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Hölder continuity of !-minimizers of functionals
with generalized Orlicz growth

PETTERI HARJULEHTO, PETER HÄSTÖ AND MIKYOUNG LEE

Abstract. We show local Hölder continuity of quasiminimizers of function-
als with non-standard (Musielak–Orlicz) growth. Compared with previous re-
sults, we cover more general minimizing functionals and need fewer assumptions.
We prove Harnack’s inequality and a Morrey type estimate for quasiminimizers.
Combining this with Ekeland’s variational principle, we obtain local Hölder con-
tinuity for !-minimizers.

Mathematics Subject Classification (2010): 35B65 (primary); 35J60, 35A15,
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1. Introduction

Generalized Orlicz spaces have recently attracted increasing intensity (cf. Section 3).
The results have also been applied to the study of differential equations with non-
standard growth (e.g., [16,37,40,41,45]). In [43], the first two authors and Toivanen
gave the first proof of Harnack’s inequality for solutions under generalized Orlicz
growth. We start this paper giving a more sophisticated proof of this inequality,
with better dependence of the constants on the structure of the equation. In contrast
the the earlier result, this improved Harnack inequality can be applied to prove the
Hölder continuity of !-minimzers, which is the second part of this paper.

In the fields of partial differential equations and the calculus of variations, there
has been much research on non-standard growth problems (e.g., [1, 2, 12, 52, 53]),
such as the non-autonomous minimization problem

min
v2W 1,1

Z

�
F(x,rv) dx ,

where F satisfies (p, q)-growth conditions, that is, |⇠ |p� 1. F(x, ⇠) . |⇠ |q + 1,
q> p. Zhikov [69, 70] considered special cases as models of anisotropic materials
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and the so-called Lavrentiev phenomenon. In [70], he proposed model problems
including

F(x, ⇠) ⇡ |⇠ |p(x), 1 < inf p  sup p < 1,

and
F(x, ⇠) ⇡ |⇠ |p + a(x)|⇠ |q , 1 < p 6 q < 1, a > 0. (1.1)

For the first, so-called variable exponent case, the exponent of |⇠ | is a function
of the x-variable which is usually assumed to be log-Hölder continuous, and it
describes various phenomena, for example electrorheological fluids [65] and image
restoration [17,42], with growth continuously changing with respect to the position.
The second, so-called double phase case describes for instance composite materials
or mixtures. Here, a discontinuous phase transition occurs on the border between
constituent materials. In a series of papers, Baroni, Colombo and Mingione [7,
9, 19–21] have studied regularity properties of minimizers of these problems, see
also [11, 13, 30–32, 60, 68]. Cupini, Passarelli di Napoli and co-authors [18, 24]
have considered the variant of the double phase functional

F(x, ⇠) = (|⇠ | � 1)p+ + a(x)(|⇠ | � 1)q+ (1.2)

with (s)+ := max{s, 0}, which is degenerate for small positive values of the gradi-
ent (see also [39, Section 7.2] on how this functional fits into the generalized Orlicz
framework). Furthermore, minimizers of borderline functionals like

F(x, ⇠) = |⇠ |p(x) log(e + |⇠ |) and F(x, ⇠) = |⇠ |p + a(x)|⇠ |p log(e + |⇠ |)

have been recently studied, see for instance [8, 11, 33, 57–59]. We stress that all of
these special cases are covered by the results in this paper (cf. [39, Section 7.2]).
In many cases the results of this paper are new even in the special cases.

The notion of an !-minimizer, sometimes called almost minimizer, was in-
troduced by Anzellotti [5], and an analogous notion was originally given by Alm-
gren [4] in the context of geometric measure theory. It was motivated by the fact
that minimizers of constrained problems can turn out to be !-minimizers of un-
constrained problems. For instance, minimizers of energy functionals with volume
constraints or obstacles are !-minimizers, where the function ! is determined by
the properties of the constraint [5, 26]. In this regard, the notion of an !-minimizer
is useful and has been widely studied in the calculus of variations.

Regularity theory for minimizers has been extended to !-minimizers under
suitable decay conditions on the function ! in for instance [5, 26, 36, 48], see
also [54] for a survey. In particular, Hölder continuity of !-minimizers was es-
tablished by Dolcini–Esposito–Fusco [27] in the standard p-growth case and later
by Esposito–Mingione [28] in more general cases. Recently, it was also proved in
double phase and Orlicz growth cases by Ok [60].1

1 This paper contains some problems in the proofs. With the assistance of Jihoon Ok, we have
managed to circumvent these problems.
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We prove an extension of these results to the generalized Orlicz growth case.
Our energy functional is given by

F(u,�) :=
Z

�
F(x, u,ru) dx, (1.3)

where F : �⇥ R ⇥ Rn ! R satisfies

⌫ '(x, |z|)  F(x, t, z)  N
�
'(x, |z|) +3

�
(1.4)

for some 0 < ⌫  N and 3 > 0. The exact definitions of the conditions in the fol-
lowing result are given in the next section; roughly, (A0) restricts us to unweighted
situations, (A1) and (A1-n) are subtle continuity conditions and (aInc) and (aDec)1
exclude L1- and L1-type behavior, respectively.

Theorem 1.1. Let � ⇢ Rn be a domain and ' 2 8w(�) satisfy (A0), (aInc) and
(aDec)1. Let u 2 W 1,'

loc (�) be an !-minimizer of F and (t, z) ! F(x, t, z) be
continuous. Assume that ' satisfies (A1), or that u is bounded and ' satisfies (A1-
n). Then u is locally Hölder continuous.

The proof of this result is based on the variational technique described in [27, 35].
The key idea is to find a quasiminimizer w 2 u + W 1,'

0 (Qr ) of the functional
Z

Qr

'(x, |rw|) +3 dx,

which is comparable to our original !-minimizer u of F , by applying Ekeland’s
variational principle with estimates depending on the constant 3. From Harnack’s
inequality (Theorem 4.1), it can be proved that the gradient of the quasiminimizer
w satisfies Morrey-type decay estimates (Section 7). A challenge compared to the
classical case is that the constant in Harnack’s inequality depends on 3u and hence
on u. However, we show that the natural bound3u  |Qr |�1 is sufficient to control
the constant. Therefore, using the Morrey-type decay estimates, we can derive
similar decay estimates of ru, which implies Hölder continuity of u (Section 8). A
further challenge worth mentioning is that moving between !-minimizers of ' and
' +3 is not possible, so for this case we need to work directly with the condition
(aDec)1.

For the case (A1-n) (with u bounded) we need to consider an alternative notion
of minimizer called weak quasiminimizer (cf. Definition 4.2), since we cannot oth-
erwise guarantee boundedness of the quasiminimizer w discovered by the Ekeland
variational principle. This technique is adapted from [60].

ACKNOWLEDGEMENTS. We thank Arttu Karppinen for comments and Jihoon Ok
for pointing out some flaws in our arguments and helping solve them. We also thank
the referee for comments.
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2. Generalized 8-functions

By� ⇢ Rn we denote a bounded domain, i.e., an open and connected set. By p0 :=
p

p�1 we denote the Hölder conjugate exponent of p 2 [1,1]. The notation f . g
means that there exists a constant C > 0 such that f  Cg. The notation f ⇡ g
means that f . g . f whereas f ' g means that f (t/C)  g(t)  f (Ct) for
some constant C > 1. By c we denote a generic constant whose value may change
between appearances. A function f is almost increasing if there exists L > 1 such
that f (s)  L f (t) for all s  t (more precisely, L-almost increasing). Almost
decreasing is defined analogously. By increasing we mean that the inequality holds
for L = 1 (some call this non-decreasing), similarly for decreasing.
Definition 2.1. We say that ' : � ⇥ [0,1) ! [0,1] is a 8-prefunction if the
following hold:

(i) For every t 2 [0,1) the function x 7! '(x, t) is measurable;
(ii) For every x 2 � the function t 7! '(x, t) is increasing;
(iii) lim

t!0+
'(x, t) = '(x, 0) = 0 and lim

t!1
'(x, t) = 1 for every x 2 �.

A 8-prefunction is a weak 8-function, denoted by ' 2 8w(�), if the following
hold:

(iv) The function t 7! '(x,t)
t is L-almost increasing in (0,1) for every x 2 �;

(v) The function t 7! '(x, t) is left-continuous for every x 2 �.

Since our weak 8-functions are not bijections, they are not strictly speaking
invertible. However, by '�1(x, ·) : [0,1) ! [0,1] we denote the left-inverse
of ':

'�1(x, ⌧ ) := inf{t > 0 : '(x, t) > ⌧ }.

If ' is strictly increasing, then this is just the normal inverse function, but that is not
a convenient assumption for us. Let ' 2 8w(�). We say that ' satisfies

(A0) If there exists � 2 (0, 1] such that �  '�1(x, 1)  1
� for a.e. x 2 �, or

equivalently there exists � 2 (0, 1] such that '(x,�)  1  '(x, 1� ) for
a.e. x 2 � (see [39, Corollary 3.7.4]);

(A1) If there exists � 2 (0, 1) such that, for every ball B and a.e. x, y 2 B\�,

�'�1(x, t)  '�1(y, t) when t 2


1,

1
|B|

�
;

(A1-n) If there exists � 2 (0, 1) such that, for every ball B and a.e. x, y 2 B\�,

'(x,�t)  '(y, t) when t 2


1,

1
|B|1/n

�
;
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(aInc)p If t 7! '(x,t)
t p is L-almost increasing in (0,1) for some L > 1 and a.e.

x 2 �;
(aDec)q If t 7! '(x,t)

tq is L-almost decreasing in (0,1) for some L > 1 and a.e.
x 2 �;

(aDec)1q If t 7! '(x,t)+1
tq is L-almost decreasing in (0,1) for some L > 1 and

a.e. x 2 �.

Moreover we say that ' satisfies (aInc), (aDec) or (aDec)1 if it satisfies (aInc)p,
(aDec)q or (aDec)1q , respectively, for some p > 1 or q < 1. The condition
(aDec)1q intuitively means that t 7! '(x,t)

tq is almost increasing for t > T for some
constant T > 0.

If ' satisfies (aDec), then

'�1(x,'(x, t)) ⇡ '(x,'�1(x, t)) ⇡ t. (2.1)

The growth of the inverse is closely tied to that of the function: ' satisfies (aInc)p
or (aDec)q if and only if '�1 satisfies (aDec) 1

p
or (aInc) 1

q
, respectively. For the

proofs of these facts, see [39, Section 2.3].
By [39, Proposition 4.1.5], (A1) implies that there exists � 2 (0, 1) such that

'(x,�t)  '(y, t) when '(y, t) 2
h
1, 1

|B|

i

for almost every x, y 2 B \ � and every ball B with |B|  1. Furthermore, if
' 2 8w, then '(·, 1) ⇡ 1 implies (A0), and if ' satisfies (aDec), then (A0) and
'(·, 1) ⇡ 1 are equivalent. In addition, when (aDec) holds we can multiply by
constants in the range: [a, b

|B| ], a, b > 0.
The next lemma shows how we can use a trick to upgrade (aDec)1 to (aDec)

while preserving many other properties.

Lemma 2.2. Let ' 2 8w(�) and define  (x, t) := '(x, t) + t . Then  2 8w(�).
Moreover,

(a) If ' satisfies (A0), then '   . ' + 1 and  satisfies (A0);
(b) If ' satisfies (aDec)1q and (A0), then  satisfies (aDec)q ;
(c) If ' satisfies (A1), then  satisfies (A1);
(d) If ' satisfies (A1-n), then  satisfies (A1-n).

Proof. Checking the properties in Definition 2.1, we find that  2 8w(�).
(a) The inequality '   is immediate. Let ' satisfy (A0) and assume first that
t > 1

� . Then we obtain by (A0) and (aInc)1 that

 (x, t) = '(x, t)+ t  '(x, t)+'
�
x, 1�

�
t  '(x, t)+ L

� '(x, t) =
�
1+ L

�

�
'(x, t).

If t  1
� , then (x, t)  '(x, t)+ 1

�  (1+ 1
� )('(x, t)+1). From the inequalities it

follows that  (x,�) . '(x,�)+ 1  2 and  (x, 1� ) > 1, and hence (A0) follows.
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(b) Let us then assume that ' satisfies (aDec)1q and (A0). If t > s > �, then by
(aDec)q

 (x, t)
tq

.
'(x, t) + 1

tq
.
'(x, s) + 1

sq
.
 (x, s)
sq

.

Let then 0 < t  �. By (aInc)1 and (A0),  (x, t) ⇡ t , so (aDec)q is clear in this
range. The case s  �  t follows by combining the previous cases.
(c) From the definition of left-inverse we directly see that  �1(x, t) ⇡
min{'�1(x, t), t}. Thus we obtain by (A1) of ' for t 2

⇥
1, 1

|B|

⇤
that

 �1(x, t) ⇡ min{'�1(x, t), t} . min{'�1(y, t), t} ⇡  �1(y, t).

(d) Let t 2
⇥
1, 1

|B|1/n
⇤
. By (A1-n) of ' we obtain

 (x,�t) = '(x,�t) + �t  '(y, t) + t =  (y, t).

The Krylov–Safonov lemma used in the proof of Harnack’s inequality works
only for cubes, whereas (A1) and (A1-n)-conditions have been defined with balls.
However, a given cube Q can be covered by a finite number, depending only on n,
of balls Bi with |Bi | = |Q|, and so the (A1) or (A1-n) inequalities can be obtained
in Q by considering a chain of balls.

When '�
B (t)  1

|B| we will often use that (A0), (A1) and (aDec) imply

'+
B (t) . '�

B (t) + 1.

Let us here give the details. If '�
B (t) 2 [1, 1

|B| ], then the inequality holds (without
the +1) by (A1) and (aDec). If '�

B (t)  1, we instead use '+
B (t)  '+

B (1) . 1 by
(A0) and (aDec). Using same arguments we obtain the corresponding estimate for
(A1-n).

3. Generalized Orlicz spaces

Generalized Orlicz spaces, also called Musielak–Orlicz spaces, have been actively
studied over a long time. The basic example of a generalized Orlicz space was
introduced by Orlicz [61] in 1931, and a major synthesis is due to Musielak [55] in
1983. Recent monographs on generalized Orlicz spaces are due to Yang, Liang and
Ky [66], Lang and Mendez [49], and the first two authors [39] focusing on Hardy-
type spaces, functional analysis, and harmonic analysis, respectively; see also the
survey article [15]. Generalized Orlicz spaces include as a special case classical
Orlicz spaces that are well-known and have been extensively studied, see, e.g., the
monograph [64] and references therein.

From this observation, we can roughly understand generalized Orlicz spaces as
variable versions of Orlicz spaces with respect to the space variable x . The special
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case of variable exponent spaces L p(·) has been studied intensively over the last 20
years [22, 25, 62]. The reason that variable exponent research thrived while little
harmonic analysis was done in generalized Orlicz spaces was the belief that many
classical results can be obtained in the former setting but not the latter. A spate of
recent articles (e.g. [3, 14, 23, 38, 44, 47, 50, 51, 56, 63, 67]) has proved this belief to
be unfounded.

Throughout the paper we write '+
B (t) := supx2B '(x, t) and '�

B (t) :=
infx2B '(x, t) and abbreviate '± := '±

� . Especially '
�
B will be used countless

times, since it enables us to apply the following Jensen-type inequalities. The func-
tion '�

B need not to be left-continuous, see [39, Example 4.3.3] and hence it is not
necessary a weak 8-function. However since it satisfies (aInc) it is equivalent with
a convex 8-function (independent of x) by [39, Lemma 2.2.1]. This is used in the
next lemma, where ' is independent of x , e.g., '�

B . We denote by L
0(�) the set of

measurable functions in �. By fD and
R
D f dx we denote the integral average of

f over D.
Lemma 3.1. Let ' be a 8-prefunction which satisfies (aInc)p and (aDec)q , D ⇢
Rn be measurable with |D| 2 (0,1) and f 2 L0(D). Then

✓Z

D
| f |p dx

◆ 1
p

. '�1
✓Z

D
'(| f |) dx

◆
.
✓Z

D
| f |q dx

◆ 1
q
.

Proof. Let  (t) := '(t1/p). Then  satisfies (aInc)1 and so there exists a convex
⇠ 2 8w with ' ⇠ with constant � [39, Lemma 2.2.1]. Since ⇠ is convex, Jensen’s
inequality implies that

'

✓
�
2
p
⇣Z

D
| f |pdx

⌘ 1
p
◆

⇠

✓
�

Z

D
| f |pdx

◆

Z

D
⇠(�| f |p)dx

Z

D
'(| f |)dx .

Note that this inequality does not require (aDec). The first inequality of the claim
follows from this by (2.1).

We know that '�1 is increasing [39, Lemma 2.3.9] and thus so is ('�1)q . Since
' satisfies (aDec)q , '�1 satisfies (aInc)1/q by [39, Proposition 2.3.7] and ('�1)q

satisfies (aInc)1. Thus ('�1)q is a 8-prefunction. Hence by [39, Lemma 2.2.1]
there exists a convex ⇠ 2 8w such that ⇠ ' ('�1)q . We obtain by Jensen’s inequal-
ity

'�1
✓Z

D
'(| f |) dx

◆
⇡ ⇠

✓Z

D
'(| f |) dx

◆ 1
q



✓Z

D
⇠('(| f |)) dx

◆ 1
q

⇡

✓Z

D
| f |q dx

◆ 1
q
.

Let ' 2 8w(�). The generalized Orlicz space (also known as the Musielak–
Orlicz space) is defined as the set

L'(�) :=
n
f 2 L0(�) : lim

�!0+
%'(� f ) = 0

o
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equipped with the (Luxemburg) norm

k f kL'(�) := inf
⇢
� > 0 : %'

✓
f
�

◆
 1

�
,

where %'( f ) is the modular of f 2 L0(�) defined by

%'( f ) :=
Z

�
'(x, | f (x)|) dx .

In many places, wemake the following set of assumptions. However, this will be ex-
plicitly specified, as some results work also under fewer assumptions. Furthermore,
all constants in our estimates depend only on the parameters in the assumptions
and the dimension n, unless something else is explicitly states. Specifically, these
parameters are the constants � and L , the exponents p and q, the minimizing pa-
rameters Q and ! (Definition 4.2) and the structure constants ⌫ and N (from (1.4)).
However, the dependence on 3 and the size of the cube r will be made explicit,
since we will need the cases 3 ! 1 and r ! 0.
Assumption 3.2. The function ' 2 8w(Qr ) satisfies (aInc)p, (aDec)q , (A0) and
one of the following holds for the function u 2 W 1,'(Qr )

(1) ' satisfies (A1) and %'(ru)  1;
(2) ' satisfies (A1-n) and u 2 L1(�).

In the second case of the assumption, constants depend also on kuk1. Note that
the assumptions could be more symmetrical by assuming %'(ru) < 1 in (1), in
which case the constants would depend on %'(ru), or, alternatively, kuk1  1 in
(2). However, it seems that the current versions are more natural to use.

A function u 2 L'(�) belongs to the Orlicz–Sobolev space W 1,'(�) if its
weak partial derivatives @1u, . . . @nu exist and belong to L'(�). Furthermore,
W 1,'
0 (�) is defined as the closure of C1

0 (�) in W 1,'(�).
We will need the Sobolev–Poincaré inequality numerous times in this article,

with either zero boundary values or with average zero. For the calculus of vari-
ations, inequalities in modular form, with an error term, are more useful than in-
equalities concerning norms (such as the ones in [38]). Furthermore, it is useful
to have a constant exponent improvement s > 1 in the integrability regardless of
growth. Note that the exponent s can be on the right-hand side or on the left-hand
side, see [39, Proposition 6.3.12 and Corollary 6.3.15]. In this paper we need the
following versions.

Theorem 3.3 (Sobolev–Poincaré inequality). Let Br ⇢ Rn be a ball or a cube
with diameter 2r . Let ' 2 8w(Br ) satisfy Assumption 3.2. For 1  s < n

n�1 ,

✓Z

Br
'

✓
x,

|u|
r

◆s
dx
◆ 1

s
.
Z

Br
'(x, |ru|) dx +

|{ru 6= 0} \ Br |
|Br |

(3.1)
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for any u 2 W 1,1
0 (Br ). If additionally 1  s  p, then

Z

Br
'

✓
x,

|u � uBr |
r

◆
dx .

✓Z

Br
'(x, |ru|)

1
s dx

◆s
+ 1 (3.2)

for any u 2 W 1,1(Br ); in the case (A1), we need that kruk'1/s  M , and the
implicit constant depends on M . The average uBr can be replaced by uB for some
ball or cube B ⇢ Br with |B| > µ|Br |, in which case the constant depends also
on µ.

The case (A1) is covered by the Sobolev–Poincaré inequality in [39, Proposi-
tion 6.3.12 and Corollary 6.3.15], whereas the case of (A1-n) is new.

Proof. We consider only bounded u and (A1-n). By [39, Lemma 2.2.1] there exists
a convex ⇠ 2 8w such that ⇠ ' '�. We apply (3.2) to ⇠ , which satisfies (A1) since
it is independent of x :

Z

Br
'�
✓

|u � uBr |
r

◆
dx .

Z

Br
⇠

✓
|u � uBr |

r

◆
dx

.
✓Z

Br
⇠(|ru|)

1
s dx

◆s
.
✓Z

Br
'�(|ru|)

1
s dx

◆s



✓Z

Br
'(x, |ru|)

1
s dx

◆s
.

Furthermore, in this case the inequality kruk' < 1 is not needed, since (A1) holds
not only in [1, 1

|B| ] but in [0,1).
On the left-hand side we use (A1-n), (A0) and (aDec) to estimate

'

✓
x,

|u � uBr |
r

◆
. '�

✓
�

|u � uBr |
r

◆
+ 1,

which concludes the proof in this case. Note that in this case the constant depends
on kuk1. The other inequality can be proved similarly from (3.1).

4. Quasiminimizers

In a paper with Toivanen [43], the first two authors recently obtained the first results
on regularity of quasiminimizers in the generalized Orlicz growth case. We showed
a Harnack inequality and local Hölder continuity under assumptions (A0), (A1),
(A1-n), (aInc) and (aDec). The first aim of this paper is to improve and extend
these results in several ways. For further extensions, building on the current paper,
see [10].
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The first main contribution of the current paper is to extend [9] to the gen-
eralized Orlicz setting, and prove Hölder continuity assuming either (A1) or (A1-
n) and bounded u; In our earlier generalized Orlicz case result [43], we needed
to assume both (A1) and (A1-n). In addition, we here extend our previous re-
sults from [43] in two ways. Of greater importance is the inclusion of +3 on
the right-hand side: it allows us to move between (aDec)1 and (aDec) and is cru-
cial for applying quasiminimizer-results to prove regularity of !-minimizers. The
(aDec)1 assumption is a growth condition for large values of the gradient, a neces-
sary change to handle (1.2) which does not satisfy a growth condition at the origin.
A minor extension is that we allow F to depend on u and ru, whereas the previous
paper only allowed dependence on |ru|.

For quasiminimizers, our main result is the following Harnack inequality,
which implies local Hölder continuity by well-known arguments. Note that the
(A1) and (A1-n) assumptions are essentially sharp, in view of the examples from
the double phase case, cf. [6].

Theorem 4.1 (Harnack’s inequality). Let � ⇢ Rn be a domain and ' 2 8w(�)

satisfy (A0), (aInc) and (aDec)1. Let u 2 W 1,'
loc(�) be a non-negative local quasi-

minimizer of F . Assume that ' satisfies (A1), or that u is bounded and ' satisfies
(A1-n). If Q2r ⇢ �, then

ess sup
x2Qr

u(x) . ess inf
x2Qr

u(x) + ('�
Qr

)�1(3+ 1) r

provided (3 + 1)|Q2r |  1 and
R
Q2r '(x, |ru|) dx  1. The implicit constant

depends only on the parameters from the assumptions, the dimension n, and, in the
case (A1-n), on kuk1; it is independent of r and 3.

The proof of this result (which continues through Sections 5 and 6) follows a dif-
ferent philosophy compared to our earlier paper [43]: previously, much effort was
directed at avoiding additional error terms which do not appear in the standard case,
whereas now we focus on handling the error terms which appear. The reason is
that the “+3” in (1.4) as well as (aDec)1 lead inevitably to similar additive error
terms, so they must in any case be taken care of. These more streamlined proofs
are made possible by new tools developed in the monograph [39]. It is especially
worth mentioning the generalized Orlicz version of the Sobolev–Poincaré inequal-
ity (Theorem 3.3) and the improved reverse Hölder inequality (Lemma 4.5). While
the proofs follow the well-known approach of De Giorgi, we found that they are
very dependent on well set-up formulations (much more so that the variable ex-
ponent case): for instance the placement of ⌧ on the left-hand side of (5.1) and
the estimate of |A j |

|Q j |
in the proof of Proposition 5.2. The main difficulty with the

generalized Orlicz case is to move at suitable points in the proofs between '(x, t)
and '�

Q(t). This is accomplished via the Sobolev–Poincaré inequality or the Cac-
cioppoli estimate. The former leads in the proof of Proposition 5.2 to an additional
term on the right-hand side, which can, however, be absorbed in the other terms in
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the specific cases needed for Harnack’s inequality. Additional complications arise
in several places because the Sobolev–Poincaré inequality holds only for functions
with krukL'(Q)  1.

Recall that we define, for measurable A ⇢ �,

F(u, A) :=
Z

A
F(x, u,ru) dx .

By Qr we mean a cube with side length r and faces parallel to the coordinate
axes. Since we consider cubes, we speak of cubical minimizers, although spherical
minimizers is a more common term for essentially the same thing. The results can
also be adapted to spherical minimizers and !-minimizers defined in balls.

Definition 4.2. A function u 2 W 1,'
loc (�) is called

(i) A local quasiminimizer of F if there exists Q > 1 such that

F(u,�0 \ {u 6= v})  QF(v,�0 \ {u 6= v})

for every open �0 b � and every v 2 u + W 1,1
0 (�0);

(ii) A weak quasiminimizer with bound M > 0 of F if there exists Q > 1 such
that

F(u,�0 \ {u 6= v})  QF(v,�0 \ {u 6= v})

for every open �0 b � and every v 2 u + W 1,1
0 (�0) with kvkL1(�)  M;

(iii) An !-minimizer of F if there exists a non-decreasing concave function ! :
[0,1) ! [0,1) satisfying !(0) = 0 such that

F(u, Qr )  (1+ !(r))F(v, Qr )

for every v 2 u + W 1,1
0 (Qr ) with Qr b �;

(iv) A cubical quasiminimizer of F if there exists Q > 1 such that

F(u, Qr )  QF(v, Qr )

for every v 2 u + W 1,1
0 (Qr ) with Qr b �.

Every minimizer (i.e., 1-quasiminimizer) is both a quasiminimizer and an !-
minimizer; and each of these is also a cubical quasiminimizer. In addition, it is
clear that a quasiminimizer is a weak quasiminimizer with any bound M > 0. Note
that there is no a priori relationship between quasiminimizers and !-minimizers:
!-minimizers satisfy a stricter inequality but for a restricted range of sets.

We observe that if u is a quasiminimizer of F , then it is also a quasimini-
mizer of ' + 3. An analogous result holds for weak quasiminimizers and cubical
minimizers, but not !-minimizers.

To deal with quasiminimizers of F we need to generalize the results of [43]
which only deal with quasiminimizers of '. It is crucial to track the dependence of
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constants on 3, since in Section 8 3 depends on the !-minimizer u and may blow
up in small balls.

We record the following iteration lemma, which will be needed in what fol-
lows.

Lemma 4.3 (Lemma 4.2 in [43]). Let Z be a bounded non-negative function in the
interval [r, R] ⇢ R and let X satisfy (aDec) on [0,1). Assume that there exists
✓ 2 [0, 1) such that

Z(t)  X
⇣

1
��⌧

⌘
+ ✓ Z(� )

for all r  ⌧ < �  R. Then

Z(r) . X
⇣

1
R�r

⌘
,

where the implicit constant depends only on the (aDec) constants and ✓ but not on
kZk1.

Note that kZk1 does not impact the implicit constant in the previous result. This
will be important for us later on.

Cubical quasiminimizers need not be bounded in general (cf. [35, Example 6.5,
page 188]), but they do have the following higher integrability property.

Lemma 4.4 (Reverse Hölder inequality). Let ' 2 8w(�) satisfy Assumption 3.2
and suppose u is a cubical quasiminimizer of F . For any Qr ⇢ � with |Qr |  1,
there exists s0 > 0 such that

✓Z

Q r
2

'(x, |ru|)1+s0 dx
◆ 1
1+s0

.
Z

Qr

'(x, |ru|) dx +3+ 1. (4.1)

Proof. Consider concentric cubes Q� ⇢ Q⌧ ⇢ Qr for 0 < � < ⌧  r . Let
⌘ 2 C1

0 (Q⌧ ) be a cut-off function such that 0  ⌘  1, ⌘ ⌘ 1 in Q� and
|r⌘|  2

⌧�� . We use v := u � ⌘
�
u � uQr

�
as a test function in Definition 4.2 (iv)

in order to get

⌫

Z

Q�
'(x, |ru|) dx 

Z

Q⌧
F(x, u,ru) dx

 Q
Z

Q⌧
F(x, v,rv) dx  QN

Z

Q⌧
'(x, |rv|) +3 dx .

(4.2)

We note that |rv|  (1� ⌘)|ru| + |r⌘||u� uQr |  2max{(1� ⌘)|ru|, |r⌘||u�
uQr |}. By |r⌘|  2

⌧�� and (aDec), we have that

'(x, |rv|)  2q L'(x, (1� ⌘)|ru|) + 4q L'
✓
x,

|u � uQr |

⌧ � �

◆
.



HÖLDER CONTINUITY OF !-MINIMIZERS 561

Denote c1 := 2q LQN . Combining this inequality with (4.2), we get that

⌫

Z

Q�
'(x, |ru|) dx c1

Z

Q⌧
'(x, (1� ⌘)|ru|) dx

+ c
Z

Q⌧
'

✓
x,

|u � uQr |

⌧ � �

◆
dx + c3rn

 c1
Z

Q⌧ \Q�
'(x, |ru|)dx+c

Z

Q⌧
'

✓
x,

|u � uQr |

⌧ � �

◆
dx+c3rn,

where the second inequality follows since '
�
x, (1� ⌘)|ru|

�
= '(x, 0) = 0 in Q� .

Now we use the hole-filling trick and add c1
R
Q� '

�
x, |ru|

�
dx to both sides

of the previous inequality and divide by c1 + ⌫. Then it follows that
Z

Q�
'(x, |ru|) dx 

c1
c1 + ⌫

Z

Q⌧
'(x, |ru|) dx

+ c
Z

Q⌧
'

✓
x,

|u � uQr |

⌧ � �

◆
dx + c3rn.

By the iteration lemma (Lemma 4.3) for the first step and the Sobolev–Poincaré
inequality (Theorem 3.3) for the second, we conclude that

Z

Q r
2

'(x, |ru|) dx .
Z

Qr

'

✓
x,

|u � uQr |

r

◆
dx +3

.
✓Z

Qr

'(x, |ru|)
1
s dx

◆s
+3+ 1;

(4.3)

note that the Sobolev–Poincaré inequality can be used since
Z

Qr

'(x, |ru|)
1
s dx 

Z

Qr

'(x, |ru|) + 1 dx  2.

Hence, by Gehring’s lemma (see [35, Theorem 6.6 and Corollary 6.1, pages 203–
204]), the desired reverse Hölder inequality holds.

The reverse Hölder inequality has the following “self-improving” property.

Lemma 4.5 (Lemma 3.8, [45]). If u 2 W 1,'
loc (�) satisfies (4.1), then for every s 2

[0, 1]

✓Z

Qr

'(x, |ru|)1+s0 dx
◆ 1
1+s0

.
✓Z

Q2r
'(x, |ru|)s dx

◆ 1
s

+3+ 1,
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where the implicit constant depends on s and the constant in (4.1). If ' satisfies
(aDec), then this implies that

Z

Qr

'(x, |ru|) dx 

✓Z

Qr

'(x, |ru|)1+s0 dx
◆ 1
1+s0

. '+
Q2r

✓Z

Q2r
|ru| dx

◆
+3+ 1.

Let us write
A(k, r) := Qr \ {u > k}.

Lemma 4.6 (Caccioppoli inequality). Let ' 2 8w(�) satisfy (aDec) and let u be
a local quasiminimizer of F . Then for all k > 0 and 0 < r < R < 1 with
QR ⇢ � we have
Z

A(k,r)
'(x, |r(u � k)+|) dx .

Z

A(k,R)
'
⇣
x,

(u � k)+
R � r

⌘
dx + |A(k, R)|3. (4.4)

Proof. Let r  � < ⌧  R and k > 0. Let ⌘ 2 C1
0 (Q⌧ ) be such that 0  ⌘  1,

⌘ = 1 in Q� , and |r⌘|  2
⌧�� . Denote v := u � ⌘(u � k)+. Since u is a local

quasiminimizer of F with constant Q and spt(u � v) ⇢ Q⌧ ,

⌫

Z

{u 6=v}\Q⌧
'(x, |ru|) dx  QN

Z

{u 6=v}\Q⌧
'(x, |rv|) +3 dx .

Since A(k, � ) ⇢ {u 6= v} \ Q⌧ ⇢ A(k, ⌧ ) ⇢ A(k, R), this implies that
Z

A(k,� )
'(x, |ru|) dx .

Z

A(k,⌧ )
'(x, |rv|) dx + |A(k, R)|3.

The integrals are handled by the hole-filling trick and the iteration lemma as in
Lemma 4.4 (see [43, Lemma 4.3] for exact details), while the second term on the
right-hand side appears directly on the right-hand side of the claim.

5. Estimating the essential supremum

We now start our proof of Harnack’s inequality. As is usual with De Giorgi’s
method, we first derive bounds for the essential supremum of the function. In the
next section, these will be used to bound also the infimum, which combined give
the Harnack inequality. Recall that A(k, r) = Qr \ {u > k}.

In this paper we state our results in a modular format so as to make them easier
to extend later. For instance, in the next result we assume the Caccioppoli inequality
instead of assuming that u is a quasiminimizer. If the Caccioppoli inequality is
extended to a larger class, then the next result need not be reproved (cf.Remark 6.4).
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Lemma 5.1. Let ' 2 8w(�) and u 2 W 1,'
loc(�) satisfy Assumption 3.2. Suppose

that u satisfies the Caccioppoli inequality (4.4). Let k > 0 and 0 < � < ⌧  R
with QR ⇢ � and (3+ 1)|QR|  1. Then
Z

Q�
'
⇣
x,

(u � k)+
⌧

⌘
dx

.
⇣ ⌧

⌧��

⌘q2
p
✓

|A(k, ⌧ )|
|Q⌧ |

◆ 1
2n
✓Z

Q⌧
'
⇣
x,

(u � k)+
⌧ � �

⌘
dx +|A(k, ⌧ )|(3+ 1)

◆
.

(5.1)

Proof. We first observe that the claim is trivial if |A(k, ⌧ )| > 1
2 |Q⌧ |, so we may

assume that this is not the case. Let ⌧ 0 := �+⌧
2 and ⌘ 2 C1

0 (Q⌧ 0) be a cut-
off function such that 0  ⌘  1, ⌘ = 1 in Q� , and |r⌘|  4

⌧�� . Denote
v := (u � k)+⌘.

By the product rule, |rv|  |r(u � k)+| + (u � k)+|r⌘|. Since |r⌘|  4
⌧�� ,

we obtain by (aDec) and the Caccioppoli inequality (4.4) that
Z

Q⌧ 0
'(x, |rv|) dx .

Z

Q⌧ 0
'(x, |r(u � k)+|) + '

⇣
x,

(u � k)+
⌧ � �

⌘
dx

.
Z

Q⌧
'
⇣
x,

(u � k)+
⌧ � �

⌘
dx + |A(k, ⌧ )|3.

(5.2)

As an intermediate step, we next show in the case (A1) how this inequality implies
that %'(c⌧,� |rv|)  1 for a suitable constant.

In the case of (A1), we denote w := (u � k)+ and note that w = 0 in A :=
Q⌧ \ A(k, ⌧ ). Since |A| > 1

2 |Q⌧ |, we obtain by the W
1,1-Poincaré inequality,

Lemma 3.1 and %'(|rw|)  1 that

|wA � wQ⌧ | 
|Q⌧ |
|A|

Z

Q⌧
|w � wQ⌧ | dx . ⌧

Z

Q⌧
|rw| dx

. ⌧ ('�
Q⌧ )

�1
✓Z

Q⌧
'�
Q⌧ (|rw|) dx

◆
 ⌧ ('�

Q⌧ )
�1
✓

1
|Q⌧ |

◆
.

Since w = 0 in A, we obtain by this, (A0) and (A1) that

w = |w�wA|  |w�wQ⌧ |+ |wA�wQ⌧ | . |w�wQ⌧ |+ ⌧ ('
+
Q⌧ )

�1
✓

1
|Q⌧ |

◆
+ ⌧.

By the Sobolev–Poincaré inequality (Theorem 3.3 with s = 1), (aDec), (A0),
%'(|ru|)  1 and |Qr |  1, we conclude that
Z

Q⌧
'
⇣
x,

w

⌧

⌘
dx .

Z

Q⌧
'

✓
x,

|w(x) � wQ⌧ |

⌧
+ ('+

Q⌧ )
�1
✓

1
|Q⌧ |

◆
+ 1

◆
dx

.
Z

Q⌧
'(x, |ru|) + 1+

1
|Q⌧ |

dx  3.
(5.3)
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Furthermore, (aDec) implies that
Z

Q⌧
'

✓
x,

(u � k)+
⌧ � �

◆
dx .

⇣
⌧

⌧��

⌘q Z

Q⌧
'
⇣
x,

w

⌧

⌘
dx .

⇣
⌧

⌧��

⌘q
.

By (aInc)p, (5.2) and this imply that %'(c⌧,� |rv|)1, where c⌧,� :=c ( ⌧��⌧ )q/p1.
We set c⌧,� := 1 for the case (A1-n); then in both cases we can apply the Sobolev–
Poincaré inequality (Theorem 3.3) to the function c⌧,�v.

We now start the main line of the proof. By Hölder’s inequality and (aDec),
we obtain

Z

Q�
'
⇣
x,

(u � k)+
⌧

⌘
dx 

Z

Q⌧ 0
'
⇣
x,

v

⌧

⌘
dx  |A(k, ⌧ )|

s�1
s

✓Z

Q⌧ 0
'
⇣
x,

v

⌧

⌘s
dx
◆1
s

 c�q⌧,� |A(k, ⌧ )|
s�1
s

✓Z

Q⌧ 0
'
⇣
x,
c⌧,�v

⌧

⌘s
dx
◆1
s

for s := (2n)0. Note that s < n0, %'(c⌧,� |rv|)  1 and that c⌧,�v 2 W 1,'
0 (Q⌧ 0).

Thus the Sobolev–Poincaré inequality (Theorem 3.3) for the function c⌧,�v yields
that

|Q⌧ |
s�1
s

✓Z

Q⌧ 0
'
⇣
x,
c⌧,�v

⌧

⌘s
dx
◆ 1

s

Z

Q⌧ 0
'(x, |rv|) dx + |A(k, ⌧ )|;

here we also used that rv = 0 a.e. outside A(k, ⌧ ) and c⌧,�  1. Combining the
two inequalities, noting that s�1s = 1

2n and using (aDec) for the first step, and (5.2)
for the second step, we find that

Z

Q�
'
⇣
x,

(u � k)+
⌧

⌘
dx . c�q⌧,�

✓
|A(k, ⌧ )|

|Q⌧ |

◆ 1
2n
✓Z

Q⌧ 0
'(x, |rv|) dx + |A(k, ⌧ )|

◆

. c�q⌧,�

✓
|A(k, ⌧ )|

|Q⌧ |

◆ 1
2n
✓Z

Q⌧
'

✓
x,

(u � k)+
⌧ � �

◆
dx + |A(k, ⌧ )|(3+ 1)

◆
.

Compared to classical estimates, the next proposition contains an extra term
|uQr |. Note that it involves the function u, not just u+, which makes it more dif-
ficult to manage. However, we show that it can be handled in the cases needed
to prove Harnack’s inequality. Recall that q > 1 is the exponent from (aDec)q in
Assumption 3.2. For brevity, we will use the following notation for the rest of the
paper

�r := ('�
Qr

)�1(3+ 1) r.
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Proposition 5.2. Let ' 2 8w(�) and u 2 W 1,'
loc(�) satisfy Assumption 3.2 with

(3+1)|Qr |  1. Suppose that u satisfies (5.1) and ✓ 2 [12 , 1). Then u+ is bounded
and

ess sup
Q✓r

u+ . (1� ✓)�4nq
2
✓Z

Qr

(u+)q dx
� 1
q

+ |uQr/2 |

◆
+ �r (5.4)

for any Q2r ⇢ �. The term |uQr | can be omitted if
�
�{u+ = 0} \ Qr

�
� > 1

2 |Qr | or if
u is non-negative.

Proof. For k > 0 to be chosen and any natural number j , we set

↵ :=
1
2n

, k j := rk
⇣
1�

1
2 j
⌘
, � j := r

⇣
✓ +

1� ✓

2 j
⌘
, A j := A(k j+1, � j ),

Q j := Q� j and Y j :=
Z

Q j

'
⇣
x,

(u � k j )+
r

⌘
dx .

Note that � j � � j+1 = r(1�✓)
2 j+1 . Using (5.1) with k = k j+1, � = � j+1 and ⌧ = � j

for the middle step, and (aDec) for the others, we find that

Y j+1 .
Z

Q j+1

'
⇣
x,

(u � k j+1)+
r(✓ + (1� ✓)2� j�1)

⌘
dx

. 2
q2 j
p (1�✓)�

q2
p

✓
|A j |

|Q j |

◆↵✓Z

Q j

'
⇣
x,

(u � k j+1)+
r(1�✓)2� j�1

⌘
dx +

|A j |

|Q j |
(3+ 1)

◆

. 2q
2 j (1� ✓)�q

2
✓

|A j |

|Q j |

◆↵✓
2q j (1� ✓)�qY j +

|A j |

|Q j |
(3+ 1)

◆
,

where we also used k j  k j+1 in the last step. Furthermore, we observe that
u � k j > k j+1 � k j = rk

2 j+1 in A j . It follows by (aDec) that

|A j |

|Q j |

Z

Q j

1
'(x, k)

'

✓
x, 2 j+1

(u � k j )+
r

◆
dx . 2q j'�

Qr
(k)�1Y j .

Now our inequality implies that

Y j+1c2q
2 j (1�✓)�q

2
(2q j'�

Qr
(k)�1Y j )↵

⇥
2q j (1�✓)�qY j+2q j'�

Qr
(k)�1Y j (3+1)

⇤
.

We will choose k such that '�
Qr

(k)�1(3+ 1)  1. Then the inequality implies that

Y j+1  c123q
2 j (1� ✓)�2q

2
'�
Qr

(k)�↵Y 1+↵j .

By the well-known iteration lemma [35, Lemma 7.1, page 220] if follows that
Y j ! 0 as j ! 1, provided that Y0  c�1/↵1 2�3q2/↵2(1 � ✓)2q

2/↵'�
Qr

(k). Thus
we need to ensure that

Y0 =
Z

Qr

'
⇣
x,
u+

r

⌘
dx  c(↵, q)(1� ✓)4nq

2
'�
Q(k),
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which holds under the choice

'�
Qr

(k) =
✓q

c(↵, q)

Z

Qr

'
⇣
x,
u+

r

⌘
dx +3+ 1, ✓q := (1� ✓)�4nq

2
;

such k exists due to the (aDec) assumption. The latter terms are added to ensure
that '�

Qr
(k)�1(3+ 1)  1, as required above.

Since k j ! rk and � j ! ✓r as j ! 1, it follows by Fatou’s lemma that
Z

Q✓r
'
⇣
x,

(u � rk)+
r

⌘
dx  lim inf

j!1
Y j = 0.

This implies that u  rk a.e. in Q✓r . Thus u is locally bounded and

ess sup
Q✓r

'�
Qr

⇣u+

r

⌘
 '�

Qr
(k) =

✓q

c(↵, q)

Z

Qr

'
⇣
x,
u+

r

⌘
dx +3+ 1. (5.5)

Assume first that uQr/2 = 0. In the case (A1), we use (5.5) in the cubes Qr and Q2r
(in which case there is no dependence on ✓ in the constant), the Sobolev–Poincaré
inequality (Theorem 3.3) with s = 1 and uQr/2 = 0, and (aDec) to conclude that

ess sup
Q✓r

'�
Qr

⇣u+

r

⌘
. ess sup

Qr

'�
Qr

⇣u+

r

⌘
.
Z

Q2r
'
⇣
x,
u+

r

⌘
dx +3+ 1

.
Z

Q2r
'(x, |ru|) dx +3+ 1 .

1
|Qr |

,

where in the last step we use (3 + 1)|Qr |  1. Instead of uQr/2 = 0 we could
assume |{u+ = 0} \ Qr | > 1

2 |Qr | since then (5.3) implies that
Z

Q2r
'
⇣
x,
u+

r

⌘
dx .

1
|Qr |

.

In either case, it follows by (aDec), (A0) and (A1) that

'
⇣
x,
u+

r

⌘
. '�

Qr

⇣u+

r

⌘
+ 1 for a.e. x 2 Qr .

In the case (A1-n), the same inequality follows from (aDec), (A0) and (A1-n), with
constant depending also on kuk1. Here the assumption uQr/2 = 0 is not needed at
all.

Now we return to (5.5) with '�
Qr
in the integral by the estimate in the previous

paragraph. By (aInc)p we have

ess sup
Q✓r

'�
Qr

⇣u+

r

⌘
.

✓q

c(↵, q)

Z

Qr

'�
Qr

⇣u+

r

⌘
dx +3+ 1

.
Z

Qr

'�
Qr

⇣
✓
1
p
q
u+

r

⌘
dx +3+ 1.
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Since '�
Qr
is a 8-prefunction that satisfies (aDec)q , we obtain by Lemma 3.1 and

(2.1) that

ess sup
Q✓r

u+

r
. ✓

1
p
q

Z

Qr

⇣u+

r

⌘q
dx
� 1
q

+ 1
r �r .

The claim follows for this case when we multiply the previous inequality by r .
We have established the claim in the case uQr/2 = 0. Thus, in the general case,

ess sup
Q✓r

u+ � |uQr/2 |  ess sup
Q✓r

(u � uQr/2)+ . ✓
1
p
q

Z

Qr

(u � uQr/2)
q
+ dx

� 1
q

+ �r .

Furthermore,
Z

Qr

(u � uQr/2)
q
+ dx

� 1
q


Z

Qr

(u+ + |uQr/2 |)
q dx

� 1
q

⇡

Z

Qr

uq+ dx
� 1
q

+ |uQr/2 |

so we have completed the proof in the general case. If u is non-negative, then
u+ = u and Hölder’s inequality allows us to absorb the extra term in the q-average
as follows:

|uQr/2 | =
Z

Qr/2

u dx .
Z

Qr

uq dx
� 1
q
.

Next we show that the exponent can be decreased arbitrarily close to zero when
there is no extra term |uQr/2 |.

Corollary 5.3. Suppose that u 2 L1(Qr ) satisfies (5.4) without the term |uQ�/2 |
for Q� ⇢ Qr with � 2 [ r2 , r]. Then

ess sup
Qr/2

u+ .
✓Z

Qr

uh+ dx
◆ 1

h
+ �r ,

for any h 2 (0,1). The implicit constant depends on h and the constant in (5.4).

Proof. The case h > q follows directly by Hölder’s inequality, so we consider only
h 2 (0, q). Let r2  � < ⌧  r and denote Z(� ) := ess supQ� u. By (5.4),

Z(� ). (1� �
⌧ )�4nq

2
✓Z

Q⌧
uq+ dx

◆1
q
+�⌧ 

⇣ r
⌧ � �

⌘4nq2✓Z

Q⌧
uq+ dx

◆1
q
+�r .

Since ⌧ 2 ( r2 , r), we find that

✓Z

Q⌧
uq+ dx

◆ 1
q

.
✓Z

Qr

uh+ Z(⌧ )q�h dx
◆ 1

q
⇡

✓Z

Qr

uh+ dx
◆ 1

q
Z(⌧ )

q�h
q .
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Next we use Young’s inequality with exponents qh and
q

q�h =: 1✓ and obtain

Z(� )  c
⇣ r
⌧ � �

⌘4nq2✓Z

Qr

uh+ dx
◆ 1

q
Z(⌧ )✓ + c�r


ch
q

⇣ r
⌧ � �

⌘ 4nq3
h
✓Z

Qr

uh+ dx
◆ 1

h
+ c�r

| {z }
=:X ( 1

⌧�� )

+ ✓ Z(⌧ ).

Thus Z(� )  X ( 1
⌧�� ) + ✓ Z(⌧ ) for all r2  � < ⌧  r . Since Z is bounded in

[ r2 , r] and X satisfies (aDec)4nq3/h , Lemma 4.3 yields Z( r2 ) . X (2r ), which is the
claim.

6. Estimating the essential infimum

Let us denote Dl := {u < l} \ Qr . Suppose that u is a quasiminimizer of F and
l 2 R. Then l � u is a quasiminimizer of

Z

�
G(x, u,ru) dx with G(x, t, z) := F(x, l � t,�z).

Furthermore, G satisfies (1.4) with the same constants as F . Thus by the Cac-
cioppoli estimate (Lemma 4.6) and Lemma 5.1 the function l � u satisfies (5.1).
Furthermore, the assumption in the next lemma implies that

�
�{(l � u)+ = 0} \ Qr

�
� = |Qr \ Dl | >

�
1� 1

2qcq1

�
|Qr | > 1

2 |Qr |,

so one of the conditions in Proposition 5.2 for omitting the term |uQr | is satisfied.
Thus the implication of the next lemma holds in particular for local quasiminimiz-
ers.

Lemma 6.1. Let u 2 W 1,'
loc(�) be non-negative and l > 0. If l � u satisfies (5.4) for

✓ = 1
2 without the term |uQr/2 | with constant c1, then

|Dl |  1
2qcq1

|Qr | ) ess inf
Qr/2

u + c1�r > l
2 .

Proof. Inequality (5.4) for the function l � u yields that

ess sup
Qr/2

(l � u)  ess sup
Qr/2

(l � u)+  c1
Z

Qr

(l � u)q+ dx
� 1
q

+ c1�r

 c1

1

|Qr |

Z

Dl
lq dx

� 1
q

+ c1�r = c1l


|Dl |
|Qr |

� 1
q

+ c1�r

 1
2 l + c1�r .
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Since ess supQr/2(l � u) = l � ess infQr/2 u, the claim follows.

The next lemma shows that the implication of the previous lemma holds for
any constant  . The previous lemma takes care of small values of  .

Lemma 6.2. Let ' 2 8w(�) and u 2 W 1,'
loc(�) satisfy Assumption 3.2. Suppose

that u is a non-negative local quasiminimizer of F . Then for every  2 (0, 1) there
exists µ > 0 such that

|Dl |   |Qr | ) ess inf
Qr/2

u + c1�r > µl

for all Q2r ⇢ � and all l > 0. Here the constant c1 is from Lemma 6.1.

Proof. If l > kuk1, then |Dl | = |Qr |, so there is nothing to prove. Therefore, we
assume that l  kuk1. Abbreviate Q := Qr and set, for 0 < h < k < l,

v :=

8
><

>:

0 if u > k
k � u if h < u < k
k � h if u  h.

Then v 2 W 1,'
loc(�) and |rv| = |ru|�{h<u<k} a.e. in �.

Clearly, v = 0 in Q\Dl , and since |Dl |  |Q|, we have |Q\Dl | > (1�)|Q|.
Under these circumstances, [35, Theorem 3.16, page 102] tells us that

✓Z

Q
vn

0
dx
◆ 1

n0
 C(n, )

Z

1
|rv| dx

for v 2 W 1,1(Q) and 1 := Dk \ Dh . By Hölder’s inequality,

(k � h)|Dh|
1
n0 = |Dh|�

1
n

Z

Dh
v dx 

✓Z

Q
vn

0
dx
◆ 1

n0
. |1|

Z

1
|rv| dx .

Denote V (x) := '(x, |rv(x)|). By Hölder’s inequality and Lemma 3.1,

Z

1
|rv| dx 

✓
|Q|

|1|

◆ 1
p
✓Z

Q
|rv|p dx

◆ 1
p

.
✓

|Q|

|1|

◆ 1
p
('�

Q)�1
✓Z

Q
V dx

◆
.

The Caccioppoli estimate (Lemma 4.6) for the function k � u implies that
Z

Q
V dx =

Z

Q
'(x, |r(k � u)+|) dx .

Z

Q0
'

✓
x,

(k � u)+
r

◆
dx +3

. '+
Q0

✓
k
r

◆
+3,

(6.1)
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where Q0 := Q2r . In the case (A1), we use the second expression and the assump-
tion %'(|ru|)  1 to conclude that

R
Q V dx . 1

|Q| . It then follows from (A1), (A0)
and (aDec) that

('�
Q)�1

✓Z

Q
V dx

◆
 ('�

Q0)
�1
✓Z

Q
V dx

◆
. ('+

Q0)
�1
✓Z

Q
V dx

◆
+ 1.

In the case of (A1-n), we use the last expression of (6.1), k 2 (0, kuk1), (A0) and
(aDec) to conclude that

Z

Q
V dx . '+

Q0

� k
r
�
+3 . '�

Q0

� k
r
�
+3+ 1  '�

Q
� k
r
�
+3+ 1,

where the constant depends on kuk1. In either case, we obtain that

('�
Q)�1

✓Z

Q
V dx

◆
. k

r + ('�
Q)�1(3+ 1) + 1 ⇡ 1

r (k + �r ),

where we also used (A0) and (aDec) to absorb the 1 in �r .
Combining the previous inequalities, we find that

(k � h)|Dh|
1
n0 . |1|

✓
|Q|

|1|

◆ 1
p 1
r (k + �r ) ⇡ |1|1�

1
p r

n
p�1

(k + �r ).

We divide the previous inequality by k, raise it to the power p0 and substitute k :=
l2�i and h := l2�i�1, i 2 N:
 
l2�i � l2�i�1

l2�i

!p0

|Dl2�i�1 |
p0
n0 .

⇥
|Dl2�i | � |Dl2�i�1 |

⇤
r
n�p
p p0 ⇣

1+ 2i 1l �r
⌘p0

.

Set di := |Dl2�i | for i = 0, . . . , i0 and note that l2
�i�l2�i�1
l2�i = 1

2 . Since di > di0 =
|Dl2�i0 | for i  i0, this implies that

|Dl2�i0�1 |
p0
n0 . [di � di+1]r

n�p
p�1
�
1+ 2i0 1l �r

�p0

.

Adding these inequalities for i from 0 to i0 � 1, we get

i0 |Dl2�i0�1 |
p0
n0 . [d0 � di0]r

n�p
p�1
�
1+ 2i0 1l �r

�p0

. rn+
n�p
p�1
�
1+ 2i0 1l �r

�p0

.

Now n + n�p
p�1 = p n�1p�1 = p0(n � 1). Hence

|Dl2�i0�1 |  ci
� n0

p0

0 rn
⇣
1+ 2i0 1l �r

⌘n0

= c2i
� n0

p0

0 |Q|
⇣
1+ 2i0 1l �r

⌘n0

.
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We choose i0 such that c2i
� n0

p0

0  1
2q+n0cq1

with c1 from Lemma 6.1.

We consider two cases. If 2i0 1l �r  1, then the previous inequality im-
plies that |Dl2�i0�1 |  1

2qcq1
|Q|, in which case it follows from Lemma 6.1 that

ess infQr/2 u+ c1�r > l2�i0�1, so the claim holds with µ = 2�i0�1. If, on the other
hand, 2i0 1l �r > 1, then ess infQr/2 u + c1�r > c12�i0l, so the claim holds with
µ = c12�i0 .

Now standard arguments yield the weak Harnack inequality, see, e.g., [43,
Lemma 6.3].

Corollary 6.3 (Weak Harnack inequality). Let ' 2 8w(�) and u 2 W 1,'
loc(�) sat-

isfy Assumption 3.2. Suppose that u is a non-negative local quasiminimizer of F .
Then there exists h > 0 such that

✓Z

Qr

uh dx
◆ 1

h
. ess inf

Qr/2
u + �r

when Q2r ⇢ � and (3+ 1)|Q2r |  1.

By combining Corollaries 5.3 for the non-negative function and 6.3, we obtain Har-
nack’s inequality under Assumption 3.2. It remains to be shown that (aDec) can be
replaced by (aDec)1.

Proof of Theorem 4.1. Let ' be from Theorem 4.1 and let  (x, t) := '(x, t) +
t . Then, by Lemma 2.2,  belongs to 8w(�) and satisfies Assumption 3.2. In
particular, we have '   . ' + 1.

Since u is a local quasiminimizer ofF , it is a local quasiminimizer of '+3+1.
Thus using Corollaries 5.3 and 6.3 with replacing (', F,3) by ( ,'+3+1,3+1),
we obtain Harnack’s inequality.

Remark 6.4. All the results in Sections 4–6 hold also for bounded weak quasimini-
mizers u with bound kuk1. This follows directly from the given proofs. We use the
quasimimimizing property twice, first in the proof of the reverse Hölder inequality,
Lemma 4.4, for the test function v := u � ⌘(u � uQr ) = (1 � ⌘)u + ⌘uQr , and
then in the proof of the Caccioppoli inequality, Lemma 4.6, for the test function
v := u � ⌘(u � k)+, k > 0. Thus in both cases kvk1  kuk1, so we have only
used the weak quasiminimizing property. In fact, in the proofs that follow, only the
latter is needed for weak quasiminimizers, the former is applied to the directly for
cubical quasiminimizers.
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7. Morrey estimates

It is well known that the Harnack inequality implies the following oscillation decay
estimate (see [34, Theorem 8.22] or [46, Theorem 6.6, page 111]). We define the
oscillation of u by

osc(u, r) := ess sup
Qr

u � ess inf
Qr

u.

Theorem 7.1 (Oscillation decay estimate). Let±u�k satisfy Harnack’s inequal-
ity for every k 2 R and every Q� ⇢ Qr where it is non-negative. Then there exists
µ 2 (0, 1) such that for all 0 < � < r ,

osc(u, � ) .
⇣�
r

⌘µ
[osc(u, r) + �r ].

In the next theorem we could alternatively use the p-average on the left-hand side
(as in earlier papers like [60]), but we use this simpler formulation since it is all we
need.

Theorem 7.2 (Morrey type estimate). Let ' 2 8w(�) and u 2 W 1,'
loc(�) satisfy

Assumption 3.2. Let u be a local quasiminimizer of F . Then for any Q2r ⇢ � with
(3+ 1)|Q2r |  1,

Z

Q�
|ru| dx .

⇣�
r

⌘n+µ�1 Z

Qr

|ru| + ('�
Qr

)�1(3+ 1) dx

for all 0 < � < r , with µ from Theorem 7.1.

Proof. It is enough to consider � 2 (0, r4 ). By the Caccioppoli inequality (Lem-
ma 4.6) with k = uQ2� , r = �, R = 2� , we have that

Z

Q�
'(x, |r(u � uQ� )+|) dx .

Z

Q2�
'

✓
x,

|u � uQ� |
�

◆
dx +3


Z

Q2�
'+
Q2�

✓
osc(u, 2� )

�

◆
dx +3

= '+
Q2�

✓
osc(u, 2� )

�

◆
+3.

Since u is a quasiminimizer of F , �u is a quasiminimizer of the functional F
with F replaced by F(x,�t,�z). Hence the Caccioppoli estimate for�u similarly
implies an estimate for |r(u � uQ2� )�|. Combining these two estimates we obtain

Z

Q�
'(x, |ru|) dx =

Z

Q�
'(x, |r(u � uQ� )|) dx

. '+
Q2�

✓
osc(u, 2� )

�

◆
+3.

(7.1)
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In the case (A1), we use Corollary 5.3 for u � uQ⌧/2 and uQ⌧/2 � u with h = 1 and
the W 1,1-Poincaré inequality, to derive that

osc(u, ⌧/2)
⌧


supQ⌧/2(u � uQ⌧/2)+

⌧
+
supQ⌧/2(uQ⌧/2 � u)+

⌧

.
1
⌧

Z

Q⌧
|u � uQ⌧ /2| dx +

1
⌧
�⌧

.
Z

Q⌧
|ru| dx + ('�

Q⌧ )
�1(3+ 1).

(7.2)

By Lemma 3.1, (aDec), %L'(Qr )(|ru|)  1 and (1 + 3)|Qr |  1 it follows from
this that

osc(u, ⌧/2)
⌧

. ('�
Q⌧ )

�1
✓

1
|Q⌧ |

◆

for any 0 < ⌧ 6 r. We first use this estimate with ⌧ = 4� . By (A1), (A0) and
(aDec), we conclude that

'+
Q2�

✓
osc(u, 2� )

�

◆
. '�

Q2�

✓
osc(u, 2� )

�

◆
+ 1.

In the case of bounded u and (A1-n), we obtain the same conclusion by (A1-n),
(A0) and (aDec), since osc(u,2� )

�  2kukL1

� . Thus (7.1) gives
Z

Q�
'(x, |ru|) dx . '�

Q2�

✓
osc(u, 2� )

�

◆
+3+ 1.

Since u is a local quasiminimizer of F with F(x, t, z), it follows that ±u � k is
a local quasiminimizer of the functional F with F(x,±(t + k),±z). Hence by
Theorem 4.1 we can use Theorem 7.1. The later theorem and (7.2) with ⌧ = r
yield:
Z

Q�
'(x, |ru|) dx .'�

Q2�

✓⇣ 2�
r/2

⌘µ�1

osc(u, r/2)

r
+ ('�

Qr
)�1(3+ 1)

�◆
+3+1

⇡ '�
Q2�

✓⇣�
r

⌘µ�1

osc(u, r/2)

r
+ ('�

Qr
)�1(3+ 1)

�◆

. '�
Q2�

✓⇣�
r

⌘µ�1
Z

Qr

|ru| dx + ('�
Qr

)�1(3+ 1)
�◆

,

where in the second step we use (2.1). Since ' satisfies (aInc)1, Lemma 3.1 and
(aDec) imply that

'�
Q2�

✓Z

Q�
|ru| dx

◆
.
Z

Q�
'�
Q2� (|ru|) dx .

Z

Q�
'(x, |ru|) dx .

We use this on the left-hand side of the earlier estimate together with (2.1) to obtain
the claim.
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8. Continuity of !-minimizers

We assume now that the function F satisfies

⌫ '(x, |z|)  F(x, t, z)  N
�
'(x, |z|) +30

�

for some constant 30 > 0. Denote  (x, t) := '(x, t) + t . By Lemma 2.2,  
satisfies Assumption 3.2, provided ' satisfies the assumptions in Theorem 1.1. Fur-
thermore, W 1,' = W 1, since we consider only bounded domains [39, Corol-
lary 3.3.11].

The following is a well known variational principle due to Ekeland; see [29] or
[35, Theorem 5.6, page 160] for its proof. Recall that f : X ! [�1,1] is lower
semicontinuous if f (v)  lim infk!1 f (vk) for every sequence vk convergent to
v 2 X .

Lemma 8.1 (Ekeland’s variational principle). Let (X, d) be a complete metric
space and f : X ! (�1,1] be lower semicontinuous with �1 < infX f < 1.
Suppose that

f (u)  inf
X
f + �

for some � > 0 and u 2 X . Then there exists w 2 X with d(u, w)  1 such that

f (w)  f (u) and f (w)  f (v) + � d(w, v) for all v 2 X.

We use Ekeland’s variational principle in the space

X :=

⇢
v 2 u + W 1,1

0 (Qr ) :

R
Qr
 (x, |rv|) dx 

R
Qr
 (x, |ru|) dx

and kvkL1(Qr )  kukL1(Qr )

�
,

with the metric
d(v1, v2) := Cr

Z

Qr

|rv1 � rv2| dx,

where Cr > 0 is a constant which will be determined later. Moreover we define
f : X ! R by f (v) := F(v, Qr ). We first check the assumptions for Ekeland’s
principle.

Lemma 8.2. Let ' 2 8w(�). Then (X, d) is a complete metric space. If (t, z) !
F(x, t, z) is continuous for every x , then f is lower semicontinuous.

Proof. It is enough to prove that (X, d) is a closed subspace of (u + W 1,1
0 (Qr ), d)

since (u+W 1,1
0 (Qr ), d) is a complete metric space. Let vk be a sequence in X such

that Z

Qr

|rvk � rv| dx ! 0 as k ! 1,
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for some v 2 u + W 1,1
0 (Qr ). Then we may assume, passing to a subsequence, if

necessary, that vk ! v and rvk ! rv a.e. in Qr . By [39, Lemma 2.1.6],  (x, ·)
is lower semicontinuous. Therefore Fatou’s lemma yields that
Z

Qr

 (x, |rv|) dx =
Z

Qr

 (x, lim
k!1

|rvk |) dx 
Z

Qr

lim inf
k!1

 (x, |rvk |) dx

 lim inf
k!1

Z

Qr

 (x, |rvk |) dx 
Z

Qr

 (x, |ru|) dx;

the last step holds since vk 2 X . We also see that kvkL1(Qr ) 6 lim inf
k!1

kvkkL1(Qr ) 6

kukL1(Qr ). Hence v 2 X , and so (X, d) is closed.
For the same sequence we have that F(x, vk(x),rvk(x))!F(x, v(x),rv(x))

for a.e. x 2 Qr . Then lower semicontinuity follows by Fatou’s lemma.

Notice that a weak quasiminimizer with bound 1 is the same thing as a local
quasiminimizer. Thus we can cover both the bounded and unbounded case with the
next lemma, where we show that there exists an approximating weak quasimini-
mizer in every cube Qr .

Lemma 8.3. Let ' 2 8w(�) satisfy (aDec)1 and (t, z) ! F(x, t, z) be continu-
ous. Let Q2r ⇢ � with |Qr |  1. Let u be an !-minimizer of F . Then there exists
a weak quasiminimizer w 2 u+W 1,'

0 (Qr ) with bound kukL1(Qr ) of the functional
Z

Qr

 (x, |rw|) +3 dx with 3 :=
Z

Qr

'(x, |ru|) dx +30 + 1,

satisfying the estimates
Z

Qr

 (x, |rw|) dx . 3, kwkL1(Qr )  kukL1(Qr ) and (8.1)

Z

Qr

|ru � rw| dx  !(r)( �
Qr

)�1(3). (8.2)

Proof. Let (X, d) and f be as above and choose Cr := [!(r)|Qr |( 
�
Qr

)�1(3)]�1.
For " > 0, let v" 2 X be such that f (v")  infX f + ". Since u is an !-minimizer
of F ,

f (u)  (1+ !(r)) f (v")
 inf

X
f + " + !(r)

�
inf
X
f + "

�

6 inf
X
f + " + !(r)

✓
N
Z

Qr

'(x, |ru|) +30 dx + "

◆
,
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from which, by letting " ! 0+ we obtain

f (u)  inf
X
f + !(r)N

Z

Qr

'(x, |ru|) +30 dx  inf
X
f + !(r)N |Qr |3.

By Ekeland’s principle (Lemma 8.1), there exists w 2 X with f (w)  f (u),

d(u, w) = Cr
Z

Qr

|ru � rw| dx  1

and
f (w)  f (v) + Cr!(r)N |Qr |3

Z

Qr

|rw � rv| dx

for all v 2 X . Note that the former estimate is (8.2). Furthermore, (8.1) follows
from w 2 X and  . ' + 1 used to estimate:

Z

Qr

 (x, |rw|) dx 
Z

Qr

 (x, |ru|) dx .
Z

Qr

'(x, |ru|) + 1 dx  3.

It remains to prove that w is a weak quasiminimizer of the  + 3 energy with
bound kukL1(Qr ). Let v 2 w + W 1,1

0 (Qr ) with kvkL1(Qr )  kukL1(Qr ). Assume
first that v /2 X . Since v satisfies the L1-bound by assumption, this means that
% (rv) > % (ru). By this and w 2 X , we have
Z

Qr

 (x, |rw|) +3 dx 
Z

Qr

 (x, |ru|) +3 dx <

Z

Qr

 (x, |rv|) +3 dx .

We may cancel the integral over the set {w = v}, since rw = rv a.e. in it, so we
have the quasiminimizing property in this case.

It remains to consider the case v 2 X . By the structure conditions on F , the
estimate of f (w) above, '   , the definition of Cr and the triangle inequality, we
conclude that

⌫

Z

Qr

'(x, |rw|) dx  f (w)  f (v) + Cr!(r)N |Qr |3
Z

Qr

|rw � rv| dx

 N
Z

Qr

 (x, |rv|) +30 dx

+
N3

( �
Qr

)�1(3)

Z

Qr

|rw| + |rv| dx .

By [39, Lemma 2.2.1],  �
Qr
is equivalent with a convex ⇠ 2 8w. By [39, The-

orem 2.4.10], we have 3
⇠�1(3)

⇡ (⇠⇤)�1(3). It follows from Young’s inequality,
(aInc)1 and (2.1) that

3

( �
Qr

)�1(3)
t ⇡ (⇠⇤)�1(3)t  ⇠("t) + c"⇠⇤�(⇠⇤)�1(3)

�

. "⇠(t) + c"3 ⇡ " �
Qr

(t) + c"3
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for any " > 0. Using this for t = |rw| and t = |rv| as well as the estimate
1
c1 (x, |rw|) � 1  '(x, |rw|), we conclude that

1
c1

Z

Qr

 (x, |rw|) dx � |Qr |


N
⌫

Z

Qr

 (x, |rv|) +30 dx +
N3

⌫( �
Qr

)�1(3)

Z

Qr

|rw| + |rv| dx

 c2
Z

Qr

 (x, |rv|) +30 + " �
Qr

(|rw|) + " �
Qr

(|rv|) + c"3 dx .

We choose " so small that c2"  1
2c1 . Therw-term can be absorbed in the left-hand

side and so it follows that
1
2c1

Z

Qr

 (x, |rw|) dx . (c2 + 1
2c1 )(c" + 1)

Z

Qr

 (x, |rv|) +3 dx .

Hence w is a weak quasiminimizer of the  +3 energy.

Now we are ready to show that !-minimizers are locally Hölder continuous.

Proof of Theorem 1.1. Let Q2r ⇢ � be such that (30 + 1)|Q2r |  1 and
%L'(Q2r )(|ru|)  1. Let w 2 W 1,'(Qr ) be the weak quasiminimizer with bound
kukL1(Qr ) from Lemma 8.3.

Let us first estimate ( �
Qr

)�1(3) and denote �0 := ( �
Qr

)�1(30 + 1). By the
definition of 3, '   and (aDec) we have

( �
Qr

)�1(3) . ( �
Qr

)�1
✓Z

Qr

 (x, |ru|) dx
◆

+ �0.

By  . ' + 1 and %L'(Q2r )(|ru|)  1 we have
R
Qr
 (x, |ru|) dx . 1

|Qr |
, and

hence (A0), (A1), (aDec) and (2.1) yield

( �
Qr

)�1(3) . ( +
Qr

)�1
✓Z

Qr

 (x, |ru|) dx
◆

+ �0.

Since u is a cubical minimizer of F , we may use Lemma 4.4 and thus (4.1) holds.
By Lemma 4.5, (aDec) and (2.1) we conclude that

( �
Qr

)�1(3).( +
Qr

)�1
✓
 +
Qr

⇣Z

Qr

|ru| dx
⌘
+30+1

◆
+�0 ⇡

Z

Qr

|ru| dx +�0.

In the case of (A1-n), we first use Lemma 3.1 with p = 1, then the estimate (4.3),
and finally (A0) and the boundedness of u:

 �
Qr

✓Z

Qr

|ru| dx
◆


Z

Qr

 (x, |ru|) dx .
Z

Q2r
 
⇣
x, |u�uQ2r |

r

⌘
dx +30

.  �
Q2r

⇣
1
r kukL1(Qr )

⌘
+30 + 1 . (30 + 1) �

Qr

⇣
1
r

⌘
.
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Thus we have
R
Qr

|ru| dx . 1
r with implicit constant depending on 30 and hence

by (A1-n), (aDec) and (A0) we have

 +
Qr

✓Z

Qr

|ru| dx
◆

.  �
Qr

✓Z

Qr

|ru| dx
◆

+ 1.

Since u is a cubical minimizer of F , we obtain by Lemma 4.5, (aDec), the previous
estimate and (2.1) that

( �
Qr

)�1(3) . ( �
Qr

)�1
✓Z

Qr

 (x, |ru|) dx
◆

+ �0

. ( �
Qr

)�1
✓
c +

Qr

⇣Z

Qr

|ru| dx
⌘

+30 + 1
◆

+ �0

.
Z

Qr

|ru| dx + �0.

Thus we have the same estimate for ( �
Qr

)�1(3) in both cases.
By (8.2), we obtain that

Z

Qr

|ru � rw| dx . !(r)( �
Qr

)�1(3)

. !(r)
Z

Qr

|ru| + �0 dx .

By Lemma 3.1 and (8.1),
Z

Qr

|rw| dx . ( �
Qr

)�1
✓Z

Qr

 (x, |rw|) dx
◆

. ( �
Qr

)�1(3) .
Z

Qr

|ru| + �0 dx .

On the other hand, from the Morrey estimate (Theorem 7.2) and Remark 6.4, we
have, for any 0 < � < r , that

Z

Q�
|rw| dx .

⇣�
r

⌘n+µ�1 Z

Qr

|rw| + �0 dx .

Furthermore, since µ 2 (0, 1),
R
Q� �0 dx . (�r )n+µ�1 R

Qr
�0 dx . Combining these

estimates, we find for 0 < � < r , that

Z(� ) :=
Z

Q�
|ru| + �0 dx .

Z

Q�
|ru � rw| + |rw| + �0 dx

.

!(r) +

⇣�
r

⌘n+µ�1
� Z

Qr

|ru| + �0 dx .
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Set ✓ := �
r . Then the previous inequality can be written as

Z(✓r)  c1
⇥
!(r) + ✓n+µ�1⇤Z(r).

We first fix ✓ such that c1 ✓n+µ�1 = 1
2✓

n+µ
2�1. Then we choose r0 so small that

c1!(r)  1
2✓

n�µ
2+1 when r 2 [0, r0]. Then the inequality Z(✓r)  ✓n+

µ
2�1Z(r)

holds for all r  r0. Thus it follows from [35, Lemma 7.3, page 229] that
Z

Q�
|ru| + �0 dx .

⇣�
r

⌘n+µ
2�1 Z

Qr

|ru| + �0 dx

for all r  r0 and �  ⌧r . This and the Poincaré inequality imply that

��n�µ
2

Z

Q�
|u � uQ� | dx . ��n�µ

2+1
Z

Q�
|ru| dx . 1

for all cubes Q� ⇢ Qr with �  ⌧r . For cubes Q� with � > ⌧r the claim is
trivial. Thus u belongs to the Campanato space L1,n+

µ
2 (Qr ). This implies by the

Campanato–Hölder embedding [35, Theorem 2.9, page 52] that u 2 C0,
µ
2

loc (Qr ).
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[39] P. HARJULEHTO and P. HÄSTÖ, “Orlicz Spaces and Generalized Orlicz Spaces”, Lecture
Notes in Mathematics, Vol. 2236, Springer, Cham, 2019.
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