|∇u|2 dµ

) 1
2

.

It remains to verify (2.3). Write B = B(x, r) and B ′ = B(y, s) with s < r . Then
observe that (D) and d(x, y) < r imply that V (x, r) ∼ V (y, r). Hence, we may
assume that x = y and (2.3) becomes

s

r
�

(
V (x, s)

V (x, r)

)a

with a = 1
2−ε

− 1
2 > 0. The doubling property (D) implies that for some β > 0,

V (x, r)

V (x, s)
�

(r

s

)β

,

hence it suffices to have βa ≤ 1. Choosing ε smaller if necessary, we obtain (2.3).
Finally, (RHp) holds for 2 < p < 2 + δ.

2.2. From reverse Hölder to Hodge projection

The main tool is the adaptation to spaces of homogeneous type of a result by the
Shen in [27] essentially similar to Theorem 2.1 in [2]. For the sake of completeness
we include its proof in Section 3. Let M denote the Hardy-Littlewood maximal
function.

Theorem 2.3. Let (E, d, µ) be a measured metric space satisfying the doubling
property (D). Let T be a bounded sublinear operator from L2(E, µ) to L2(E, µ).
Assume that for q ∈ (2, ∞], 1 < α < β and C > 0, we have

(
1

µ(B)

∫
B

|T f |q dµ

)1/q

≤ C

(
1

µ(αB)

∫
αB

|T f |2 dµ

)1/2

(2.4)

for all balls B in E and f ∈ L2(E, µ) supported on E \ β B. Then, T is bounded
from L p(E, µ) to L p(E, µ) for 2 < p < q. More precisely, there exists a constant
C ′ such that for any f ∈ L p ∩ L2(E, µ), we have T f ∈ L p(E, µ) and

‖T f ‖p ≤ C ′‖ f ‖p.

In this statement, the functions f can be vector-bundle-valued and | f | is then the
norm of f while T f is real valued.
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We now prove 3. =⇒ 2. in Theorem 2.1. We assume the reverse Hölder
condition. Let T be the sublinear bounded operator from L2T ∗M into L2(M, µ)

such that T ω = |d�−1δω| when ω ∈ L2T ∗M . Let 2 < p < p̃ < q where q
is the exponent in condition 3. Let B be a ball in M and ω ∈ L2T ∗M ∩ L pT ∗M
be supported on M \ 4B. Let u be a distribution defined by ‖ |du| ‖2 < +∞ and
�u = δω, so that |du| = T ω. Given the support of ω, it follows that u is harmonic
in 3B. The reverse Hölder condition yields (2.4) with q replaced by p̃, hence,
according to Theorem 2.3,

‖T ω‖p ≤ C‖ω‖p.

A density argument concludes the proof.

2.3. From Hodge projection to Riesz transform

We begin with the proof of Lemma 0.1. To do this, we look at the form version of
the Riesz transform, d�−1/2, where d is the exterior derivative. We assume that,
for f ∈ C∞

0 (M),
‖�1/2 f ‖p′ ≤ C p′ ‖ |d f | ‖p′

and, for ω ∈ C∞
0 (T ∗M), ∥∥∥ |d�−1δω|

∥∥∥
p

≤ C p ‖ ω ‖p . (�p)

Since d�−1δ is self-adjoint, the last inequality holds with p replaced by p′.
Let ω ∈ C∞

0 (T ∗M). Then using successively (R Rp′) and (�p′),∥∥∥ �−1/2δω

∥∥∥
p′ =

∥∥∥ �1/2�−1δω

∥∥∥
p′ ≤ C

∥∥∥ |d�−1δω|
∥∥∥

p′ ≤ C ‖ ω ‖p′ .

Hence, by duality, d�−1/2 is bounded on L p.

The proof that 2. =⇒ 1. in Theorem 2.1 is now easy. By combining Theorem
0.7 with Lemma 0.6, we have (R Rp) for 2 − ε < p < 2. Let p0 = (2 − ε)′ and
2 < q < p0. If we assume (�p) for 2 < p < q, then Lemma 0.1 gives us (Rp) for
2 < p < q.

2.4. From Riesz transform to reverse Hölder inequalities

We show here the necessity of the reverse Hölder inequalities (R Hp). We assume
that the Riesz transform is bounded on L p for 2 < p < q. Fix such a p.

Let B be a ball, r its radius and let u be harmonic function in 3B. Let ϕ a C1

function, supported in 2B with ϕ = 1 on 3
2 B, ‖ϕ‖∞ ≤ 1 and ‖∇ϕ‖∞ ≤ C/r . We

assume that
∫

2B u = 0, so that it follows from (P2) that

r−2
∫

2B
|u|2dµ +

∫
2B

|∇(uϕ)|2 dµ ≤ C
∫

2B
|∇u|2 dµ.
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To estimate
∫

B |∇u|pdµ, it suffices to estimate
∫

B |∇(uϕ)|p dµ. Using an idea in
[4], p. 35, we can write

uϕ = e−r2�(uϕ) + uϕ − e−r2�(uϕ) = e−r2�(uϕ) −
∫ r2

0
e−s��(uϕ) ds,

hence

∇(uϕ) = ∇e−r2�(uϕ) −
∫ r2

0
∇e−s��(uϕ) ds.

Let p < ρ < q. Since the Riesz transform is bounded on Lρ , by the easy part of
the necessary and sufficient condition in Theorem 0.3, we have that

√
t∇e−t� is

bounded on Lρ uniformly with respect to t . It essentially follows from Lemma 3.2
in [2] that

(
1

µ(B)

∫
B

|∇e−s� f |p dµ

)1/p

≤ Ce− α4 j r2
s√

s

(
1

µ(c22 j B)

∫
C j (B)

| f |2 dµ

)1/2

(2.5)

for some constants C and α depending only on (D), (P2), p and ρ whenever f is
supported in C j (B) and s � r2(B). Here C1(B) is a fixed multiple of B, and for
j ≥ 2, C j (B) is a ring based on B: there are constants c1, c2 such that for all j ≥ 1,
if x ∈ C j (B) then c12 j r ≤ d(x, B) ≤ c22 j r .

It suffices to apply this inequality to f = uϕ which is supported in 2B to treat
the L p average of ∇e−r2�(uϕ) on B.

In the other term, a computation yields

�(uϕ) = −du · dϕ − δ(udϕ).

We replace �(uϕ) by its expression and observe that the support condition of dϕ

allows us to use the previous estimates (2.5) for ∇e−s�(du ·dϕ) when j ≥ 2. Then,
by the Minkowski inequality,

(
1

µ(B)

∫
B

∣∣∣∣∣
∫ r2

0
∇e−s�(du · dϕ) ds

∣∣∣∣∣
p

dµ

) 1
p

≤ C

(
1

µ(2B)

∫
2B

|∇u|2 dµ

) 1
2

.

For the remaining term, it suffices to prove

(
1

µ(B)

∫
B

|∇e−s�δ f |p dµ

)1/p

≤ Ce− cr2
s

s

(
1

µ(2B)

∫
2B\ 3

2 B
| f |2 dµ

)1/2

(2.6)

whenever f is supported in 2B \ 3
2 B and s ≤ r2 since this yields

(
1

µ(B)

∫
B

∣∣∣∣∣
∫ r2

0
∇e−s�δ(udϕ) ds

∣∣∣∣∣
p

dµ

) 1
p

≤ C

r

(
1

µ(2B)

∫
2B

|u|2 dµ

) 1
2

,
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which concludes the proof of (RHp).
To see (2.6), the strategy is as follows. We use that ∇e−t�δ = (∇e−t/2�)(e−t/2�δ).
For the second operator we have the Gaffney type estimate

‖√t e−t�δω‖L2(F) ≤ Ce− αd(E,F)2
t ‖ω‖L2(E).

whenever ω is a 1-form supported on E and E, F are closed subsets of M and t > 0.
This estimate is for example proved in [2] for the dual operator de−t�. Make use
of it with E = 2B \ 3

2 B and successively F = 5
4 B, 4B \ 5

4 B, and 2 j+1 B \ 2 j B for
j ≥ 2 and combine them with (2.5) to conclude. Similar calculations are shown in
[2] and we skip further details.

3. Proof of Theorem 2.3

We split the argument in several steps. The following lemma is a localization result
and is applied in the proof of a good lambda inequality which is the key step. The
latter yields L p inequalities, which applied to our particular hypotheses concludes
the proof.

Lemma 3.1. There is K0 depending only on the doubling constant of E such that
the following holds. Given f ∈ L1

loc(E, µ), a ball B and λ > 0 such that there
exists x̄ ∈ B for which M f (x̄) ≤ λ, then for any K ≥ K0,

{χBM f > Kλ} ⊂ {M( f χ3B) >
K

K0
λ}.

Proof. Recall that M is comparable to the centered maximal function Mc: there
is K0 depending only on the doubling constant such that M ≤ K0Mc.

Let x ∈ B with M f (x) > Kλ. Then Mc f (x) > K
K0

λ. Hence, there is a ball
B(x, r) centered at x with radius r such that

1

µ(B(x, r))

∫
B(x,r)

f dµ >
K

K0
λ.

If K
K0

≥ 1, x̄ /∈ B(x, r) since M f (x̄) ≤ λ. The conditions x ∈ B, x̄ ∈ B and
x̄ /∈ B(x, r) imply B(x, r) ⊂ 3B. Hence,

K

K0
λ <

1

µ(B(x, r))

∫
B(x,r)

( f χ3B) dµ ≤ M( f χ3B)(x).

This proves the lemma.

We continue with a two parameters family of good lambda inequalities.
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Proposition 3.2. Fix 1 < q ≤ ∞ and a > 1. Let F, G ∈ L1
loc(E, µ), non-negative.

We say that (F, G) ∈ Eq,a if one can find for every ball B non-negative measurable
functions G B, HB defined on B with

F ≤ G B + HB a.e. on B

such that (
1

µ(B)

∫
B
(HB)q dµ

)1/q

≤ a inf
x∈B

MF(x) + inf
x∈B

G(x),

1

µ(B)

∫
B

G B dµ ≤ inf
x∈B

G(x).

There exist C = C(q, (D), a) and K ′
0 = K ′

0(a, (D)) such that for (F, G) ∈ Eq,a,
for all λ > 0, for all K > K ′

0 and γ ≤ 1,

µ{MF > Kλ, G ≤ γ λ} ≤ C

(
1

K q
+ γ

K

)
µ{MF > λ}

provided {MF > λ} is a proper subset of E.
If q = ∞, we understand the average in Lq as an essential supremum. In this

case, we set 1
K q = 0.

Proof. Let Eλ = {MF > λ}. This is an open proper subset of E . The Whitney
decomposition for Eλ yields a family of boundedly overlapping balls Bi such that
Eλ = ∪i Bi . There exists c > 1 such that, for all i , cBi contains at least one point
xi outside Eλ, that is

MF(xi ) ≤ λ.

Let Bλ = {MF > Kλ, G ≤ γ λ}. If K ≥ 1 then Bλ ⊂ Eλ, hence

µ(Bλ) ≤
∑

i

µ(Bλ ∩ Bi ) ≤
∑

i

µ(Bλ ∩ cBi ).

Fix i . If Bλ ∩ cBi = ∅, we have nothing to do. If not, there is a point yi ∈ cBi such
that

G(yi ) ≤ γ λ.

By the localization lemma applied to F on cBi , if K ≥ K0, then

µ(Bλ ∩ cBi ) ≤ µ({MF > Kλ} ∩ cBi ) ≤ µ

{
M(Fχ3cBi ) >

K

K0
λ

}
.

Now use F ≤ Gi + Hi on 3cBi with Gi = G3cBi and Hi = H3cBi to deduce

µ

{
M(Fχ3cBi )>

K

K0
λ

}
≤µ

{
M(Giχ3cBi )>

K

2K0
λ

}
+ µ

{
M(Hiχ3cBi )>

K

2K0
λ

}
.
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Now by using the weak-type (1, 1) and (q, q) of the maximal operator with respec-
tive constants c1 and cq , we have

µ{M(Giχ3Bi ) >
K

2K0
λ} ≤ 2K0c1

Kλ

∫
3cBi

Gi dµ ≤ 2K0c1

Kλ
µ(3cBi )G(yi )

≤ 2K0c1γ

K
µ(3cBi ),

and, if q < ∞,

µ{M(Hiχ3cBi ) >
K

2K0
λ} ≤

(
2K0cq

Kλ

)q ∫
3cBi

Hq
i dµ

≤
(

2K0cq

Kλ

)q

µ(3cBi )(aMF(xi ) + G(yi ))
q

≤
(

2K0cq(a + 1)

K

)q

µ(3cBi ).

Hence, summing over i yields

µ(Bλ) ≤ C

(
1

K q
+ γ

K

) ∑
i

µ(3cBi ) ≤ C ′
(

1

K q
+ γ

K

)
µ(Eλ)

by applying the doubling property together with the bounded overlap. If q = ∞,
then

‖M(Hiχ3cBi )‖∞ ≤ ‖Hiχ3cBi ‖∞ ≤ aMF(xi ) + G(yi ) ≤ (a + 1)λ,

so that, choosing K ≥ 2K0(a + 1) leads us to {M(Hiχ3Bi ) > K
2K0

λ} = ∅. The rest
of the proof is unchanged. This proves the proposition.

Corollary 3.3. Assume that (F, G) ∈ Eq,a. Let 1 < ρ < q and assume that
‖G‖ρ < ∞ and ‖F‖1 < ∞. Then, we have

‖MF‖ρ ≤ C
(
‖G‖ρ + µ(E)

1
ρ
−1‖F‖1

)
, 5

where the constant C depends on (D), ρ, q, a.

Proof. We begin with the case µ(E) = ∞. Define �(t) = ρ
∫ t

0 λρ−1µ{MF >

λ} dλ for t ≥ 0. Since ‖F‖1 < ∞, the maximal theorem implies that λµ{MF >

5 In the case µ(E) = ∞ which is the situation of interest here, the last term vanishes but we still
need some a priori knowledge such as F ∈ L1 to conclude.
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λ} is bounded on R
+. As 1 < ρ, � is a well-defined positive and non-decreasing

function on R
+ into R

+.
By the maximal theorem and ‖F‖1 < ∞, {MF > λ} is a proper subset in E ,

hence the good lambda inequality is valid and integration leads us to

�(K t) ≤ C K ρ

(
1

K q
+ γ

K

)
�(t) +

(
K

γ

)ρ

‖G‖ρ
ρ.

Since ρ < q, one can choose K large enough and γ small enough so that

C K ρ

(
1

K q
+ γ

K

)
≤ 1

2
.

hence, for this choice, for all t ≥ 0

�(K t) ≤ 1

2
�(t) +

(
K

γ

)ρ

‖G‖ρ
ρ.

An easy iteration proves that � is bounded and this proves the corollary in this case
as �(∞) is ‖MF‖ρ

ρ .
In the case where µ(E) < ∞, we have λµ{MF > λ} ≤ C‖F‖1, hence for

λ > a with a = C
µ(E)

‖F‖1, the good lambda inequality applies. If we define � as

before, the previous argument gives us a control of �(∞)−�(a) by C‖G‖ρ
ρ and it

remains to controlling �(a). But �(a) ≤ aρµ(E) and the conclusion follows.

Now, we may prove Theorem 2.3. We let f ∈ L p ∩ L2(E, µ) and F = |T f |2.
We let G B = 2|T (χβ B f )|2 and HB = 2|T ((1 − χβ B) f )|2. On the one hand, for C
depending only on (D) and the norm ‖T ‖ of T on L2,

1

µ(B)

∫
B

G B dµ ≤ 2‖T ‖2

µ(B)

∫
β B

| f |2 ≤ C inf
x∈B

M(| f |2)(x).

On the other hand, since (1 − χβ B) f is supported away from β B, the assumption
(2.4) yields

(
1

µ(B)

∫
B
(HB)q/2 dµ

)2/q

≤ C

µ(αB)

∫
αB

HB dµ,

and we have ∫
αB

HB dµ ≤ 4
∫

αB
F dµ + 2

∫
αB

G B dµ,

hence for some a > 0,

(
1

µ(B)

∫
B
(HB)q/2 dµ

)2/q

≤ a inf
x∈B

MF(x) + C inf
x∈B

M(| f |2)(x).
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Thus we conclude with G = CM(| f |2) that if 2 < p < q , since T f ∈ L2 hence
F ∈ L1, then

‖F‖p/2 ≤ C
(
‖G‖p/2 + µ(E)

2
p −1‖F‖1

)
.

Observe then that ‖G‖p/2 ∼ ‖ f ‖2
p and by the L2 boundedness of T and Hölder

inequality,

µ(E)
2
p −1‖F‖1 ≤ Cµ(E)

2
p −1‖ f ‖2

2 ≤ C‖ f ‖2
p.
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Université de Paris-Sud
91405 Orsay Cedex, France
pascal.auscher@math.u-psud.fr
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