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Geometric rigidity of conformal matrices

DANIEL FARACO AND XIAO ZHONG

Abstract. We provide a geometric rigidity estimate à la Friesecke-James-Müller
for conformal matrices. Namely, we replace SO(n) by an arbitrary compact set of
conformal matrices, bounded away from 0 and invariant under SO(n), and rigid
motions by Möbius transformations.
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1. Introduction

This paper is concerned with the so-called geometric rigidity estimates for confor-
mal matrices. Recently, Friesecke, James and Müller developed a successful new
approach to the classical problem of dimension-reduction in nonlinear elasticity
[7, 8]. A fundamental ingredient was the following rigidity estimate for the group
SO(n) = {A ∈ Mn×n : At A = I, detA = 1} of special orthogonal matrices in R

n .

Theorem 1.1. Let � ⊂ R
n be a bounded Lipschitz domain and n ≥ 2. There exists

a constant C1 = C1(�) with the property that for each v ∈ W 1,2(�, R
n), there

exists R ∈ SO(n) such that

‖Dv − R‖L2(�) ≤ C1‖distSO(n)(Dv)‖L2(�). (1.1)

Theorem 1.1 has been used in a number of related problems concerning dimension-
reduction, e.g. [3, 6, 18] and [17]. In all the applications it is crucial that the
dependence between the left- and right-hand side is linear and that v is any gen-
eral Sobolev mapping (the classical result of John [15] gives an L2 − L∞ estimate
valid for locally bi-Lipschitz maps). Theorem 1.1 makes quantitative the following
classical result of Reshetnyak [19] for sequences.

Theorem 1.2. Let {v j } ∈ W 1,2(�) be a weakly convergent sequence in W 1,2. Then
there exists R ∈ SO(n) such that

lim
j→∞ ‖distSO(n)(Dv j )‖L2(�) = 0 ⇒ lim

j→∞ ‖Dv j − R‖L2(�) = 0. (1.2)
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A natural question raised by Theorem 1.1 is to determine when a qualitative rigidity
theorem like Theorem 1.2 can in fact be made quantitative in the sense of Theo-
rem 1.1. That is, let E ⊂ Mn×n be such that for a weakly convergent sequence
{v j } ∈ W 1,2(�) it holds that

lim
j→∞ ‖distE (Dv j )‖L2(�) = 0 ⇒ lim

j→∞ ‖Dv j − Dϕ‖L2(�) = 0 (1.3)

where ϕ ∈ W 1,2(�, R
n) is such that Dϕ ∈ E a.e.

Then, we would like to know if there exists a constant C(�) such that for every
v ∈ W 1,2(�, R

n) there exists ϕ with Dϕ ∈ E and

‖Dv − Dϕ‖L2(�) ≤ C(�)‖distE (Dv)‖L2(�). (1.4)

In particular, since Reshetnyak proved results related to Theorem 1.2 for subsets of
the set of conformal matrices

CO+(n) = {A ∈ Mn×n : A = ρR, where ρ ∈ R+ and R ∈ SO(n)},
in [8] it was posed the question whether his results can made quantitative in the
sense of Theorem 1.1.

In this work we show that if E is a compact subset of CO+(n), invariant under
SO(n) and with 0 /∈ E , a quantitative rigidity estimate holds (see Theorem 1.4).
Before stating the result, we need to recall that for E � CO+(n) the solutions of
the differential inclusion

Dϕ ∈ E, ϕ ∈ W 1,2(�) (1.5)

are described by the Liouville Theorem.

Theorem 1.3 (Liouville Theorem). Let � ⊂ R
n, n ≥ 3 and let ϕ ∈ W 1,n(�, R

n)

be such that

Dϕ(x) ∈ CO+(n) a.e. x ∈ �. (1.6)

Then

ϕ(x) = b + Ax, or ϕ(x) = b + AR
x − a

|x − a|2 (1.7)

where b ∈ R
n, a ∈ R

n \ �, A ∈ CO+(n) and R = diag(1, . . . , −1).

The Liouville Theorem has a long history. Liouville established it for C3 map-
pings in [16], Gehring for homeomorphisms in W 1,n(�, R

n) in [9] and Reshetnyak
removed the injectivity assumption in [19]. In fact, W 1,n is not the borderline case.
Iwaniec [13] proved that there exists a critical threshold pn < n such that Liou-
ville theorem holds for mappings in W 1,p(�, R

n), p ≥ pn . Moreover, Iwaniec and
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Martin [14] proved that if n = 2m and m is an integer then pn = m and the result
is optimal. For n odd pn is conjectured to be also n

2 .
Geometrically, the Liouville theorem relates CO+(n) with the special Möbius

group Mn . The Möbius group Möb(n) is the group generated by reflections on
spheres and hyperplanes. Then Mn consists of Möbius transformations preserving
orientation (see [1] for an introduction of the geometry of the Möbius group and
its discrete subgroups). It turns out that any Möbius transform can be represented
as the composition of an affine mapping and an inversion with respect to a sphere.
Analytically, this yields formula (1.7).

We are interested in compact subsets of CO+(n) invariant under SO(n). For
technical reasons we also assume that these sets have finitely many connected com-
ponents. Let us introduce the notation

Em,M = (CO+(n) ∩ B(0, M)) \ B(0, m),

mSO(n) = {m R : R ∈ SO(n)}. (1.8)

Then our conditions on E imply that it can be represented by,

E = ∪n1
i=1 Emi ,Mi ∪n2

i=1 mi SO(n). (1.9)

In addition, since the sets E are compact the solutions to (1.5) are in particular
Möbius transforms. We denote them by ME

n (�). An interesting new feature re-
spect to the other nonlinear sets for which quantitative rigidity estimates are avail-
able (e.g. [2]) is that ME

n (�) contains non affine solutions. We are now in the
position to state the rigidity estimate:

Theorem 1.4. Let E ⊂ CO+(n) be compact, finitely connected, with 0 /∈ E and
such that

SO(n)E = E .

Let �′ � � ⊂ R
n, n ≥ 3 and � be a bounded domain. Then,

i) There exists a constant C2 = C2(E, �′, �) such that for any v ∈ W 1,2(�, R
n)

there exists ϕ ∈ ME
n (�′, R

n) such that

∫
�′

|Dϕ − Dv|2 ≤ C2

∫
�

dist2
E (Dv). (1.10)

ii) Let � be Lipschitz. Then, a constant C3 = C3(E, �) such that

∫
�

|Dϕ − Dv|2 ≤ C3

∫
�

dist2
E (Dv)

exists if and only if E = ∪n3
i=1mi SO(n).
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We do not know if we could put E = CO+(n) in Theorem 1.4. However if
we restrict our attention to mappings of finite distortion with suitable integrability
conditions on the distortion function a rigidity estimate holds, as it will be shown
elsewhere. The proof relies heavily on Theorem 1.4 and a recent result of Koskela,
Hencl, and Zhong [12] about the doubling properties of the Jacobian of this kind
of mappings. The case n = 2 is very different. It holds that CO+(2) is a linear
subspace and by Weyl‘s lemma W 1,1 solutions to the differential inclusion

Dϕ ∈ CO+(2)

are holomorphic functions. Then the rigidity estimate for E = CO+(2) holds (for
every exponent 1 < p ≤ ∞) by the boundedness of the Ahlfors-Beurling trans-
form (for a proof see [5]). However, since holomorphic function are not as rigid as
Möbious transforms, it remains open what is the situation for the corresponding set
E M,m in two dimensions.

Our approach to Theorem 1.4 is essentially a combination of ideas of [8] with
those developed by Reshetnyak in his study of the stability of Liouville theorem
respect to different parameters and classes of functions (See [21], in particular The-
orems 3.2 and 5.2). The paper is organized as follows. In Section 2 we state some
basic facts about Möbius mappings and solutions to elliptic equations. Section 3 is
devoted to prove that arbitrary Möbious transforms are approximated in the sense
of Theorem 1.4 by mappings in ME

n (�). In this section, we provide an example
showing that, if ME

n (�) contains non affine mappings, a global estimate like in
Theorem 1.4 (ii) does not hold even in this simplified setting.

Section 4 constitutes the crux of the paper. We prove Theorem 1.4 for �′ a ball.
The proof is based on the fact that E is related to elliptic equations globally and
locally. Globally, there exists a smooth uniformly convex mapping F : R

n → R

such that for every A ∈ E

F(Ai ) = det(A), (1.11)

where Ai is any row of the matrix A. The existence of such a mapping F enable us
to write

v = w + z,

where each of the coordinates zi satisfies the equation

div(DF(Dzi )) = 0,

and
∫
�

|∇w|2 ≤ C
∫
�

dist2
E (Dv). Hence, it suffices to prove Theorem 1.4 for such

a mapping z. Next, the regularity theory of elliptic equations implies that zi en-
joys a priori estimates. In particular, the modulus of continuity of Dz is uniformly
bounded. This allows the use of a compactness argument to deduce that it is essen-
tially enough to prove Theorem 1.4 for mappings z such that

‖dist(Dz, I )‖L∞(�′) << 1 (1.12)
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and the modulus of continuity of Dz is uniformly bounded. In this situation we
can use the local equation which is given by the tangent plane to CO+(n). We
proceed by adapting the ideas of Reshetnyak [21] to our situation. Beside a Korn
type inequality for the tangent plane to CO+(n), a degree argument involving the
exponential map of Mn is needed to choose the Möbius mapping closest to z. In
this way, one obtains a mapping ϕ′ ∈ Mn(�

′) satisfying (1.10). However, these
arguments do not imply that ϕ′ ∈ ME

n (�′). The desired mapping ϕ is obtained by
applying section 3 to ϕ′. Let us remark that this is the only moment along the whole
proof where the SO(n) invariance of E is used. The last section is devoted to prove
Theorem 1.4 for an arbitrary �′ � �.
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2. Notation and preliminaries

We will denote by C1, C2, . . . , Cn constants which will be used during the whole
paper, whereas c1, c2, . . . , cn will be used for different constants within the same
proof.

Concerning sets in R
n , we will use B for balls and B(a, r) where we want

to specify the center a and the radius r . For balls centered at the origin we use
Br = B(0, r). Given a ball B(a, r), h B = B(a, hr). For a measurable set L , |L|
denotes its Lebesgue measure. Let K ⊂ R

n and s ∈ R. Then Ks = {y ∈ R
n :

dist(y, K ) ≤ s}.
Let A = (ai j ) ∈ Mn×n then |A| stands for the operator norm. Given a closed

set E ∈ Mn×n dist(A) = infB∈E |A − B|. Let us remark the choice of the opera-
tor norm in our definition of the distance is motivated to simplify the constants in
section 3 but of course any other norm would do.

Let E be the set in Theorem 1.4. Since 0 /∈ E and E is compact there exists
0 < m < M < ∞ such that

E ⊂ Em,M (2.1)

where Em,M was introduced in (1.9).
We will used the notation E ′ for an auxiliary set different E but satisfying

the assumptions of Theorem 1.4. In particular it will satisfy (2.1) for some other
numbers m′ and M ′.
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Given a closed set � ⊂ R
n , Mn(�) are Möbius transforms which are finite in

�, Mn(�1, �2) stands for Möbius transform mapping �1 onto �2. Let us recall
the notation

ME
n (�) = {ϕ ∈ W 1,2(�) : Dϕ(x) ∈ E a.e. x ∈ �}.

We discuss now several basic properties of Mn(�) and more precisely of ME
n (B).

In particular we show in the first lemma that mappings ϕ ∈ ME
n (B) can be handled

in an uniform way. The main reason is that for ϕ ∈ ME
n (B) ϕ−1(∞), the center

of the sphere associated to ϕ, is bounded away from B independently of ϕ. For the
notation, recall that for ϕ ∈ Mn , ϕ(B) is a ball.

Lemma 2.1. Let ϕ ∈ ME
n (B) and let m, M be the constants in (2.1). Then the

following three properties hold:

(1) mn ≤ |ϕ(B)|
|B| ≤ Mn.

(2) ϕ ∈ Mn(h0 B) where h0 = h0(
M
m ) > 1.

(3) Let s < 1. Then there exists a number h1 = h1(s, E) < 1 such that ϕ(s B) ⊂
h1ϕ(B) and sϕ(B) ⊂ ϕ(h1 B).

Proof. Since for A ∈ CO+(n), |A|n = det(A), it follows that

|ϕ(B)| =
∫

B
Jϕ =

∫
B

|Dϕ|n

(1) follows from (2.1).
We prove (2) for ϕ ∈ ME

n (B) not affine. It follows from (1.7) that for such
ϕ there exists r ∈ R and a ∈ R

n . such that |Dϕ(x)| = r2|x − a|−2. Thus,
maxB |Dϕ| = r2dist B(a)−2 and minB |Dϕ| = r2(dist B(a) + diam(B))−2. Since
ϕ ∈ ME

n (B) we have that

r2dist B(a)−2

r2(dist B(a) + diam(B))−2
≤ M

m
,

i.e.

dist B(a) ≥ diam(B)√
M
m − 1

.

Hence h0 = 1 + 2 1√
M
m −1

.

For (3), we firstly observe there is no loss of generality in assuming that B =
B1 and ϕ(B1) = B1. The general case follows by considering similarities TB, Tϕ(B)

such that TB(B1) = B and Tϕ(B)(B1) = ϕ(B). Then the mapping ϕ̃ = T −1
ϕ(B)◦ϕ◦TB
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satisfies that ϕ̃(B1) = B1 and m2 ≤ |Dϕ̃| ≤ M2. It is easy to check that if the thesis
holds for ϕ̃ it also holds for ϕ.

Therefore there is no loss of generality assuming ϕ ∈ ME
n (B1, B1). Since

1
M ≤ |Dϕ−1| ≤ 1

m , (2) implies that ϕ−1 ∈ Mn(h0 B1) for the same h0. Thus,
ϕ(∞) = b, with |b| ≥ h0.

On the other hand, ϕ(B1) = B1 implies that ϕ fixes Sn−1. Thus, it conjugates
with the mapping R = x

|x |2 (see [1, Theorem 3.2.4]), i.e. ϕ(x) = R ◦ ϕ ◦ R(x).

Putting x = 0 yields ϕ(0) = R ◦ ϕ ◦ R(0) = R(b) = b
|b|2 . Recall now that

Mn(B1, B1) is the group of isometries of (B1, d), where d denotes the hyperbolic
metric of B1 (see [1, Chapter 3]). Thus, by triangle inequality,

d(ϕ(x), 0) ≤ d(ϕ(x), ϕ(0)) + d(ϕ(0), 0) = d(x, 0) + d

(
b

|b|2 , 0

)
. (2.2)

The hyperbolic distance is related with the Euclidean distance by the formula
d(x, 0) = log(

1+|x |
1−|x | ). Therefore we deduce from (2.2) that if x ∈ s B1 and ϕ ∈

ME
n (B1, B1), |ϕ(x)| satisfies the inequality

|ϕ(x)| + 1

|ϕ(x)| − 1
≤ (s + 1)(h0 + 1)

(s − 1)(h0 − 1)
.

Hence h1 in the claim (3) of the lemma is implicitly defined by

h1 + 1

h1 − 1
≤ (s + 1)(h0 + 1)

(s − 1)(h0 − 1)
.

The assertion sϕ(B) ⊂ ϕ(h1 B). is equivalent to ϕ−1(s B) ⊂ h1 B and hence it
follows from the above reasoning.

The following proposition relies on the fact that Mn is a finite dimensional
manifold and Mn(h B) is a compact manifold. Thus all metrics are equivalent.

Proposition 2.2 ( [21, Chapter 4. Lemma 2.5 ] ). Let B = B(a, r) and ϕ, ψ ∈
Mn(h B) with h > 1. Then there exists a constant C4 = C4(h) such that for any
x, y ∈ B we have that

|Dϕ(x) − Dψ(x)| ≤ C4

|B|
∫

B
|Dϕ − Dψ | (2.3)

and,

|Dϕ(x) − Dϕ(y)| ≤ 1

r
C4 max

B
|Dϕ||x − y|. (2.4)
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The next lemma states that derivatives of Möbius transforms are like constants in
the following sense: If they are sufficiently close in a ball, they are also close in
appropriate dilations of this ball.

Lemma 2.3 ([21, Chapter 4. Lemma 4.1]). Let ϕ ∈ Mn such that the inequality

|ϕ(x) − x | ≤ rε

holds for all x ∈ B(a, r), where ε > 0. Let h > 0. Then there exist constants
α = α(h) and C5 = C5(h) such that if ε < α then the inequality

|Dϕ(x) − I | ≤ C5ε

holds for all x ∈ h B.

We conclude the section by introducing the elliptic equations needed in Sec-
tion 4 and DeGiorgi-Nash’s Theorem on the regularity of the solutions.

Definition 2.4. Let F : R
n → R be a convex function such that |F(A)| ≤ C(1 +

|A|p). Then a mapping z ∈ W 1,p(�, R
n); z = (z1, . . . , zn) is said to be F-

harmonic in � if each of the coordinates zi satisfies that

div(DF(Dzi )) = 0 in �.

Equivalently, zi minimizes
∫
�

F(Dv) respect to its own boundary values.

Proposition 2.5 ([4, 10]). Let z be an F-harmonic mapping in B. Let F : R
n → R

be a C∞ uniformly convex and such that |DF(A)| ≤ CF |A|, |D2 F | ≤ CF for
CF > 0. Let 0 ≤ h < 1. Then, z ∈ C∞(h B) and there exists a number 0 < α < 1,
α = α(h, F) and a constant C6 = C6(h, F) such that

[Dz]Cα(h B) ≤ C6

(∫
B

|Dz|2
) 1

2

.

3. ME
n as a subset of Mn

In this section we prove Theorem 1.4 for v ∈ Mn(�)\ME
n (�′). Firstly, we reduce

the situation to the case where E is connected in Proposition 3.1. The essential point
in the proof is Proposition 2.2 stating that if ϕ ∈ ME ′

n then Dϕ is Lipschitz and the
Lipschitz constant depends only on E ′. Thus, there is no loss of generality assuming
E = Em.M . We treat this case in Proposition 3.2. The essential observation for the
proof of Proposition 3.2 is that if ϕ /∈ ME

n (�′), then there exists a ball B̃ ⊂ � \ �′

with |B̃| 1
n ≈ dist(�′, ∂�) such that for x ∈ B̃, Dϕ(x) /∈ E . This, and that for
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ϕ ∈ ME
n the oscillation of |Dϕ| is uniformly controlled, provides us a constant

C = C(�′, E) such that

min

{∫
�′

dist2
MSO(n)(Dϕ),

∫
�′

dist2
mSO(n)(Dϕ)

}
≤ C

∫
B̃

dist2
E (Dϕ).

Therefore, we can conclude by means of Theorem 1.1.
If one tries to follow a similar scheme for proving an estimate up to the bound-

ary one faces the situation of the Example 3.3 presented at the end of the section.

Proposition 3.1. Let E, �′, � as in Theorem 1.4 and let {Ei }I
i=1 be the connected

components of E. Then, there exists C7 = C7(E, �′, �) such that for every ϕ ∈
Mn(�)

min
i

{∫
�′

dist2
Ei

(Dϕ)

}
≤ C7

∫
�

dist2∪i Ei
(Dϕ). (3.1)

Proof. By induction, it is enough to prove the theorem for E having two connected
components E = E1∪E2. Let m1 = minE1 |A| ≤ maxE1 |A| = m2 < minE2 |A| =
M1 ≤ maxE2 |A| = M2 and ρ = M1 − m2 = dist(E1, E2) (Here we use the
invariance of E under SO(n)). We firstly observe that there exist constants c1 =
c1(E), c2 = c2(E) such that if either |A| ≥ 2M2 or |A| ≤ 1

2m1
then

dist Ei (A) ≤ c1dist E (A), (3.2)

and dist E (A) ≥ c2.

Let �E = {x ∈ �′ : 1
2m1

≤ |Dϕ(x)| ≤ 2M2}. Suppose that |�E | ≤ 1
2 |�|.

Then we have that 2|� \ �E | ≥ |�| and therefore

∫
�

dist2
E1

(Dϕ) ≤ c1

∫
�\�E

dist2
E (Dϕ)dx + 4M2

2 |�|

≤ c1

∫
�\�E

dist2
E (Dϕ)dx + 8M2

2

c2
c2|� \ �E |

≤ c3

∫
�\�E

dist2
E (Dϕ),

and (3.1) holds. Hence, we can assume that |�E | ≥ 1
2 |�|.

Now, if

dist E1(Dϕ(x)) ≥ ρ

2
,

for every x ∈ �E it would follow that

dist E2(Dϕ(x)) ≤ c4dist E (Dϕ),
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with c4 = 4
ρ

M2. Together with (3.2) we would have that

dist E2(Dϕ(x)) ≤ max{c1, c4}dist E (Dϕ)

for all x ∈ � and (3.1) would be trivial.
Since the same argument works if we exchange E1 and E2 we are left to the

case where there exist two points x1, x2 ∈ �E such that

dist E (Dϕ(x1)) = dist E1(Dϕ(x1)) ≤ ρ

2
,

dist E (Dϕ(x2)) = dist E2(Dϕ(x2)) ≤ ρ

2
.

Then, since � is connected we can assume �′ to be connected. Thus, there exists
x0 ∈ �′ with |Dϕ(x0)| = M+m

2 and consequently distEi (Dϕ(x0)) = ρ
2 for i =

1, 2. Since �′ � �, there is no loss of generality assuming the existence of r1 =
r1(�

′, �) such that B(x0, r1) ⊂ �′. Furthermore, since 2|�E | ≥ |�| and � is
bounded there exists r2 = r2(�, n) such that B(x0, r2) ⊂ �E .

Now it follows from Proposition 2.2 that Dϕ|B(x0,r2) is Lipschitz with a con-
stant L(E, r2). Thus, there is new r3 = r3(�, �′, E) such that on B(x0, r3),
dist E (Dϕ(x)) ≥ ρ

4 . But now this implies that
∫

�

dist2
E (Dϕ) =

∫
�\�E

dist2
E (Dϕ) +

∫
�E

dist2
E (Dϕ)

≥
∫

�\�E
dist2

E (Dϕ) +
∫

B(x0,r3)

dist2
E (Dϕ)

≥
∫

�\�E
dist2

E (Dϕ)dx + c5ρ
2rn

3 ≥ c6

∫
�′

dist2
E1

(Dϕ),

where c6 = max{ c5ρ
2rn

3
M2

2 |�′| , c2
1}. The proof is concluded.

Proposition 3.2. Let �′, � and E as in Theorem 1.4. Let E ⊂ E ′. Then, there
exists a constant C8 = C8(�, �′, E ′) such that for every ϕ ∈ ME ′

n (�) there exists
ϕ�′ ∈ ME

n (�′) satisfying
∫

�′
|Dϕ − Dϕ�′ |2 ≤ C8

∫
�

dist2
E (Dϕ). (3.3)

Proof. By Theorem 1.1 and Proposition 3.1 it suffices to prove the thesis for

E = Em,M

0 < m < M < ∞.
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Let ϕ∈ME ′
n (�) and suppose that ϕ|�′ /∈ ME

n (�′). Then either max�′ |Dϕ| >

M or min�′ |Dϕ| < m. We consider the two possibilities separately.

Case max�′ |Dϕ| > M.

Let d = dist(�′, ∂�). We will deduce (3.3) from the next two claims:
There exists c1 = c1(�, �′, E) such that

(max
�′

d
2

|Dϕ| − M)2 ≤ c1

∫
�

dist2
E (Dϕ). (3.4)

There exists c2 = c2(�, �′) such that if min�′ |Dϕ| < M we have that

(max
�′

d
2

|Dϕ| − M) ≥ c2(M − min
�′ |Dϕ|). (3.5)

Let us supposed we have proved (3.4) and (3.5) and deduce the thesis from them.
Indeed, (3.4) and (3.5) imply that if x ∈ �′ and |Dϕ(x)| ≤ M , then it holds that

dist2
MSO(n)(Dϕ(x)) ≤ c3

∫
�

dist2
E (Dϕ),

with c3 = c1
c2

2
. On the other hand if |Dϕ(x)| ≥ M , then dist2

MSO(n)(Dϕ(x)) =
dist2

E (Dϕ(x)). Hence,∫
�′

dist2
MSO(n)(Dϕ) ≤ c3

∫
�

dist2
E (Dϕ) (3.6)

and thus (3.3) would follow from Theorem 1.1 with ϕ�′ = Ax where A ∈ MSO(n).
To prove the claims (3.4) and (3.5) we need further notation. Since ϕ ∈

ME ′
n (�) we have that |Dϕ(x)| = r2|x − a|−2 where r ∈ R and a ∈ R

n \ �.
Let x0 ∈ �′ be such that |Dϕ(x0)| = max�′ |Dϕ| > M and let L(t) : R → R

n

be defined by L(t) = x0 + t a−x0|a−x0| . By triangle inequality if x ∈ B(L( d
4 ), d

4 ) then
|Dϕ(x)| ≥ M . Thus for such an x

dist E (Dϕ(x)) = |Dϕ(x)| − M = dist MSO(n)(Dϕ(x)). (3.7)

Therefore we can apply Theorem 1.1 to ϕ in B(L( d
4 ), d

4 ). Together with (3.7) it
yields an Rϕ ∈ SO(n) such that∫

B(L( d
4 ), d

4 )

|Dϕ − M Rϕ|2 ≤ c4

∫
B(L( d

4 ), d
4 )

dist2
E (Dϕ). (3.8)

Since ϕ ∈ Mn(�), ϕ ∈ Mn(B(L( d
4 , 4 d

4 )). Thus, we can apply Proposition 2.2 to
obtain

‖Dϕ − M Rϕ‖L∞(B(L( d
4 ), d

4 ))
≤ C4(4)

|B(L( d
4 ), d

4 )|
∫

B(L( d
4 ), d

4 )

|Dϕ − M Rϕ|. (3.9)
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Combining (3.8), (3.9) and triangle inequality yields

(∣∣∣Dϕ

(
L

(
d

2

)) ∣∣∣ − |M Rϕ|
)2

≤ c1

∫
�

dist2
E (Dϕ), (3.10)

with c1 = c4C4(4)

|B(L( d
4 ), d

4 )| . We have obtained the desired (3.4).

For (3.5), we observe that the function f (t) = |Dϕ(L(t))| is convex and in-
creasing for t < d. Let |Dϕ(x1)| = min�′ |Dϕ(x)|. Then |Dϕ(x1)| = f (t1) where
t1 = |x1 − a| − |a − x0|. Since f (0) > M , t1 < 0 and by triangle inequality
−t1 ≤ diam(�′). Now since f is convex it holds that

f

(
d

2

)
− f (0) ≥ d

−2t1
( f (0) − f (t1)). (3.11)

Replacing f by its values, we see that (3.11) is indeed (3.5) with c2 = d
2diam(�′) .

Therefore the proof is concluded in the case max�′ |Dϕ| > M .

Case min�′ |Dϕ| < m.

By considering the inverse mapping ϕ−1 we will reduce the situation to the case
max�′ |Dϕ| ≥ M . Since ϕ ∈ ME ′

n (�) we can apply Proposition 2.1 to find a
constant s = s(E ′, �′, �) such that dist(ϕ(�′), ∂ϕ(�)) ≥ s. Hence we can argue
as in the previous case with ϕ−1 in the place of ϕ and 1

m in the place of M . We
obtain that if inf�′ |Dϕ(x)| < m, there exists c5 = c5(E, s), R ∈ SO(n) and
B ⊂ ϕ(�) \ ϕ(�′) with |B| ≥ c6sn such

∫
ϕ(�′)

∣∣∣ 1

m
R − Dϕ−1

∣∣∣2 ≤ c5

∫
B

dist2
1
m SO(n)

(Dϕ−1) (3.12)

and for all x ∈ B |Dϕ−1(x)| ≥ 1
m . Now recall that if ϕ ∈ ME ′

n (�) mn ≤ Jϕ ≤ Mn

and that for ρ ∈ R distρSO(n)(Dϕ(x)) = |ρ − |Dϕ(x)||. Therefore we can change
variables in (3.12) to obtain that

∫
�′

|m R−1 − Dϕ|2 ≤ c7

∫
ϕ−1(B)

dist2
mSO(n)(Dϕ) (3.13)

with c7 = c7(E, E ′, �′, �). We also used that |A − B| = |A||B||A−1 − B−1|.
Finally for x ∈ϕ−1(B) |Dϕ(x)|<m and hence dist2

mSO(n)(Dϕ(x))=dist2
E (Dϕ(x)).

Thus, the desired estimate
∫

�′
|m R−1 − Dϕ|2 ≤ c7

∫
ϕ−1(B)

dist2
E (Dϕ) (3.14)

follows and the proof is concluded.
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In the following example E = Em,M .

Example 3.3. There exists a sequence ϕ j ∈ Mn(B1) such that

lim
j→∞

infψ∈ME
n (B1)

∫
B1

|Dϕ j − Dψ |2∫
B1

dist2
E (Dϕ j )

= ∞.

Proof. Let ϕ = r x−λe1
|x−λe1|2 with λ and r chosen so that |Dϕ(e1)| = M and

|Dϕ(−e1)| = m where e1 = (1, 0 . . . , 0). Let us consider the sequence ϕ j =
r

x−(λ− 1
j )e1

|x−(λ− 1
j )e1|2 and set t j = |Dϕ j (e1)| − M . On one hand, we have that

∫
B1

dist2
E (Dϕ j ) ≤ t2

j |{x ∈ B1 : dist2
E (Dϕ j ) > 0}|

= t2
j |{x ∈ B1 : |Dϕ j | ≥ M}|.

(3.15)

On the other hand, let ψ ∈ ME
n (B1) and ϕ j defined as above with 1

j ≤ λ−1
2 . Then

ϕ j and ψ ∈ Mn(h B) for some h > 1, h not depending of j . Thus, Proposition 2.2
yields a constant c1 = C4(h) such that

t2
j = (|Dϕ j (e1)| − M)2 ≤ |Dϕ j (e1) − Dψ(e1)|2

≤ c1

∫
B1

|Dϕ j − Dψ |2. (3.16)

If we put (3.15) and (3.16) together, we obtain that

infψ∈ME
n (B1)

∫
B1

|Dϕ j − Dψ |2∫
B1

dist2
E (Dϕ j )

≥ c1

|x ∈ B1 : |Dϕ j | ≥ M | ,

which proves the claim.

4. Proof of Theorem 1.4 in a ball

The starting point for the proof of Theorem 1.1 in [7] is that thanks to the structure
of the set SO(n) it suffices to prove Theorem 1.1 for mappings whose components
are uniformly Lipschitz harmonic functions. We start along the same lines than in
[7] since E enjoys a nice structure as well.
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4.1. Reduction to Lipschitz mappings

Proposition 4.1. Let E ⊂ Em,M . There exists constants C9 = C9(n), C10 =
C10(M) such that if v ∈ W 1,2(B) there exists vM ∈ W 1,∞(�) such that

• ‖DvM‖L∞(B) ≤ C9 M and
• ∫

B |Dv − DvM |2 ≤ C10
∫

B dist2
E (Dv).

Proof. The appendix A.1 in [7] yields vM satisfying

• ‖DvM‖L∞(B) ≤ c1 M
• ∫

B |Dv − DvM |2 ≤ c2
∫
{x∈B:|Dv|≥2M} |Dv|2.

Since if |A| ≥ 2M , |A| ≤ 2dist E (A) we are done.

4.2. Reduction to F-harmonic mappings

As SO(n) is related to harmonic functions so is CO+(n) to n-harmonic functions.
However since the n-harmonic equation is degenerate the arguments below applied
to n-harmonic functions would yield a wrong exponent in (4.7). Instead we take
advantage of E being a compact subset of CO+(n) bounded away from 0. This
allows us to modify | · |n near 0 and ∞ constructing a function F such that F(A) =
|A|n for matrices A ∈ E but with the right growth at 0 and ∞. In this way, the
set E is related to minimizers of a variational problem

∫
�

F(Dv), where F has the
appropriate growth.

Throughout the section the n-tuple of n-vectors (A1, A2, . . . , An) stands for
the matrix with rows (A1, A2, . . . , An) and the cofactor matrix of A, (Cof(A))i j =
∂i j det(A).

Lemma 4.2. There exists a function ψ ∈ C∞(R, R) such that the function F(A) :
R

n → R defined by F(A) = ψ(|A|) belongs to C∞(Rn, R) and satisfies that
DF(A) ≤ CF (1 + |A|) and 1

CF
≤ D2 F(A) ≤ CF with CF = CF (E). Moreover,

for every A ∈ E it holds that (DF(A1), DF(Ai ), DF(An)) = Cof(A). Equiva-
lently Cof(A) = DF̃ where F̃(A) = ∑n

i=1 F(Ai ).

Proof. Let F(A) = ψ(|A|). Then a direct calculation gives that

DF(A) = ψ ′(|A|) A

|A| , D2 F(A) =ψ
′′
(|A|)

(
A

|A| ⊗ A

|A|
)

+ ψ ′(|A|)
|A|

(
I − A

|A| ⊗ A

|A|
)

.

(4.1)

If we put

ψ1(x) = n(n − 1)

(∫ x

0

∫ y

0
zn−2χ(0,M)(z) + (1 − χ(0,M)(z))Mn−2dzdy

)
,
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ψ1(x) = xnχ0,M + ((1 − χ(0,M)(x))ax2 + bx + c with a, b ≥ 0 and it satisfies the
claims of the Lemma 4.2 except in a neighborhood of the origin. Then we consider
ψ2(x) = max{(m1

2 )n−2x2, ψ1(x)}. This new function satisfies the claims but it is
not smooth. We repair this by replacing ψ2 by a smooth approximation of it in a
neighborhood of m1

2 . Let r and ε be small numbers, and ϕ ∈ C∞
0 (

m1
2 −2r, m1

2 +2r)

ϕ = 1 on (
m1
2 − r, m1

2 + r) and let ρε be an approximation of the identity. Then
setting

ψε,r = ϕ(ρε ∗ ψ2) + (1 − ϕ)ψ2

for ε and r small enough it is not hard to check that F(A) = ψε,r (|A|) satisfies all
the conditions concerning regularity in the statement of the lemma. By (4.1) the
bounds for the derivatives of F depend on the bounds for the derivatives of ϕε,r ,
which in turn depend on m and M . Hence the constant CF depends on the set E .
Concerning regularity since ψ ∈ C∞ and is quadratic near 0 the smoothness of F
follows.

Finally, if A = (A1, A2, . . . , An) ∈ CO+(n), det(A) = |A|n = |Ai |n where
|Ai | is the Euclidean norm of the vector Ai . Since for A ∈ E F(Ai ) = |Ai |n , it
holds that F̃(A) = n det(A) as well. If we differentiate both sides of this equality
we obtain that for A ∈ E DF̃(A) = (DF(A1), DF(Ai ), DF(An)) = Cof(A) as
claimed.

Set h(A) = DF̃(A) − Cof(A).

Lemma 4.3. Let v ∈ W 1,2(B, R
n). Then

v = w + z,

where z is an F-harmonic mapping in B and w ∈ W 1,2
0 (B, R

n) is such that
∫

B
|Dw|2 ≤ CF

∫
B

|h(Dv)|2.

Proof. To obtain the decomposition we solve the following system
{

Div(DF̃(Dz)) = 0 in B
z = v on ∂ B.

(4.2)

Here for a matrix valued function A(x) the operator Div(A(x)) yields an n-vector
with div(Ai (x)) as components. Thus, given that

DF̃(Dz) = (DF(Dz1), DF(Dz2), . . . , DF(Dzn))

we can express

Div(DF̃(Dz) = (div(Dz1(x)), ·, div(Dn(x)))
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and solving the system (4.2) is equivalent to solving the n scalar equations

{
div(DF(Dzi )) = 0 in B
zi = vi on ∂ B.

(4.3)

In the linear situation occurring in SO(n) where F(A) = |A|2 (4.2) is equivalent to
Div(Dw) = Div(h(Dv)) for w = v − z. In the current nonlinear situation (4.2)
means that

{
Div(A(x, Dw)) = −Div(h(Dv)) in B
w = 0 on ∂ B,

(4.4)

where A(x, ξ) = DF̃(Dv(x)−ξ)−DF̃(Dv(x)) is an A-harmonic type of operator.
From the uniform convexity of F , and the subsequent strong monotonicity of DF
it follows that

∫
B

|Dw|2 ≤ CF

∫
B
〈DF̃(Dv − Dw) − DF̃(Dv), Dw〉. (4.5)

Plugging (4.4) into (4.5) and using Hölder’s inequality we obtain

∫
B

|Dw|2 ≤ CF

∫
B

|h(Dv)|2, (4.6)

as desired.

Remark 4.4. Let v be C M-Lipschitz. Since h is uniformly Lipschitz in B(0, 2M),
we have that |h(Dv)| ≤ c1dist E (Dv) and therefore Lemma 4.3 reads as

∫
B

|Dw|2 ≤ C11

∫
B

|dist E (Dv)|2. (4.7)

In addition,

∫
B

|Dz|2 ≤
∫

B
|Dv|2 + |dist E (Dv)|2.

Now if v is C9 M-Lipschitz dist E (Dv) ≤ c2(M + m) and thus

∫
B

|Dz|2 ≤ C12,

with C11 = C11(M), C12 = C12(M).
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4.3. Compactness

In the case of SO(n) it is proved in [7] the existence of a constant C such that for
any harmonic function z, there is R ∈ SO(n) such that

‖R − Dz‖L∞(h B) ≤ C

(∫
B

dist2
SO(n)(Dz)

) 1
4

, (4.8)

for h < 1. In our setting, we do not know how to obtain this type of explicit esti-
mate. However, the regularity of F-harmonic functions allows to use a compactness

argument to prove an expression like (4.8), where (
∫

B dist2
SO(n)(Dz))

1
4 is replaced

by ρ1(
∫

B dist2
E (Dz)). Here, ρ1(ε) is an unknown increasing function that at least

converges to 0 as ε goes to 0.

Lemma 4.5. Let h < 1 and B1 the unit ball. There exists a function ρ1(ε) with
limε→0 ρ1(ε) = 0 such that for every F-harmonic mapping z there exists, ϕ ∈
ME

n (B1) satisfying

‖Dϕ − Dz‖L∞(h B1) ≤ ρ1

(∫
B1

dist2
E (Dz)

)
. (4.9)

Proof. Let

δ(z) = inf
ϕ∈ME

n (B1)
‖Dϕ − Dz‖L∞(h B1), and

ρ1(ε) = sup

{
δ(z) : z F-harmonic ,

∫
B1

dist2
E (Dz) ≤ ε

}
.

Clearly ρ1 is a positive bounded decreasing function whence limε→0 ρ1(ε) = η

exists. Let us argue by contradiction by assuming that η > 0. This means that there
exists a sequence of F-harmonic mappings {z j } such that δ(z j ) ≥ η

2 . But
∫

B1

dist2
E (Dz j ) ≤ 1

j
, (4.10)

i.e. lim j→0
∫

B1
dist2

E (Dz j ) = 0. Since E is a compact set it follows that∫
B1

|Dz j |2 ≤ c1, c1 = c1(E). Therefore there is no loss of generality assuming

that Dz j → Dϕ weakly in L2(B1) for some ϕ ∈ W 1,2(�). Furthermore, by Propo-
sition 2.5 and Ascoli-Arzela theorem Dz j converge to Dϕ uniformly on compact
subsets of B1. This together with (4.10) this yields that Dϕ ∈ E a.e.x . Given that
E is bounded, Dϕ ∈ W 1,∞(B1) and therefore, by Theorem 1.3, ϕ ∈ ME

n (B1).
Finally, Dz j → Dϕ uniformly in h B1, which contradicts that η > 0 and proves the
claim.
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4.4. Linearization and local estimate

We start this section by recalling how the geometry of CO+(n) and of Mn are
related (a detailed account of this is given in [21]). We denote the tangent plane to
CO+(n) at the identity matrix by TCO+(n). It can be seen that

A ∈ TCO+(n) ⇐⇒ A + At

2
= 1

n
Tr(A)I.

Thus,


(A) =
∣∣∣ A + At

2
− 1

n
Tr(A)I

∣∣∣
is equivalent to the distance from A to TCO+(n). It can be shown from the definition
of 
 that the set of functions {u : Du ∈ TCO+(n)} is a finite dimensional vector
space of dimension d = (n+2)(n+1)

2 . We denote it by �n . Now recall that Mn is a
Lie group isomorphic to SOo(n + 2, 1), the connected component of the classical
group SO(n + 2, 1) containing the identity. Alternatively, one can arrive to �n as
the Lie Algebra of Mn isomorphic to so(n + 2, 1) (The Lie algebra of SOo(n +
2, 1)). Let {ui }d

i=1 be a basis of �n . Then we consider the projection ��n,B1 :
W 1,p(B1) → �n defined by

f →
d∑

i=1

ui
1

|B1|
∫

B1

〈 f, ui 〉. (4.11)

We will need the following Korn type of inequality first proved by Reshetnyak [20].
We refer to [21] for an extended discussion about this type of linear operators.

Theorem 4.6 ([21, Chapter 3, Theorem 3.2]). Let 1 < p < ∞. Then There exists
a constant C13 = C13(p) such that for every function g ∈ W 1,p(B, R

n) we have
that

‖D(g) − D��n (g)‖L p(B) ≤ C13‖
(D(g))‖L p(B).

The following proposition and corollary originate from Reshetnyak’s study of the
stability of the Möbius group in terms of quasiconformality when the distortion is
close to 1 [21]. It is based on the following consideration: If a mapping g hap-
pens to satisfy that ��n (g) = 0, then Theorem 4.6 implies that ‖D(g)‖L p(B) ≤
‖
(D(g))‖L p(B). We would like to apply this argument to the mapping f − x . Of
course, ��n ( f − x), does not need to be 0. In Proposition 4.7 we use an homo-
topy argument to prove that if there exists ϕ so that ��n ( f ◦ ϕ − x) = 0. Let
us remark that for this it is not needed to control D f − I . However to replace
distTCO+(n)(A − I ) by distCO+(n)(A), it is needed that D A − I is small, and hence
we need to have control over D( f ◦ ϕ) − I . It turns out that to achieve this esti-
mate is rather involved in the quasiconformal setting [21] but it is much simpler in
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our situation. This is due to the fact that the modulus of continuity of D f can be
assumed to be bounded independently of f .

In the Corollary 4.8 we use the Taylor expansion of dist2
CO+(n) to express the

local estimate in the form needed for the next section.

Proposition 4.7. Let 0 ≤ h ≤ 1, γ1, γ2 positive constants, B = B(a, r) an arbi-
trary ball and f ∈ C1,α((1 + h)B) such that

[D f ]Cα((1+h)B) ≤ γ1r−α.

Then there exists a positive number δ1(h, γ2), a non increasing function ρ2(ε) with
limε→0 ρ2(ε) = 0 and a constant C14 such that, if

‖D f − I‖L∞((1+h)B) ≤ ε ≤ δ1

then, there exists ϕ ∈ Mn(2B) satisfying the next three properties:

1. ‖D( f ◦ ϕ − x)‖L2(B) ≤ C14‖
(D( f ◦ ϕ − x))‖L2(B),

2. ‖D( f ◦ ϕ − x)‖L∞(B) ≤ ρ2(ε) and

3. ‖ϕ − x‖W 1,∞(2B) ≤ rγ2.

The function ρ2 depends on the modulus of continuity of D f and C14 = C13(2),
where C13 was introduced in Theorem 4.6.

Proof. Since both the assumptions and the claim depend on D f , there is no loss of
generality assuming that f (0) = 0. We can also assume that B = B1. The case of
an arbitrary ball follows by composing with similarities.

For every continuous mapping we define � f : �n → �n by u → ��n ( f ◦
ϕu − x) where ��n = ��n,B1 is the projection from W 1,p(B1, Rn) → �n defined
in (4.11) and ϕu = exp(u). Here exp is the exponential mapping from �n to Mn
(Observe that using the isomorphism between Mn and SOo(n+2, 1) it is not hard to
obtain an explicit expression of exp. Denoting by F the isomorphism between Mn
and SOo(n+2, 1), exp(u) = F−1(exp(d F(u)), where exp is the matrix exponential
in Mn+2×n+2). The following properties of the exponential will be useful:

a) Let us declare M(s) = max{‖ϕu(x) − x‖W 1,∞(2B) : u ∈ B(0, s) ⊂ �n}. Then,
since all the topologies in Mn are the same,

lim
s→0

M(s) = 0. (4.12)

b) Let us state � = �I . One of the properties defining the exponential mapping is
that d

dt ϕtu(x)|0 = u(x). It is easy to see that this implies that for any

h ∈ �n, �′(0)h = h.

Hence, the inverse function theorem tells us that there exists s0 > 0 such that �

maps B(0, s0) homeomorphically into �n . In particular, deg�(0, B(0, s0)), the
topological degree of � at zero in B(0, s0), is 1.



576 DANIEL FARACO AND XIAO ZHONG

Due to (4.12) we can assume without loss of generality that

M(s0) ≤ γ2. (4.13)

Let s ≤ s0, then we have that

|� f (u) − �(u)||B(0,s) =|��n ( f ◦ ϕu − ϕu)|
≤‖��n ‖‖ϕu |D f − I |‖L∞((1+h)B) ≤ c1ε,

(4.14)

where ‖‖ stands for the operator norm of ��n and

c1 = ‖��n ‖ max
x∈B,u∈B(0,s0)

|ϕu(x)|. (4.15)

By (4.13) we have that c1 ≤ ‖��n ‖(1 + M(s0)) ≤ ‖��n ‖(1 + γ2).

Let us declare

m(s) = min
∂ B(0,s)

|�(u)|.

Since � is an homeomorphism in B(0, s0) and �(0) = 0 we have that 0 < m(s)
for every r < s0. Moreover, since ϕu → x uniformly

lim
s→0

m(s) = 0. (4.16)

Then we define sε by

sε = inf{s : m(s) ≥ c1ε + ε},
where c1 is defined in (4.15). Then, (4.16) implies that

lim
ε→0

sε → 0. (4.17)

Now, the definition of sε and (4.14) yield that if sε ≤ s0, then

t� + (1 − t)� f (u) �= 0 for u ∈ ∂ B(0, sε). (4.18)

Thus, deg(0, B(0, sε)) remains constant through the homotopy (see for example
[11, chapter 14]).

Let us declare δ1 = m(s0)
c1+1 . If ε<δ1, then sε <s0 and thus, deg� f (0, B(0, sε)) =

deg�(0, B(0, sε)) = 1. Therefore, there exists u ∈ B(0, sε) such that � f (u) = 0.
When we apply Theorem 4.6 to f ◦ ϕu − x , (1) follows.

To prove (2) we observe that

|D( f ◦ ϕu(x)) − I | ≤ |D f (x) − I | + |D f (x)||Dϕu(x) − I |
+ |Dϕu(x)||D f (ϕu(x)) − D f (x)|.

By definition we have that |D f (x) − I | ≤ ε, that |Dϕu(x) − I | ≤ M(sε) and that
|ϕu(x) − x | ≤ M(sε). Hence, using the Hölder regularity of D f we obtain that

|D( f ◦ ϕu(x) − x)| ≤ ε + (1 + ε)M(sε) + γ1((1 + M(sε))M(sε)
α) = ρ2(ε).

Finally, (4.17) and (4.12) imply that limε→0 ρ2(ε) = 0 as desired. The proposition
is proved since M(s0) ≤ γ2 by (4.13), which yields (3).
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Corollary 4.8 (Local estimate). Let 0 < h ≤ 1, γ1, γ2 > 0 and B(a, r) a ball.
Then there exists δ2 = δ2(h, γ1, γ2, α) and C15 such that if f satisfies

1. [D f ]Cα((1+h)B) ≤ γ1r−α and

2. ‖D f − I‖L∞((1+h)B) ≤ δ,

then there exists ϕ ∈ Mn(2B) with ‖ϕ(x) − x‖W 1,∞(2B) ≤ rγ2 and

∫
B

|D( f ◦ ϕ) − I |2 ≤ C15

∫
B

dist2
CO+(n)(D( f ◦ ϕ)).

Proof. The corollary is proved by plugging the results from the previous proposi-
tion into the Taylor expansion of distCO+(n). By Taylor we have that

|dist2
CO+(n)(A)| = c1|
(A − I )|2 + O(|A − I |4).

Therefore,

|
(A − I )|2 ≤ c2|dist2
CO+(n)(A)| + O(|A − I |4). (4.19)

We first require that δ2 ≤ δ1 to apply Proposition 4.7 to the mapping f and find
the desired ϕ. Using Proposition 4.7 (1), putting A = D( f ◦ ϕ) in (4.19), and
rearranging the resulting expression yield

∫
B

|D( f ◦ ϕ) − I |2 ≤ c3

∫
B

dist2
CO+(n)(D( f ◦ ϕ))

+ c4

∫
B

|D( f ◦ ϕ) − I |4.
(4.20)

We finally impose that δ also satisfies c4ρ
4
2(δ) ≤ 1

2ρ2
2(δ). Then Proposition 4.7

(2) implies that c4|D( f ◦ ϕ) − I |4 ≤ 1
2 |D(z ◦ ϕ) − I |2. Hence, we can absorb

c4
∫

B |D( f ◦ ϕ) − I |4 to the left hand side to conclude that

∫
B

|D( f ◦ ϕ − I )|2 ≤ c5

∫
B

dist2
CO+(n)(D( f ◦ ϕ)), (4.21)

as desired.

4.5. Theorem 1.4 in a ball

In this section we put together all the information obtained before to obtain the
Theorem 1.4 in a ball. We state it as a separate proposition for later uses.
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Proposition 4.9. Let E ⊂ CO+(n) be compact, finitely connected with

SO(n)E = E,

and 0 /∈ E. Let B a ball. Then there exists a constant C16 = C16(E) such that for
any v ∈ W 1,2(4B, R

n) there exists ϕ ∈ ME
n (B, R

n) such that
∫

B
|Dϕ − Dv|2 ≤ C16

∫
4B

dist2
E (Dv). (4.22)

The sketch of the proof is the following: Let

ε =
∫

4B
dist2

E (Dv).

Using Subsections 4.1, 4.2 one finds that it is enough to prove the proposition for
z an F-harmonic mapping such that Dz is uniformly Hölder in B ′ ⊂ 4B. Next
section 4.3 yields ϕ1 ∈ ME

n (4B) such that

‖Dϕ1 − Dz‖L∞(B′) ≤ ρ1(ε).

Then, changing variables with ϕ1 we discover that the mapping f = z ◦ϕ−1
1 fulfills

the condition required in Corollary 4.8, the local estimate, in a ball B ′′ ⊂ ϕ1(B ′).
Therefore Corollary 4.8 yields ϕ2 such that

∫
B′′′

|D(z ◦ ϕ−1
1 ◦ ϕ2) − I |2 ≤ C

∫
B′′′

dist2
CO+(n)(Dz ◦ ϕ−1

1 ◦ ϕ2). (4.23)

where B ′′′ ⊂ B ′′. Setting ϕ3 = ϕ−1
2 ◦ ϕ1, we can change variables by ϕ3 finding

that ∫
2B

|Dz − Dϕ3|2 ≤ C
∫

4B
dist2

CO+(n)(Dz). (4.24)

where 2B ⊂ ϕ−1
3 (B ′′′). The existence of the balls B ′, B ′′, B ′′′ fulfilling the proper-

ties used above is essentially a consequence of the Lemma 2.1.
Finally, since ϕ3 might be in Mn(2B)\ME

n (B) we use Proposition 3.2 to find
ϕ4 ∈ ME

n (B) such that
∫

B
|Dϕ3 − Dϕ4|2 ≤ C

∫
4B

dist2
CO+(n)(Dϕ3).

From here, the proof is concluded by reiterative use of triangle inequality.
We now give the detailed argument.

Proof of Proposition 4.9. By a change of variables with a similarity it is enough
to prove the estimate in B1 ⊂ 4B1. We start by using the Lemma 2.1 to select
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the appropriate balls. Let 0 < h0, h1, h2 < 1 be such for any ϕ ∈ ME
n (4B) the

following inclusions hold:

ϕ(2B) ⊂ h0ϕ(4B), (h0 + 3h1)ϕ(4B) ⊂ ϕ(4B) and

(h0 + 2h1)ϕ(4B) ⊂ ϕ(h24B).
(4.25)

Next, we reduce to a smooth mapping. Firstly we apply Proposition 4.1 to v in 4B
to obtain a C9 M Lipschitz mapping vM . We prove Proposition 4.9 for vM . By the
Lipschitz bound we have that

∫
B

|DvM − m|2 ≤ c1,

c1 = c1(E). Hence we can assume that
∫

4B
dist E (DvM )2 ≤ ε0, (4.26)

for 0 < ε0 to be determined later. For mappings vM such that (4.26) does not hold,
(4.22) is fulfilled with ϕ(x) = mx and C16 = 1

ε0
c1.

Let z be the F-harmonic mapping obtained by applying Lemma 4.3 to vM in
4B. Since

∫
4B |Dz|2 ≤ C12 by Remark 4.4, Proposition 2.5 yields that for any

h < 1

[Dz]Cα(h4B) ≤ c2, (4.27)

with c2 = c2(C6, C12, h). Furthermore, the inequality dist2
E (M1)≤ c3(dist2

E (M1 +
M2) + |M2|2), (4.7) and (4.26) imply that

∫
4B

dist2
E (Dz) ≤ c4ε0.

Next, we apply Lemma 4.5 to find the existence of ϕ1 ∈ ME
n (4B) such that

‖Dz − Dϕ1‖L∞(h24B) ≤ ρ1(ε), (4.28)

where ε = ∫
4B dist2

E (Dz).
We want to translate these estimates to the domain ϕ1(4B). It follows from

Lemma 2.1 that

c5 < |ϕ1(4B)| ≤ c6, (4.29)

c5 = c5(E), c6 = c6(E). Define r1 > 0 by,

|B(0, 1)|rn
1 = c6 (4.30)

to guarantee that diam(ϕ1(4B)) ≤ 2r1.
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Using that ϕ ∈ ME
n (4B) we deduce

‖D(z ◦ ϕ−1
1 ) − I‖L∞(ϕ1(h24B))

≤ ‖Dϕ−1
1 ‖L∞((ϕ1(h24B))‖Dz − Dϕ1‖L∞(h24B)

≤ 1

m
ρ1(ε).

(4.31)

In addition, by (4.27) we have

Cα(ϕ1(h24B)) ≤ ‖Dϕ−1
1 ‖L∞((ϕ1(h24B))[Dz]Cα(h24B)

≤ c7

m
,

with c7 = c7(h2, M). Furthermore, by Lemma 2.1, Proposition 2.2 and (4.29),
Dϕ−1

1 is uniformly continuous in ϕ1(h24B). Hence, there exists c8 = c8(h2, E)

such that

[D(z ◦ ϕ−1
1 )]Cα(ϕ1(h24B))) ≤ c8 ≤ c9r−α

1 (4.32)

by (4.30).
Since by (4.25) (h0 + 2h1)ϕ1(4B) ⊂ ϕ1(h24B)), we intend to apply Corol-

lary 4.8 with B = (h0 + h1)ϕ1(4B), f = z ◦ ϕ1, h = h1 γ1 = c9 and γ2 = h1
r1

.
Now, by (4.26) we can impose for ε0 that ρ1(ε0) ≤ mδ(E, h1). Thus, (4.31) and
(4.32) imply that all the requirements of Corollary 4.8 are fulfilled. Hence, we are
provided with ϕ2 ∈ Mn such that

∫
(h0+h1)ϕ1(4B)

|D(z ◦ ϕ−1
1 ◦ ϕ2) − I |2

≤ c10

∫
(h0+h1)ϕ1(4B)

dist2
CO+(n)(Dz ◦ ϕ−1

1 ◦ ϕ2).

(4.33)

with c10 = C15. Let ϕ3 = ϕ−1
2 ◦ϕ1. By Proposition 4.7 (3) and our choice of γ2 we

have

‖ϕ2 − x‖W 1,∞((h0+h1)ϕ1(4B)) ≤ h1. (4.34)

In addition, ϕ1 ∈ ME
n (h24B). It follows that ϕ−1

3 = ϕ−1
1 ◦ ϕ2 ∈ ME ′

n ((h0 +
h1)ϕ(4B)) for some E ′= E ′(E). Therefore, there exist constants c11=c11(E),c12 =
c12(E) such that

c11 J
ϕ−1

3
(x) =c11|Dϕ−1

3 (x)|n ≤ |Dϕ−1
3 (x)|2

≤c12|Dϕ−1
3 (x)|n = c12 J

ϕ−1
3

(x).
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Hence if we change variables in (4.33) by ϕ−1
3 we obtain

∫
ϕ−1

3 ((h0+h1)ϕ1(4B))

|Dz − Dϕ3|2 ≤ c13

∫
ϕ−1

3 ((h0+h1)ϕ1(4B))

dist2
CO+(n)(Dz)

where c13 = c(c11, c12). Now we investigate what is ϕ−1
3 ((h0 + h1)ϕ1(4B)). By

(4.34) we have that

h0ϕ1(4B) ⊂ ϕ2((h0 + h1)ϕ1(4B)) ⊂ (h0 + 2h1)ϕ1(4B).

On the other hand, ϕ1 ∈ ME
n (4B) so (4.25) implies that

2B ⊂ ϕ−1
1 (h0ϕ1(4B)) ⊂ ϕ−1

3 ((h0 + h1)ϕ(4B)) ⊂ 4B.

Thus, ∫
2B

|Dz − Dϕ3|2 ≤ c13

∫
4B

dist2
CO+(n)(D(z)) (4.35)

as desired.
The last obstruction is that ϕ3 = ϕ−1

2 ◦ ϕ1 is not necessarily in ME
n (2B)

due to ϕ−1
2 . However (4.34) implies that ϕ3 ∈ ME ′

n (2B) for E ′ depending on E .
Since dist2

E (Dϕ3) ≤ dist2
E (Dz) + |Dz − Dϕ3|2 we can apply Lemma 3.2 to find

ϕ ∈ ME
n (B) such that

∫
B

|Dϕ − Dz|2 ≤
∫

B
|Dϕ − Dϕ3|2 + |Dz − Dϕ3|2

≤ c14

∫
4B

dist2
E (Dz),

(4.36)

where c14 = 2c13 + C8.
Lastly, we translate the estimate from z to v. We have that,

∫
B

|Dv − Dϕ4|2 ≤C
∫

B
|Dv − DvM |2

+
∫

B
|DvM − Dz|2 +

∫
B

|Dz − Dϕ4|2.
(4.37)

Therefore, using again that dist2
E (A) ≤ dist2

E (B) + |A − B|2 for A, B ∈ Mn×n

together with Proposition 4.1, Remark 4.4 and the estimate (4.36) we can conclude
that ∫

B
|Dv − Dϕ4|2 ≤ c15

∫
4B

dist2
E (Dv), (4.38)

where c15 = c15(C10, CF , c14). �
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5. Proof of Theorem 1.4

The arguments in Section 4 can be modified to be applied to a compact set �′
instead of a ball, but several technical problems arise. Therefore, we have preferred
to keep Section 4 simple and prove Theorem 1.4 for a generic compact set by a
covering argument. The idea is as follows: We can suppose that the compact set �′
is a finite union of overlapping balls {Bi }. Therefore we can apply Proposition 4.9
to each Bi . This yields a family of Möbius transforms {ϕi } such that Dϕi is close
to Dv in Bi . This implies that if we take two balls Bi , B j Dϕi is close to Dϕ j in
Bi ∩ B j . The fundamental property of Möbius mappings used here is Lemma 2.3.
Lemma 2.3 says that if we choose the parameters correctly, Dϕ j is close to Dϕi

not only in Bi ∩ B j but in the whole of �′. Therefore if we choose a ball B0, Dϕ0
is close to Dϕi for any Bi such that Bi intersects B0. Moreover, given an arbitrary
ball B ′ we can link it with B0 by a finite chain of pairwise intersecting balls. It is
not hard to see that it follows that the Möbius map ϕ′ corresponding to B ′ is close
to ϕ0 in �′ as well. Therefore all the ϕi are close to each other in �′ and hence any
of them is close to v in the whole �′. The following proposition shows that this can
be made rigorous.

Proposition 5.1. Let �′ � � ⊂ R
n with � connected. Then there exists a constant

C17 = C17(E, �′, �) and E ′ ⊂ CO+(n), E ′ depending on �′ and E,such that for
any v ∈ W 1,2(�, R

n) there exists ϕ ∈ ME ′
n (�) such that

∫
�′

|Dϕ − Dv|2 ≤ C17

∫
�

dist2
E (Dv). (5.1)

Proof. Firstly, we observe that it is enough to prove the estimate assuming that

∫
�

dist2
E (Dv) ≤ ε0 (5.2)

as in the proof of Proposition 4.9.
Let r = dist(�′, �). Since �′ is compact there exists a family of balls

{B(xi ,
r
16 )}n

i=1 such that �′ ⊂ ∪n
i=1 B(xi ,

r
16 ) with n = n(�′). Since �′ can be as-

sumed to be connected for each xi there exist x ′
i , yi such that B(yi ,

r
16 ) ⊂ B(xi ,

r
8 )∩

B(x ′
i ,

r
8 ). We set Bi = B(xi ,

r
8 ). Then �′ ⊂ ∪n

i=1 Bi and 8Bi ⊂ �. In addition
given any two balls B0, B ′ ∈ {Bi }n

i=1 there exist two chains of balls {B j }m
j=1 ⊂

{Bi }n
i=1 and, {Pj }m

j=1 such that B1 = B0, Bm = B ′, 2Pj ⊂ 2B j ∩ 2B j+1 and
|Pj | ≥ crn .

We apply Proposition 4.22 to 2B0 to find the existence of ϕ0 ∈ ME
n (2B0)

such that
∫

2B0
|Dv − Dϕ0|2 ≤ c1

∫
8B0

dist2
E (Dv),
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c1 = C16. We plan to show that ϕ0 ∈ ME
n (�′) and that∫

B′
|Dv − Dϕ0|2 ≤ c2

∫
�

dist2
E (Dv). (5.3)

Clearly, the thesis follows from (5.3) since B ′ ∈ {Bi }n
i=1 was arbitrary.

Application of Proposition 4.22 in each of the balls 2B j , yields ϕ j ∈ ME
n (B j )

such that ∫
2B j

|Dv − Dϕ j |2 ≤
∫

�

dist2
E (Dv). (5.4)

Then it is easy to see that proving (5.3) is equivalent to proving that∫
B′

|Dϕ j − Dϕ j−1|2 ≤ c1

∫
�

dist2
E (Dv), (5.5)

for every j = 1 . . . m.
Set θ j = ϕ−1

j−1 ◦ ϕ j . Then (5.4) and Proposition 2.2 imply that for x ∈ Pj

max
�′ {|Dθ j (x) − I |, |Dθ−1

j (x) − I |} ≤ c3|Dϕ j − Dϕ j−1|2

≤ c4

∫
�

dist2
E (Dv)

(5.6)

where in the first inequality we have used that ϕ j , ϕ j−1 ∈ ME
n (Pj ).

Let h = h(�′, �) be such that for every B, B̃ ∈ {Bi }n
i=1 2B ⊂ h B̃. Let α(h)

be given by Lemma 2.3. Then we firstly imposed that ε0c4 ≤ α(h). Thus, by (5.6)
and Lemma 2.3 we have that for x ∈ B ′

|Dθ j (x) − I |2 ≤ c5

∫
�

dist2
E (Dv), x ∈ B ′, (5.7)

where c5 = C5c4, C5 being defined in Lemma 2.3. To estimate |Dϕ j − Dϕ j−1| by
c6|Dθ j (x) − I | with c6 = c6(E) it is enough that ϕ j , ϕ j−1 ∈ ME ′

n (�′) for a set
E ′ depending only on E . To achieve this we further require that ε0C5 ≤ 1

diam(�)2n ,
This yields,

max{|ϕ−1
j−1 ◦ ϕ j (x) − x |, |ϕ−1

j ◦ ϕ j−1(x) − x |} <
1

4n
.

Therefore, ϕ j ((
3
2 − 1

4n )B ′)) ⊂ ϕ j−1(
3
2 B ′) ⊂ ϕ j ((

3
2 + 1

4n )B ′)). Thus, for every j

ϕm( 5
4 B ′) ⊂ ϕ j (

3
2 (B ′)) ⊂ ϕm(2B ′). In particular this means that ϕi are finite in

( 3
2 B ′). Proposition 2.2 implies that for all x in B ′

|Dϕ j (x)| ≤ c6

|B ′|
∫

B′
|Dϕ| ≤ c6(

|ϕ j (B ′)|
|B ′| )

1
n

≤ c6(
|ϕm(2B ′)|

|B ′| )
1
n ≤ c7.



584 DANIEL FARACO AND XIAO ZHONG

where c6 = C4, C4 being from Proposition 2.2 and c7 = 2Mc6. We use here that
ϕm ∈ ME

n (2B ′). We can argue similarly for ϕ−1
j obtaining that ϕ j ∈ ME ′

n (B ′) as
desired. Then, (5.3) follows from (5.7). The Proposition is proved.

Finally, Theorem 1.4 (i) is proved by Proposition 5.1 and Proposition 3.2. The-
orem 1.4 (ii) is proved combining Example 3.3 and Theorem 1.1. �
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[21] J. G. REŠETNJAK, “Stability Theorems in Geometry and Analysis”, Mathematics and its
Applications, Vol. 304, Kluwer Academic Publishers Group, Dordrecht, 1994. Translated
from the 1982 Russian original by N. S. Dairbekov and V. N. Dyatlov, and revised by the
author, Translation edited and with a foreword by S. S. Kutateladze.

Departamento de Matematicas
Universidad Autónoma de Madrid
28049 Madrid, Spain
daniel.faraco@uam.es

Department of Mathematics
and Statistics
University of Jyväskylä
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