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A quantitative version of the isoperimetric inequality:
the anisotropic case

LUCA ESPOSITO, NICOLA FUSCO AND CRISTINA TROMBETTI

Abstract. We state and prove a stability result for the anisotropic version of the
isoperimetric inequality. Namely if E is a set with small anisotropic isoperimetric
deficit, then E is “close” to the Wulff shape set.

Mathematics Subject Classification (2000): 52A40 (primary); 28A75 (secon-
dary).

1. Introduction and main results

Let � : RN → [0, +∞) be a positively 1−homogeneous convex function such that
�(x) > 0 for all x �= 0. The Wulff problem associated to � is

Min

{∫
∂∗ E

�(νE (x)) dHN−1 : LN (E) = const

}
, (1.1)

where E ranges among all sets of finite perimeter satisfying the constraint LN (E) =
const Here νE is the (generalized) outer normal to E and ∂∗E is the (reduced)
boundary of E (which equals the usual boundary ∂ E if E is smooth). For an
anisotropic function �, one of the first attempts to solve this problem is contained in
a paper by G. Wulff [22] dating back to 1901. However, it was only in 1944 that A.
Dinghas [9] proved that within the special class of convex polytopes the minimiser
of (1.1) is a set homothetic to the unit ball of the dual norm of �(x), i.e.,

W� = {x ∈ R
N : 〈x, ν〉 − �(ν) < 0 for all ν ∈ SN−1} , (1.2)

which is known as the Wulff shape set.
Introducing the quantity

P�(E) =
∫

∂∗ E
�(νE (x)) dHN−1 , (1.3)
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the minimality of W� is expressed by saying that P�(E) ≥ P�(W�) for all sets
such that LN (E) = LN (W�) or, equivalently, that

P�(E) ≥
( LN (E)

LN (W�)

) N−1
N

P�(W�) , (1.4)

for all sets E with finite measure. Thus, inequality (1.4) can be viewed as a natural
extension of the classical isoperimetric inequality where the usual perimeter is re-
placed by the ‘perimeter’ defined in (1.3). And in this respect the Wulff shape set
W� plays the same role or the unit ball B1 in the isoperimetric inequality. In fact
one can prove that equality occurs in (1.4) if and only if E is equivalent to W� (up
to a translation and a homothety). This latter result was first proved by J. Taylor
([19, 20, 21]) using deep techniques of geometric measure theory and later on, with
a more analytical and simpler proof, by I. Fonseca and S. Müller in [12] (see also
the 2-dimensional proof given in [7]).

In this paper we give a quantitative version of inequality (1.4). Namely we
prove that if E is a set of finite perimeter with prescribed measure such that P�(E)

is close to the minimum value in (1.1), then E is close (in a precise, quantitative
sense) to a homothetic of the Wulff shape set.

In the special case �(x) = |x |, i.e., when P� coincides with the standard
perimeter, this problem was first studied by T. Bonnesen [3] in the 2-dimensional
case. For the general N -dimensional case, recent results have been obtained by B.
Fuglede (see [13]) and R. Hall [15]. But before describing them with more details,
let us introduce a quantity which plays a crucial role in our problem.

Given a set of finite perimeter E , with finite positive measure, we call isoperi-
metric deficit of E with respect to � the quantity

��(E) = P�(E)

P�(W�)

(LN (W�)

LN (E)

) N−1
N − 1 . (1.5)

The geometric meaning of ��(E) is clear when one rewrites the isoperimetric in-
equality (1.4) in the equivalent form

P�(E)

P�(W�)

(LN (W�)

LN (E)

) N−1
N ≥ 1 .

Thus, ��(E) measures how far is the set E from realizing equality in (1.4).
Denoting by �(E) the isoperimetric deficit of E referred to the usual perimeter

P(E), the theorem proved by Fuglede in [13] states that if E is a convex subset of
RN (N ≥ 4) such that LN (E) = LN (B1), then (up to a translation)

δH (E, B1) ≤ const
[
�(E)

] 2
N+1

, (1.6)
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where δH denotes the Hausdorff distance of two convex sets (see the definition
(1.15) below). Later on, Hall in [15] extended Fuglede’s result to sets of finite
perimeters. He proved that if LN (E) = LN (B1), then (up to a translation)

LN (E
B1) ≤ const
[
�(E)

] 1
4
. (1.7)

However, the proof given by Fuglede heavily relies on the fact that the minimal
set in the case of the usual perimeter is a ball. Indeed his argument is based on
a careful estimate of the Poincaré inequality for maps from SN−1 into RN which
is obtained via spherical harmonics and the use of Laplace-Beltrami operator. On
the other hand, also Hall’s proof of (1.7) uses in an essential way the property that
the usual perimeter decreases under Steiner symmetrization with respect to a line, a
fact which is no longer true in our setting. Therefore, it is clear that both proofs fail
in the anisotropic case, where the geometry of the optimal set plays no role (since
W� can be any open convex set) and thus one must try to extract all the relevant
information from the smallness of ��(E) alone. Notice also that the exponent on
the right-hand side of (1.7) does not seem to be optimal since, as observed in [15],
the optimal exponent should be 1/2 in any dimension. Moreover, it is clear that if
E is not convex one cannot expect any better estimate than (1.7), while the L∞ type
estimate (1.6) is due to the fact that E is assumed to be convex.

In order to state our main result, which deals with the anisotropic perimeter
(1.3), let us recall the assumptions on the convex function �,

�(t x) = t�(x) for x ∈ RN , t ≥ 0, �(x) > 0 if x �= 0 , (1.8)

and set

m� = min
ν∈SN−1

�(ν), M� = max
ν∈SN−1

�(ν) . (1.9)

Notice that, denoting by Br the open ball of radius r centered at the origin, from the
definition (1.2) of W� and from (1.9) it follows easily that

Bm� ⊂ W� ⊂ BM� . (1.10)

Theorem 1.1. Let � be a convex function satisfying (1.8). There exists a con-
stant c0 depending only on � and N such that if E is a set of finite perimeter with
LN (E) = LN (W�), then there exists x0 ∈ RN with the property that

LN ((x0 + E)
W�) ≤ c0

[
��(E)

]α(N )

, (1.11)

where α(N ) = 2

N (N + 1)
if N ≥ 3, α(2) = 2/9.
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Notice that the isoperimetric deficit ��(E) is invariant under dilations. There-
fore, the estimate (1.11) can be immediately extended to the case LN(E) �=LN(W�),
provided that we replace E by λE , where λ is such that LN (λE) = LN (W�).

The key idea for the proof of Theorem 1.1 is that the isoperimetric deficit
can be used to estimate the difference of the measures of the (N −1)-dimensional
sections of E and W� , as stated by the next lemma.

Lemma 1.2. Under the same assumptions of Theorem 1.1, there exists a constant
c1, depending only on m� , M� and N, such that there exists a point x0 ∈ RN with
the property that for all ν ∈ SN−1

∫ +∞

−∞
|HN−1({x ∈ x0+E : 〈x, ν〉=s}) − HN−1({x ∈W� : 〈x, ν〉=s})|ds

≤ c1[��(E)]β(N ), (1.12)

where β(N ) = 1/N if N ≥ 3, β(2) = 1/3.

The proof of this estimate uses two main ingredients. The first one, Theorem
2.4, is a sharp version of the classical Brunn–Minkowski inequality proved in [12].
This theorem allows us to estimate P�(E) (hence ��(E)) from below by means
of an integral expression involving the measures of the sections of E and W� or-
thogonal to a fixed direction ν (Lemma 2.7). However this estimate can be used
for proving (1.12) only if the measures of these sections are bounded away from
zero. To fulfill this requirement we must truncate the set E . More precisely, in
Lemma 3.1 we show that if ��(E) is small, one may truncate E by means of two
hyperplanes orthogonal to ν in such a way that the volume and the perimeter of the
resulting set Ẽ differ very little from the corresponding quantities for E , and the
measures of all sections of Ẽ are greater than ��(E).

To understand better the role played by the estimate (1.12) notice that, by Fu-
bini’s theorem, if E and F are measurable sets, then for all ν ∈ SN−1

∫ +∞

−∞
|HN−1({x ∈ E : 〈x, ν〉=s}) −HN−1({x ∈ F : 〈x, ν〉=s})| ds ≤ LN (E
F).

(1.13)

Observe that Theorem 1.1 would follow at once from (1.12) if a reverse inequality,
such as

LN(E
F)≤c sup
ν∈SN−1

+∞∫
−∞

|HN−1({x ∈ E : 〈x, ν〉=s})−HN−1({x ∈ F : 〈x, ν〉=s})|ds,

(1.14)

would hold. Since the function

(ν, s) ∈ S
N−1 × R �→

(
ν,HN−1({x ∈ E : 〈x, ν〉=s})

)
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represents the Radon transform of the characteristic function χE of E , an inequality
of the type (1.14) would imply the continuity of the inverse of the Radon transform
of characteristic functions. Unfortunately, this continuity property is in general false
(see [17]).

Neverthless, we are able to get an estimate of the type (1.14), with F replaced
by W� , using the fact that W� is a convex set and that LN (E) = LN (W�). To this
aim, one needs to observe that when F is a convex polytope and Hν is a hyperplane
orthogonal to ν containing one of the of the (N −1)-dimensional facets of F and
H+

ν is the open half space determined by Hν not containing F , then the measure of
(E \ F) ∩ H+

ν can be estimated by

∫ +∞

−∞
|HN−1({x ∈ E : 〈x, ν〉=s})−HN−1({x ∈ F : 〈x, ν〉=s})| ds .

This fact, together with the equality LN (E) = LN (F), yields (1.14) with a constant
c depending on the number of facets of F . Combining this observation with a
quantitative approximation result of convex sets by polytopes (see Theorem 2.9),
leads eventually to the proof of (1.11). However, this approximation argument is
responsible for the fact that the exponent on the right-hand side of (1.11) is much
worse than the one in (1.12).

We conclude the presentation of the main results contained in the paper observ-
ing that when E is convex (or, for N = 2, connected (see [3])), the L1 type estimate
(1.11) can be replaced by an L∞ one. In order to state this stronger estimate we
recall that if C1 and C2 are two open convex sets in RN the Hausdorff distance of
the two sets is defined by

δH (C1, C2) = max
{

sup
x∈C1

inf
y∈C2

|x − y|, sup
y∈C2

inf
x∈C1

|x − y|
}

. (1.15)

Theorem 1.3. Under the assumptions of Theorem 1.1, there exists a constant c2
depending only on � and N, such that if E is an open convex set with LN (E) =
LN (W�), then there exists x0 ∈ RN with the property that

δH (x0 + E, W�) ≤ c2

[
��(E)

] α(N )
N

, (1.16)

where α(N ) is the exponent appearing in (1.11).

ACKNOWLEDGMENTS. We would like to thank Prof. Paolo Gronchi for some
helpful discussions concerning the approximation of convex sets with polytopes.
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2. Background material

We collect in this section the definition and a few basic properties of sets of finite
perimeter needed in the sequel. For all this material our main reference is the book
[2]. The section contains also a few results on convex sets which are probably
known only to the specialists in the field. However for all these properties we
have preferred to refer to the books [4], [14] instead of referring to the original
papers. Finally, the section contains a sharp form of the classical Brunn–Minkowski
inequality proved in [12].

Let E be a measurable set in RN . We recall that E is a set of finite perimeter
if the distributional derivative DχE of its characteristic function χE is a Radon
measure with values in RN having finite total variation |DχE |(RN ). The quantity
|DχE |(RN ) is called the perimeter of E and denoted by P(E).

If E is a set of finite perimeter, the reduced boundary ∂∗E of E consists of all
points x ∈ supp|DχE | such that the limit

νE (x) = − lim

→0

DχE (B
(x))

|DχE (B
(x))| (2.1)

exists and satisfies |νE (x)| = 1. The vector νE (x) is called the generalized outer
normal to E at x . From (2.1) it is clear that −νE (x) coincides with the derivative

DχE|DχE | (x) of the Radon measure DχE with respect to its total variation. Notice also
that the reduced boundary ∂∗E is a (generally proper) subset of the topological
boundary ∂ E . However, if E is a C1 open set, then ∂∗E = ∂ E . Moreover, a result
due to De Giorgi (see, e.g., [2, Theorem 3.59]) states that if E is a set of finite
perimeter, then

|DχE | = HN−1 ∂∗E . (2.2)

The following proposition is a generalization to P� of a well known approximation
result of sets of finite perimeter by smooth sets.

Proposition 2.1. Let E be a set of finite perimeter, with finite measure. Then, there
exists a sequence E j of C∞ bounded open sets such that

lim
j→∞LN (E j
E) = 0, lim

j→∞ P�(E j ) = P�(E) . (2.3)

Moreover, if E is contained in a bounded open set � ⊂ RN and �0 is an open set
such that � ⊂⊂ �0, the sets E j can be chosen so that E j ⊂ �0 for all j ∈ N.

Proof. If � = |x |, i.e., P� coincides with the usual perimeter, the assertion is a well
known property of sets of finite perimeter (see [2, Theorem 3.42]) stating that there
exists a sequence of C∞ bounded open sets E j such that

lim
j→∞LN (E j
E) = 0, lim

j→∞ P(E j ) = P(E) . (2.4)
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From equations (2.1) and (2.2) and from the definition (1.3) we have

P�(E) =
∫

RN
�

(
− DχE

|DχE |
)

d|DχE | . (2.5)

Thus, the second equality in (2.3) follows at once from (2.4) and from Reschet-
nyak’s continuity theorem (see [2, Theorem 2.39]).

Remark 2.2. Notice that if E is a measurable set with finite measure, then

lim
λ→1

LN (λE
E) = lim
λ→1

∫
RN

|χλE (x) − χE (x)| dx

= lim
λ→1

∫
RN

|χE (x/λ) − χE (x)| dx = 0 , (2.6)

where the last equality follows approximating χE in L1(RN ) by a continuous func-
tion with compact support ϕ and then letting ‖ϕ − χE‖L1 go to zero. Thus, mul-

tiplying the smooth sets E j satisfying (2.3) by λ j =
(
LN (E)/LN (E j )

)1/N
and

using (2.6), we get that the sets E ′
j = λ j E , satisfy the two equalities in (2.3) and

the constraint LN (E ′
j ) = LN (E) for all j .

The following Brunn–Minkowski inequality (see [4, Theorem 8.1.1]) holds for
all measurable subsets of RN (here and in the sequel LN stands for the Lebesgue
measure).

Theorem 2.3 (Brunn–Minkowski inequality). If E and F are measurable sets in
RN , then

LN (E + F) ≥
(
(LN (E))1/N + (LN (F))1/N

)N
. (2.7)

Let us now introduce some quantities which are going to play an important role in
the proof of Theorem 1.1.

Let E be a measurable set with positive, finite measure and ν ∈ SN−1 a fixed
direction. We set, for all s ∈ R,

Eν,s = {x ∈ E : 〈x, ν〉 = s}, E−
ν,s = {x ∈ E : 〈x, ν〉 < s},

hE,ν(s) = HN−1(Eν,s)

LN (E)
, gE,ν(s) = LN (E−

ν,s)

LN (E)
.

In the sequel, we shall often take ν equal to the N -th coordinate vector eN . In this
case we shall simply write Es , E−

s , gE (s), hE (s), in place of Eν,s , E−
ν,s , gE,ν(s),

hE,ν(s), and denote the generic point x ∈ RN also by (x ′, s), with x ′ ∈ RN−1 and
s ∈ R.
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A few remarks on the above definitions are in order. First, recall that the inter-
section of two sets of finite perimeter is a set of finite perimeter (see [2, Proposition
3.38]). Therefore, if E is bounded and has finite perimeter the same is true for each
set E−

ν,s . Moreover, if E is a C∞ open set, from the definition of reduced boundary
one easily gets that for any s ∈ R

∂∗E−
ν,s = (∂ E ∩ {x : 〈x, ν〉 < s}) ∪ (E ∩ {x : 〈x, ν〉 = s}) ∪ 
ν,s , (2.8)

where 
ν,s is a subset of (∂ E)ν,s . Notice also that gE,ν is an absolutely continuous
function and that g′

E,ν(s) = hE,ν(s) for L1-a.e. s ∈ R.
The following sharp version of Brunn-Minkowski inequality can be found in

[12, Lemma 3.2].

Theorem 2.4. Let ν ∈ SN−1 and let E, F be bounded measurable sets such that
LN (E) = LN (F). If the functions gE,ν and gF,ν satisfy g′

E,ν(s) > 0, g′
F,ν(s) > 0

for L1-a.e. s in the sets {0 < gE,ν < 1} and {0 < gF,ν < 1}, respectively, then for
all ε > 0

LN (E + εF)≥LN (E)

∫ 1

0

(
1 + ε

(
γF,ν(t)

γE,ν(t)

) 1
N−1

)N−1(
1 + ε

γE,ν(t)

γF,ν(t)

)
dt , (2.9)

where γE,ν(t) = hE,ν(g
−1
E,ν(t)) for all t ∈ (0, 1) and γF,ν is defined similarly.

Notice that since gE,ν is a strictly increasing absolutely continuous function
with g′

E,ν(s) > 0 for L1-a.e. s in {0 < gE,ν < 1}, then g−1
E,ν is absolutely continu-

ous in (0, 1) and

γE,ν(t) = hE,ν(g
−1
E,ν(t)) = 1

Dg−1
E,ν(t)

for L1-a.e. t ∈ (0, 1) .

Next lemma contains some useful properties of the function hE,ν .

Lemma 2.5. Let E be a bounded open subset of RN and let ν ∈ SN−1. Then
hE,ν : R → R is lower semicontinuous. Moreover, if E is C∞ and

HN−1({x ∈ ∂ E : νE (x) = ±ν}) = 0 , (2.10)

hE,ν is continuous and for any s ∈ R

P�(E−
ν,s) =

∫
{x∈∂ E :〈x,ν〉<s}

�(νE (x)) dHN−1 + �(ν)HN−1(Eν,s) . (2.11)

Proof. To simplify the notation we assume ν = eN and LN (E) = 1.
One can easily check that if E is any open subset of RN , then hE is lower

semicontinuous.
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Let us now assume that E is smooth and that (2.10) holds. Let CR = (−R, R)N−1×
(α, β) be an open cylinder such that E ⊂ CR ; then the function s ∈ R →
HN−1((CR \ E)s) is lower semicontinuous.
Moreover, since, by (2.10), HN−1((∂ E)s) = 0 for all s ∈ R,

hE (s) = 2N−1 RN−1−HN−1((CR \ E)s)−HN−1((∂ E)s)

= 2N−1 RN−1−HN−1((CR \ E)s) . (2.12)

Thus hE is upper semicontinuous, hence continuous.
Let us now fix s ∈ R. As we have just observed, (2.10) implies thatHN−1((∂ E)s)=
0. Thus, (2.11) follows at once from this equation and from equality (2.8).

Lemma 2.5 could be suitably extended to sets of finite perimeter (compare for
instance with Proposition 1.2 in [6]). However this general version, which would
require a more delicate proof, is not needed in the sequel.

Next lemma is a sharper version of the approximation result stated in Proposi-
tion 2.1 and it is used in order to prove the estimate of P�(E) provided by Lemma
2.7.

Lemma 2.6. Take E a bounded set of finite perimeter and let ν ∈ SN−1 such that
hE,ν(s) > 0 for L1-a.e. s ∈ {0 < gE,ν < 1}. Then, there exists a sequence of
C∞ equibounded open sets E j , such that LN (E j
E) → 0, P�(E j ) → P�(E) as
j → ∞, with the property that hE j ,ν(s) > 0 for all s ∈ {0 < gE j ,ν < 1}.
Proof. Notice that for N ≥ 3 the result is trivial (even without the positivity as-
sumption on hE,ν). In fact, it is enough to add to E a sequence of thin cylinders in
direction ν with arbitrarily small perimeters.
This argument clearly fails in dimension N = 2. In this case, let us assume for
simplicity that ν = e2. By Proposition 2.1 there exists a sequence of equibounded
C∞ open sets E ′

j such that LN (E ′
j
E) → 0 and P�(E ′

j ) → P�(E). Let us set
(α j , β j ) = {s : 0 < gE ′

j
(s) < 1}, C j = {s ∈ (α j , β j ) : hE ′

j
(s) = 0} and take an

open set A j containing C j such that L1(A j ) < L1(C j ) + 1/j . Then, for any j , A j

is the union of countably many open intervals I h
j . Notice that L1(C j ) → 0, hence

L1(A j ) → 0. To conclude the proof it is enough to set

E j = E ′
j ∪ (∪h Bh

j ) ,

where each Bh
j is a suitably placed disk, corresponding to the interval I h

j , with

the property that P(∪h Bh
j ) ≤ cL1(A j ) and hE j (s) > 0 for all s such that

0 < gE j (s) < 1.

Next result is essentially contained in the proof of Theorem 3.3 of [12]. How-
ever, since it provides an important tool for our proof of Theorem 1.1, for reader’s
convenience we give the details of its proof.
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Lemma 2.7. Let E be a bounded set of finite perimeter such thatLN(E)=LN(W�).
Then, for any ν ∈ SN−1 such that hE,ν(s) > 0 for L1-a.e. s ∈ {0 < gE < 1},

P�(E) ≥ LN (W�)

∫ 1

0

[
(N − 1)

(
γW�,ν(t)

γE,ν(t)

) 1
N−1 + γE,ν(t)

γW�,ν(t)

]
dt , (2.13)

where γE�,ν , γW�,ν are defined as in Theorem 2.4.

Proof. Let us assume ν = eN . If E is a C∞ bounded open set, it is well known (see
for instance Lemma 4.7 in [11]) that

P�(E) = lim
ε→0

LN (E + εW�) − LN (E)

ε
.

From this equality, by applying (2.9) with F = W� , with elementary calculations
we get

P�(E) ≥ LN (W�) lim
ε→0

1

ε

∫ 1

0

{[
1 + ε

(
γW� (t)

γE (t)

) 1
N−1

]N−1(
1 + ε

γE (t)

γW� (t)

)
− 1

}
dt

= LN (W�)

∫ 1

0

[
(N − 1)

(
γW� (t)

γE (t)

) 1
N−1 + γE (t)

γW� (t)

]
dt ,

hence the assertion follows. Notice also that (2.13), by means of the change of
variable t = gE (s), can be restated as

P�(E) ≥ LN (W�)

∫ +∞

−∞

[
(N − 1)

(
γW� (gE (s))

hE (s)

) 1
N−1 + hE,ν(s)

γW� (gE (s))

]
hE (s) ds .

(2.14)

The general case of a set of finite perimeter then follows by a straightforward ap-
proximation argument based on Lemma 2.6 and Remark 2.2.

Let us state a few results on convex sets that will be needed in the sequel. The first
one, which is a consequence of the Brunn–Minkowski inequality (2.7), concerns
the function hE,ν , when E is convex.

Proposition 2.8. Let C be a bounded open convex subset of RN and ν ∈ SN−1.
Then, the set I = {s ∈ R : hC,ν(s) > 0} is an open interval and the function

s ∈ I → h1/(N−1)
C,ν (s) is concave.

Proof. Let us assume, without loss of generality, that LN (C) = 1 and ν = eN . We
claim that if s1, s2 ∈ I , then for any t ∈ (0, 1)

th
1

N−1
C (s1) + (1 − t)h

1
N−1
C (s2) ≤ h

1
N−1
C (ts1 + (1 − t)s2) . (2.15)
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To this aim, we observe that since C is convex, any convex combination of Cs1 and
Cs2 is contained in C . Therefore we have

tCs1 + (1 − t)Cs2 ⊂ Cts1+(1−t)s2 for all t ∈ (0, 1) .

From this inclusion, applying the Brunn–Minkowski inequality (2.7) in RN−1 and
recalling that LN (C) = 1, we get

h
1

N−1
C (ts1 + (1 − t)s2) ≥

[
HN−1(tCs1 + (1 − t)Cs2)

] 1
N−1

≥
[
HN−1(tCs1)

] 1
N−1 +

[
HN−1((1 − t)Cs2)

] 1
N−1

= th
1

N−1
C (s1) + (1 − t)h

1
N−1
C (s2) .

Hence, (2.15) follows and from (2.15) we get immediately that I is an interval and

that h
1

N−1
C is concave in I . The fact that I is open is a consequence of the lower

semicontinuity of hC stated in Lemma 2.5.

The following approximation result (see [14, Section 5.2] and [10]) states that any
bounded open convex set C can be approximated from outside by a convex polytope
Pk with at most k facets such that the measure of Pk \ C is estimated by a suitable
power of k.

Theorem 2.9. Let C be a bounded open convex subset of RN . Then, there exists a
constant c3 depending only on C, such that for any integer k ≥ N + 1 there exists
a convex polytope Pk with at most k facets, containing C, with the property that

LN (Pk \ C) ≤ c3

k
2

N−1

. (2.16)

3. Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1. Throughout the section we
assume that E is a set of finite perimeter such that

LN (E) = LN (W�) . (3.1)

To simplify the notation we shall denote the isoperimetric deficit (1.5) of E by
�(E) or even by � if the set E to which we refer is understood. Notice that with
assumption (3.1) in force,

�(E) = P�(E) − P�(W�)

P�(W�)
. (3.2)
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We start with a technical lemma. We show that if the isoperimetric deficit � of a
set E is small then, given any direction ν, we may truncate E by two hyperplanes
orthogonal to ν, without changing much the volume and the perimeter, in such
a way that almost any section orthogonal to ν of the truncate of E has measure
bounded away from zero by �.

Lemma 3.1. There exist a constant �1, depending only on N, and two constants
c4, c5, depending only on M� and N, such that if E is a bounded set with finite
perimeter and �(E) < �1, then for all ν ∈ SN−1 there exist s1 < s2 with the
property that

(i) hE,ν(s) ≥ c4�(E) for L1-a.e. s ∈ (s1, s2) ,

(ii) LN ({x ∈ E : 〈x, ν〉 < s1 or 〈x, ν〉 > s2}) ≤ 4N

N − 1
LN (E)�(E) ,

(iii) P�({x ∈ E : s1 < 〈x, ν〉 < s2}) ≤ P�(E)(1 + �(E)) ,

(iv) s2 − s1 ≤ c5 .

Proof. STEP 1. We start by proving the assertion under the additional assumption
that E is a C∞ open set and that

HN−1({x ∈ ∂ E : νE (x) = ±ν}) = 0 . (3.3)

Moreover, to simplify notation we assume that ν = eN and set

(α, β) = {s ∈ R : 0 < gE (s) < 1} .

For s ∈ (α, β), by rescaling E−
s and using the minimality of W� we have

P�(E−
s ) = g

N−1
N

E (s)P�

(
E−

s

g1/N
E (s)

)
≥ g

N−1
N

E (s)P�(W�) .

Similarly,

P�(E \ E−
s ) ≥ (1 − gE (s))

N−1
N P�(W�) .

Adding these two inequalities, and recalling (2.11) and (3.3), we get that for any
s ∈ (α, β)

P�(E)+hE (s)LN (E)[�(−eN )+�(eN )] ≥ P�(W�)
[
g

N−1
N

E (s)+ (1−gE (s))
N−1

N

]
.
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This inequality, together with (3.1), (3.2) and (1.9) yields

hE (s) ≥ P�(W�)

2M�LN (W�)

[
g

N−1
N

E (s) + (1 − gE (s))
N−1

N − 1 − �
]

(3.4)

= N

2M�

[
g

N−1
N

E (s) + (1 − gE (s))
N−1

N − 1 − �
]
,

where the last equality is a consequence of the well known equality

P�(W�) = NLN (W�) , (3.5)

which, in turn, follows from the coarea formula and the properties of the convex
function � (see for instance [12, Proposition 2.6 (iii)]).
Let ϕ : [0, +∞) → R be the function

ϕ(t) = t
N−1

N + (1 − t)
N−1

N − 1 − N − 1

N
t .

Notice that ϕ(0) = 0 and that for any t ∈ (0, 1/3N ) we have

ϕ′(t) = N − 1

N
[t−1/N − (1 − t)−1/N − 1] >

N − 1

N
[t−1/N − 21/N − 1]

>
N − 1

N
[t−1/N − 3] > 0 .

Therefore,

ϕ(t) > 0 for all t ∈
(

0,
1

3N

)
. (3.6)

Next, we set

�1 = 1

2

1

3N

N − 1

N
(3.7)

and prove the assertion for � < �1. Let s′ ∈ (α, β) be the smallest point such that

gE (s′) = 2�
N

N − 1
.

Such a point exists, since gE is continuous, gE (α) = 0 and gE (β) = 1 > 1/3N >

2�N/(N −1). Moreover, from (3.6) we have that ϕ(gE (s′)) > 0, hence

g
N−1

N
E (s′) + (1 − gE (s′))

N−1
N − 1 >

N − 1

N
gE (s′) = 2� . (3.8)
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Similarly, let us denote by s′′ the largest point in (α, β) such that

gE (s′′) = 1 − 2�
N

N − 1
.

Since ϕ(1 − gE (s′′)) > 0, as before we get

(1 − gE (s′′))
N−1

N + g
N−1

N
E (s′′) − 1 >

N − 1

N
(1 − gE (s′′)) = 2� . (3.9)

Let us now set, for t ∈ (0, 1),

ψ(t) = t
N−1

N + (1 − t)
N−1

N − 1 . (3.10)

The function ψ is strictly increasing in (0, 1/2) and strictly decreasing in (1/2, 1).
Therefore, since by the choice of �1 and the definition of s′, s′′ we have gE (s′) ∈
(0, 1/2), gE (s′′) ∈ (1/2, 1), from (3.8), (3.9), we get that

ψ(gE (s)) ≥ ψ(gE (s′)) = ψ(gE (s′′)) > 2� for all s ∈ (s′, s′′) . (3.11)

Thus, (3.4) and (3.11) yield

hE (s) >
N

2M�

� for all s ∈ (s′, s′′) . (3.12)

Finally, we choose the levels s1 and s2 as follows,

s1 =sup
{

s ∈ (α, s′) : hE (s)<
N

2M�

�
}
, s2 = inf

{
s ∈ (s′′, β) : hE (s)<

N

2M�

�
}
,

Notice that this definition is well posed since hE is continuous (by assumption (3.3)
and Lemma 2.5) and hE (s) = 0 for all s < α and s > β. Thus, from (3.12) we get

hE (s1) = hE (s2) = N

2M�

� , (3.13)

hence, from (3.12) and the definition of s1, s2, (i) follows.

STEP 2. Assertion (ii) follows from the equalities in (3.8) and (3.9), since

LN ({x ∈ E : 〈x, ν〉 < s1 or 〈x, ν〉 > s2}) ≤ LN (E)[gE (s′) + (1 − gE (s′′))]

= 4LN (E)
N

N − 1
� .
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To prove (iii), recall that assumption (3.3) implies that HN−1((∂ E)s) = 0 for all
s ∈ R. Therefore from (2.11), (3.13), and (3.5) we get

P�({x ∈ E : s1 < 〈x, ν〉 < s2}) =
∫

∂ E∩{s1<〈x,ν〉<s2}
�(νE ) dHN−1

+[�(−eN )hE (s1) + �(eN )hE (s2)]LN (E)

≤ P�(E) + 2M�LN (W�)
N

2M�

�

= P�(E) + P�(W�)� ≤ P�(E)(1 + �) .

To prove (iv) we argue as in the proof of Theorem 3.1 in [12]. Notice that from
(3.4), (3.10), (3.11), we get for all s ∈ (s′, s′′)

hE (s) ≥ N

2M�

[
g

N−1
N

E (s) + (1 − gE (s))
N−1

N − 1 − �
]

= N

4M�

[
g

N−1
N

E (s) + (1 − gE (s))
N−1

N − 1
]

+ N

4M�

[
g

N−1
N

E (s) + (1 − gE (s))
N−1

N − 1 − 2�
]

≥ N

4M�

[
g

N−1
N

E (s) + (1 − gE (s))
N−1

N − 1
]

= N

4M�

ψ(gE (s))

Therefore, integrating on (s′, s′′), we obtain

N

4M�

(s′′ − s′) ≤
∫ s′′

s′
hE (s)

ψ(gE (s))
ds =

∫ s′′

s′

g′
E (s)

ψ(gE (s))
ds ≤

∫ 1

0

1

ψ(t)
dt = c(N ) .

(3.14)

Thus, s′′ − s′ is bounded by a constant depending only on N and M� . On the other
hand, from the definition of s1 we obtain

N�

2M�

(s′ − s1) ≤
∫ s′

s1

hE (s) ds =
∫ s′

s1

g′
E (s) ds ≤ gE (s′) = 2�N

N − 1
.

Hence s′ − s1 ≤ 4M�/(N − 1) and a similar estimate holds for s2 − s′′. From these
inequalities and from (3.14), (iv) follows.
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STEP 3. Let us fix ν and prove the assertion without assuming (3.3). To this aim
we observe that the set{

ν ∈ S
N−1 : HN−1({x ∈ ∂ E : νE (x) = ±ν}) > 0

}
.

is at most countable. Therefore, there exists a sequence ν j converging to ν and
such that (3.3) holds for all ν j . Thus, from what we have proved in Step 2 we get a
sequence of equibounded intervals (s1, j , s2, j ) such that (i)–(iv) hold for all ν j .
For all j , let O j be an orthogonal map from RN into itself such that O j (ν) = ν j .
Notice that hE,ν j = hO−1

j (E),ν
and that LN (E
O−1

j (E)) → 0 as j → ∞. Thus,

(1.13) yields hE,ν j → hE,ν in L1(R), hence up to a subsequence (not relabelled)
there holds hE,ν j (s) → hE,ν(s) for L1-a.e. s ∈ R. Moreover, we may assume that
s1, j → s1 and s2, j → s2. Hence, letting j → ∞, estimates (i) and (iv) for ν follow
from the corresponding inequalities for the ν j ’s.
Notice also that

lim
j→∞LN ({x ∈ E : s1 < 〈x, ν〉 < s2}
{x ∈ E : s1, j < 〈x, ν j 〉 < s2, j })=0. (3.15)

Hence (ii) follows.
Finally, notice that from (2.5), by Reschetnyak’s lower semicontinuity theorem

(see [2, Theorem 2.38]), we have that P� is lower semicontinuous with respect to
the convergence in measure of sets with equibounded perimeters. Therefore, from
(3.15) we get

P�({x ∈ E : s1 < 〈x, ν〉 < s2}) ≤ lim inf
j→∞ P�({x ∈ E : s1, j < 〈x, ν j 〉 < s2, j }) .

Hence (iii) follows.
Finally, the case of a bounded set of finite perimeter E can be easily obtained by an
approximation argument using Proposition 2.1 and Remark 2.2.

The following elementary lemma will be used later.

Lemma 3.2. Let h : [a, b] → [0, +∞) be an absolutely continuous function, J ⊂
[a, b] a measurable set and and ϕ : J → [a, b] a measurable function such that
|ϕ(s) − s| ≤ ε for all s ∈ J . Then∫

J
|h(s) − h(ϕ(s))| ds ≤ 2ε

∫ b

a
|h′(s)| ds .

Proof. Setting ϕ(s) = s if s ∈ [a, b] \ J , we may always assume that J = [a, b].
From the assumption ϕ(s) ∈ [a, b], |ϕ(s) − s| ≤ ε for all s ∈ [a, b] we get, by
Fubini’s theorem∫ b

a
|h(s) − h(ϕ(s))| ds =

∫ b

a
ds

∣∣∣∣
∫ s

ϕ(s)
h′(t) dt

∣∣∣∣ ≤
∫ b

a
ds

∫ s+ε

s−ε

|h′(t)|χ[a,b](t) dt

=
∫ b

a
|h′(t)| dt

∫ b

a
χ[s−ε,s+ε](t) ds ≤ 2ε

∫ b

a
|h′(t)| dt .

Hence the assertion follows.
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Next lemma is the main step toward the proof of Theorem 1.1 and apart from an
extra boundedness assumption made on E , it coincides with Lemma 1.2. Its proof
is rather long, but it rests only on the two preliminary lemmas proved in this sec-
tion and on Lemma 2.7, not requiring any further deep result. For the reader’s
convenience it has been divided in several steps, each one providing a preliminary
estimate to (3.16).

Lemma 3.3. Given R > 0, there exists a constant c6, depending only on R, N,
M�, m� such that if E is a set of finite perimeter contained in a ball of radius R,
then there exists a point x0 in RN with the property that for all ν ∈ SN−1

∫ +∞

−∞
|HN−1({x ∈ x0+E : 〈x, ν〉=s}) − HN−1({x ∈ W� : 〈x, ν〉=s})| ds

≤ c6�
β(N )(E) , (3.16)

where β(N ) is the exponent appearing in (1.12).

Proof. Let us still denote by E the set obtained by translating E (if necessary) in
such a way that its barycenter coincides with the origin. Similarly, let us denote by
W the set obtained by translating W� in such a way that also the barycenter of W
is at the origin. Thus, there exists a constant L , depending only on R, N , M� such
that

E ⊂ BL , W ⊂ BL . (3.17)

In the sequel, we shall denote by c a constant, which may vary from line to line,
depending only on N , M�, m� . If the constant depends also on L (hence, on the
given radius R) we will stress this fact by writing c(L).
Without loss of generality, we may assume ν = eN .

STEP 1. From Lemma 3.1 and from the definition (3.7) of �1 we get that if
� < �1, there exist s′

1 < s′
2 such that, setting

E ′ := {(x ′, s) ∈ R
N−1 × R : s′

1 < s < s′
2} ,

the following estimates hold:


hE ′(s) ≥ c4� for L1-a.e. s ∈ (s′
1, s′

2),

LN (E \ E ′) ≤ 4N

N − 1
LN (E)� ≤ 1

2
LN (E),

P�(E ′) ≤ P�(E)(1 + �) .

(3.18)

Let us now set

λ =
( LN (E)

LN (E ′)

) 1
N

, Ẽ = λE ′ .
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Notice that LN (Ẽ) = LN (E) and that

(s1, s2) := {s : 0 < gẼ (s) < 1} = (λs′
1, λs′

2) .

The inequalities in (3.18) yield the following inequalities for Ẽ and for the constant
λ ≥ 1. 



hẼ (s) ≥ c4�

λ
for L1-a.e. s ∈ (s1, s2),

P�(Ẽ) ≤ λN−1(1 + �)P�(E),

1 ≤ λ ≤
(

1

1 − 4N�
N−1

) 1
N

≤ 1 + c� ≤ c′ .

(3.19)

Let us apply (2.13) to Ẽ ; we get

P�(Ẽ) ≥ LN (W )

∫ 1

0

[
(N − 1)

(
γW (t)

γẼ (t)

) 1
N−1 + γẼ (t)

γW (t)

]
dt .

From this inequality, recalling (3.5), we have

P�(Ẽ)−P�(W ) ≥ LN (W )

∫ 1

0

[
(N − 1)

(
γW (t)

γẼ (t)

) 1
N−1+ γẼ (t)

γW (t)
− N

]
dt (3.20)

= NLN (W )

∫ 1

0

γẼ (t)

γW (t)

[
N −1

N

(
γW (t)

γẼ (t)

) N
N−1 + 1

N
− γW (t)

γẼ (t)

]
dt .

Let us now consider the following elementary inequalities

t p

p
+ p − 1

p
− t ≥




c(p)(t − 1)2 if 0 ≤ t ≤ 2

c(p)(t p − 1) if t ≥ 2 ,

(3.21)

where

p = N

N − 1
. (3.22)

From (3.19)2, (3.2) and (3.19)3 we deduce that

P�(Ẽ) − P�(W ) ≤ λN−1(1 + �)P�(E) − P�(W )

= P�(W )
[
λN−1(1 + �)2 − 1

]
≤ cP�(W )� .
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Thus, setting

A = {t ∈ (0, 1) : γW (t)/γẼ (t) ≥ 2}, Ac = (0, 1) \ A ,

recalling (3.20), (3.21), we are lead to the estimate∫
A

γẼ (t)

γW (t)

∣∣∣∣
(

γW (t)

γẼ (t)

)p

− 1

∣∣∣∣dt +
∫

Ac

γẼ (t)

γW (t)

(
γW (t)

γẼ (t)
− 1

)2

dt ≤ c� . (3.23)

where p is the exponent defined in (3.22).

STEP 2. Let δ be a positive number (to be chosen later), such that

δ <
ωN−1m N−1

�

LN (W�)
, (3.24)

where ωN−1 is the LN−1-measure of the unit ball in RN−1. We set

(α, β) ={s : 0<gW (s)<1},

αδ = inf{s ∈(α, β) : hW (s)≥δ},

βδ =sup{s ∈(α, β) : hW (s)≥δ}.
Since W contains a ball of radius m� , by the choice of δ it follows that αδ and βδ

are well defined. Proposition 2.8 and the definition of αδ, βδ yield

hW (s) < δ for s ∈ (α, αδ) ∪ (βδ, β), hW (s) ≥ δ for s ∈ (αδ, βδ) . (3.25)

Moreover we set

σ1 = g−1
Ẽ

(gW (αδ)), σ2 = g−1
Ẽ

(gW (βδ)) . (3.26)

Clearly, we have that s1 ≤ σ1 < σ2 ≤ s2.
Since for a.e. t ∈ (0, 1)

γẼ (t) = 1

Dg−1
Ẽ

(t)
, γW (t) = 1

Dg−1
W (t)

,

from (3.23) we get that

c� ≥
∫ gW (βδ)

gW (αδ)

χA(t)
|(Dg−1

Ẽ
)p − (Dg−1

W )p|
Dg−1

Ẽ
(Dg−1

W )p−1
dt (3.27)

≥ c(p)

∫ gW (βδ)

gW (αδ)

χA(t)|Dg−1
Ẽ

− Dg−1
W | |(Dg−1

Ẽ
)p−1 + (Dg−1

W )p−1|
Dg−1

Ẽ
(Dg−1

W )p−1
dt

≥ c(p)

∫ gW (βδ)

gW (αδ)

χA(t)
|Dg−1

Ẽ
− Dg−1

W |
(Dg−1

Ẽ
)2−p(Dg−1

W )p−1
dt .
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Notice that from (3.19)1 and (3.25) we have that for every t ∈ (gW (αδ), gW (βδ))

Dg−1
Ẽ

(t) = 1

hẼ (g−1
Ẽ

(t))
≤ λ

c4�
, Dg−1

W (t) = 1

hW (g−1
W (t))

≤ 1

δ
. (3.28)

Therefore, combining these estimates with (3.27) yields

∫ gW (βδ)

gW (αδ)

χA(t)|Dg−1
Ẽ

(t) − Dg−1
W (t)| dt ≤ c

(
�

δ

)p−1

. (3.29)

On the other hand, from (3.23) and (3.28) again, we have

∫ gW (βδ)

gW (αδ)

χAc(t)|Dg−1
Ẽ

(t) − Dg−1
W (t)| dt (3.30)

≤
(∫ gW (βδ)

gW (αδ)

χAc

|Dg−1
Ẽ

(t)−Dg−1
W (t)|2

Dg−1
Ẽ

(t)Dg−1
W (t)

dt

)1/2(∫ gW (βδ)

gW (αδ)

χAc Dg−1
Ẽ

(t)Dg−1
W (t) dt

)1/2

≤c

(
�

δ

)1/2(∫ gW (βδ)

gW (αδ)

Dg−1
Ẽ

(t)dt

)1/2

≤c

(
�

δ

)1/2

(s2 − s1)
1/2 ≤ c(L)

(
�

δ

)1/2

.

Thus, defining for all t ≥ 0

�(t) = t p−1 + t1/2 ,

from (3.29), (3.30), we get

∫ gW (βδ)

gW (αδ)

|Dg−1
Ẽ

(t) − Dg−1
W (t)| dt ≤ c�

(�

δ

)

hence, by definition (3.26),

|g−1
Ẽ

(t) − g−1
W (t) − σ1 + αδ| ≤ c�

(�

δ

)
for all t ∈ [gW (αδ), gW (βδ)] .

Therefore, setting t = gẼ (s) in the previous inequality gives

|g−1
W (gẼ (s)) − s + σ1 − αδ| ≤ c�

(�

δ

)
for all s ∈ [σ1, σ2] . (3.31)

Choosing s = σ2 in this inequality, and recalling (3.26), we get in particular

|(βδ − αδ) − (σ2 − σ1)| ≤ c�
(�

δ

)
. (3.32)
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STEP 3. Going back to (3.23) we may estimate

c� ≥
∫ gW (βδ)

gW (αδ)

χA

|γ p
W (t) − γ

p
Ẽ
(t)|

γ
p−1

Ẽ
(t)γW (t)

dt

≥ c(p)

∫ gW (βδ)

gW (αδ)

χA|γW (t) − γẼ (t)| |γ
p−1

W (t) + γ
p−1

Ẽ
(t)|

γ
p−1

Ẽ
(t)γW (t)

dt

≥ c(p)

∫ gW (βδ)

gW (αδ)

χA
|γW (t) − γẼ (t)|
γ

p−1
Ẽ

(t)γ 2−p
W (t)

dt

Recalling that W is contained in a ball of radius M� , hence

γW (t) ≤ ωN−1 M N−1
� /LN (W�)

for all t ∈ (0, 1), and using (3.19)1, from the inequality above we obtain

∫ gW (βδ)

gW (αδ)

χA
|γW (t) − γẼ (t)|

γẼ (t)
dt ≤ c�p−1 . (3.33)

Arguing as in the proof of (3.30), we have

∫ gW (βδ)

gW (αδ)

χAc
|γW (t) − γẼ (t)|

γẼ (t)
dt

≤
(∫ gW (βδ)

gW (αδ)

χAc
|γW (t)−γẼ (t)|2

γẼ (t)γW (t)
dt

)1/2(∫ gW (βδ)

gW (αδ)

χAc
γW (t)

γẼ (t)
dt

)1/2

≤ c�1/2
(∫ gW (βδ)

gW (αδ)

Dg−1
Ẽ

(t) dt

)1/2

≤ c(L)�1/2 .

From this estimate and from (3.33), by the change of variable t = gẼ (s), we con-
clude that

∫ gW (βδ)

gW (αδ)

|γW (t) − γẼ (t)|
γẼ (t)

dt =
∫ σ2

σ1

|hW (g−1
W (gẼ (s)))−hẼ (s)| ds ≤ c�(�). (3.34)
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Using (3.34) leads to the following estimate∫ σ2

σ1

|hW (s + αδ − σ1) − hẼ (s)| ds (3.35)

≤
∫ σ2

σ1

|hW (g−1
W (gẼ (s))) − hẼ (s)| ds

+
∫ σ2

σ1

|hW (s + αδ − σ1) − hW (g−1
W (gẼ (s)))| ds

≤ c�(�) +
∫ min{βδ−αδ+σ1,σ2}

σ1

|hW (s + αδ − σ1) − hW (g−1
W (gẼ (s)))| ds

+
∫ σ2

min{βδ−αδ+σ1,σ2}
|hW (s + αδ − σ1) − hW (g−1

W (gẼ (s)))| ds .

Using (3.32) and the fact that hW (s) ≤ ωN−1 M N−1
� /LN (W�) for all s ∈ R, the

last integral in (3.35) can be estimated by �(�/δ).
In order to estimate the integral before the last one, first notice that from

Proposition 2.8 it follows that hW is an absolutely continuous function in (α, β),
such that there exists a point γ ∈ (α, β) with the property that hW in increasing
in (α, γ ) and decreasing in (γ, β). Then, we set h(s) = hW (s + αδ − σ1), for
s ∈ (α − αδ + σ1, β − αδ + σ1) and observe that

∫ β−αδ+σ1

α−αδ+σ1

|h′(s)| ds =
∫ β

α

|h′
W (s)| ds ≤ (β − α) max hW ≤ 2L max hW ≤ c(L) .

Finally, we apply Lemma 3.2 to h and to the function ϕ(s) = g−1
W (gẼ (s))+σ1 −αδ .

Since, by (3.31), |ϕ(s) − s| ≤ c�(�/δ) for all s ∈ (σ1, min{βδ − αδ + σ1, σ2}) ⊂
(α − αδ + σ1, β − αδ + σ2), by Lemma 3.2 we conclude that

∫ min{βδ−αδ+σ1,σ2}

σ1

|hW (s +αδ−σ1) −hW (g−1
W (gẼ (s)))| ds ≤ c(L)�

(�

δ

)
. (3.36)

Thus, from (3.35), (3.36), and from the inequality �≤(ωN−1m N−1
� �)/(δLN (W�))

(which is a consequence of (3.24)), we have∫ σ2

σ1

|hW (s + αδ − σ1) − hẼ (s)| ds ≤ c(L)�
(�

δ

)
. (3.37)

STEP 4. We claim that there exists a constant c′(L) such that

|αδ − σ1| + |βδ − σ2| ≤ c′(L)

[
δ + �

(�

δ

)]
. (3.38)
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To prove (3.38) let us denote by (x ′̃
E
, sẼ ) the barycenter of Ẽ . Since the barycenter

of E is at the origin we have

sẼ = 1

LN (Ẽ)

∫
Ẽ
s dx ′ds = λN+1

LN (E)

∫
E ′

r dy′dr = λN+1

LN (E)

[∫
E ′

r dy′dr −
∫

E
r dy′dr

]
.

Hence, from (3.18)2, (3.17) and (3.19)3, we get

|sẼ | ≤ λN+1

LN (E)

∫
E\E ′

|r | dy′dr ≤ 4N LλN+1�

N − 1
≤ c(L)� . (3.39)

On the other hand, by Fubini’s theorem,

sẼ =
∫ s2

s1

sh Ẽ (s) ds =
∫ σ1

s1

sh Ẽ (s) ds +
∫ σ2

σ1

sh Ẽ (s) ds +
∫ s2

σ2

sh Ẽ (s) ds

=
∫ σ1

s1

sh Ẽ (s)ds +
∫ σ2

σ1

s[hẼ (s)−hW (s+αδ−σ1)]ds

+
∫ σ2

σ1

shW (s+αδ−σ1)ds +
∫ s2

σ2

sh Ẽ (s)ds . (3.40)

Now, since hẼ (s) ≥ 0, from (3.17), (3.26), the equality hẼ = g ′̃
E

and (3.25), we
get ∫ σ1

s1

|sh Ẽ (s)| ds ≤ L
∫ g−1

Ẽ
(gW (αδ))

s1

hẼ (s) ds

= LgW (αδ) = L
∫ αδ

α

hW (s) ds ≤ 2L2δ . (3.41)

Similarly,∫ s2

σ2

|sh Ẽ (s)| ds ≤ L
∫ s2

g−1
Ẽ

(gW (βδ))

hẼ (s) ds

= L(1 − gW (αδ)) = L
∫ β

αδ

hW (s) ds ≤ 2L2δ . (3.42)

Therefore, recalling (3.37), and collecting all the estimates (3.39)–(3.42), we have∣∣∣∣
∫ σ2−σ1+αδ

αδ

(s − αδ + σ1)hW (s) ds

∣∣∣∣ =
∣∣∣∣
∫ σ2

σ1

shW (s + αδ − σ1) ds

∣∣∣∣
≤ |sẼ | +

∫ σ1

s1

|sh Ẽ (s)| ds +
∫ σ2

σ1

|s[hẼ (s) − hW (s + αδ − σ1)]| ds

+
∫ s2

σ2

|sh Ẽ (s)| ds

≤ c(L)

[
δ + �

(�

δ

)]
. (3.43)
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Recalling that the barycenter of W is at the origin, we have also

0 =
∫ β

α

shW (s)ds =
∫ β

α

(s − αδ + σ1)hW (s) ds + (αδ − σ1)

∫ β

α

hW (s) ds

=
∫ β

α

(s − αδ + σ1)hW (s) ds + (αδ − σ1) .

Thus, from this equation, (3.43), (3.17), (3.32) and (3.25) we have

|αδ − σ1| =
∣∣∣∣
∫ β

α

(s − αδ + σ1)hW (s) ds

∣∣∣∣ ≤
∣∣∣∣
∫ αδ

α

(s − αδ + σ1)hW (s) ds

∣∣∣∣
+

∣∣∣∣
∫ β

βδ

(s − αδ + σ1)hW (s) ds

∣∣∣∣ +
∣∣∣∣
∫ σ2−σ1+αδ

αδ

(s − αδ + σ1)hW (s) ds

∣∣∣∣
+

∣∣∣∣
∫ βδ

σ2−σ1+αδ

(s − αδ + σ1)hW (s) ds

∣∣∣∣ ≤ c(L)

[
δ + �

(�

δ

)]
.

From this inequality and from (3.32), inequality (3.38) follows at once.

STEP 5. Let us now prove (3.16). To this aim we first estimate

∫ +∞

−∞
|hẼ (s) − hW (s)| ds =

∫ σ2

σ1

|hẼ (s) − hW (s)|ds +
∫

(α,β)\(σ1,σ2)

hW (s) ds

+
∫

(s1,s2)\(σ1,σ2)

hẼ (s) ds = I1 + I2 + I3 . (3.44)

Now,

I1 ≤
∫ σ2

σ1

|hẼ (s) − hW (s + αδ − σ1)| ds +
∫ σ2

σ1

|hW (s + αδ − σ1) − hW (s)| ds .

The first integral on the right-hand side is estimated in (3.37), while the second one
is estimated, using (3.38) and Lemma 3.2, exactly as we have estimated the integral
in (3.36). Thus, we get

I1 ≤ c(L)

[
δ + �

(�

δ

)]
. (3.45)

Moreover, (3.25) and (3.38) yield

I2 ≤
∫

(α,β)\(αδ,βδ)

hW (s) ds +
∫

(αδ,βδ)\(σ1,σ2)

hW (s) ds ≤c(L)

[
δ + �

(�

δ

)]
. (3.46)
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Finally, arguing as in the proof of (3.41) and (3.42), we get

I3 ≤ 4Lδ

and from this inequality and the inequalities (3.44)–(3.46) we obtain∫ +∞

−∞
|HN−1(Ẽs) − HN−1(Ws)| ds = LN (W�)

∫ +∞

−∞
|hẼ (s) − hW (s)| ds

≤ c(L)

[
δ + �

(�

δ

)]
. (3.47)

Since E ′ ⊂ E by construction and W/λ ⊂ W by the convexity of W and the fact
that W contains the origin, we get∫ +∞

−∞
|HN−1(Es) − HN−1(Ws)|ds ≤

∫ +∞

−∞
|HN−1(Es) − HN−1(E ′

s)|ds

+
∫ +∞

−∞
|HN−1(E ′

s) − HN−1((W/λ)s)|ds

+
∫ +∞

−∞
|HN−1((W/λ)s) − HN−1(Ws)|ds

≤ LN (E \ E ′) + 1

λN

∫ +∞

−∞
|HN−1(Ẽs) − HN−1(Ws)|ds +

(
1 − 1

λN

)
LN (W�)

≤ c(L)

[
δ + �

(�

δ

)]
.

where the last inequality follows from (3.18)2, (3.47) and (3.19)3.
Let us assume N ≥ 3; from the inequality above, recalling (3.22), (3.16) fol-

lows by choosing δ = �
1
N . This choice, by (3.24), implies (3.16) when

� < min
{
�3,

(
ωN−1m N−1

�

LN (W�)

)N }
. (3.48)

On the other hand, if � is greater than or equal to the quantity on the right-hand
side, (3.16) trivially follows with a suitably large constant c6.

If N = 2 the conclusion follows by choosing δ = �1/3.

We are now in position to give the proof of Lemma 1.2.

Proof of Lemma 1.2. STEP 1. Let us assume that E is a C∞ bounded open set
with �(E) < �2, where �2 is a positive constant satisfying various conditions that
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will be indicated during the proof. First, we require �2 < �1. Thus, from Lemma
3.1 it follows that there exist σ1,1 < σ2,1, with σ2,1 − σ1,1 ≤ c5 and a set E1 such
that 



E1 = {x ∈ E : σ1,1 < 〈x, e1〉 < σ2,1},

LN (E \ E1) ≤ 4N

N − 1
LN (E)�(E) ≤ 1

2
LN (E),

P�(E1) ≤ P�(E)(1 + �(E)) .

(3.49)

Let us denote by λ1 a positive constant such that LN (λ1 E1) = LN (E). Arguing
as in the Step 1 of the proof of Lemma 3.3 we conclude that there exist a constant
γ0 > 1 depending only on N such that



1 ≤ λ1 ≤ 1 + γ0�(E)

λ1 E1 ⊂ {x : s1,1 < 〈x, e1〉 < s2,1}, where s2,1 − s1,1 ≤ γ0c5,

�(λ1 E1) ≤ γ0�(E) .

(3.50)

Let us choose �2 such that γ0�2 < �1. Thus, we may apply Lemma 3.1 again to
λ1 E1 and get a set E2 satisfying the same inequalities (3.49) satisfied by E1, with
E , e1, E1 replaced by λ1 E1, e2, E2, respectively. As before, we denote by λ2 a
positive constant such that LN (λ2 E2) = LN (λ1 E1) = LN (E). Then, λ2 and the
set λ2 E2 satisfy the same inequalities (3.50) satisfied by λ1 and λ1 E1, with E , e1
replaced by λ1 E1, e2, respectively. However, since λ1 E1 is bounded in the direction
e1, λ2 E2 will be bounded in both directions e1 and e2.
Let us choose �2 such that γ N

0 �2 < �1. Thus, we may repeat the previous argu-
ment for all coordinate directions thus getting N sets Ei and N positive numbers
λi ≥ 1, such that the following conditions hold for all i = 1, . . . , N



Ei ⊂ λi−1 Ei−1, LN (λi Ei ) = LN (E), �(λi Ei ) ≤ γ i
0�(E)

LN (λi−1 Ei−1 \ Ei ) ≤ 4N

N − 1
LN (E)�(λi−1 Ei−1) ≤ γ1�(E),

1 ≤ λi ≤ 1 + γ0�(λi Ei ) ≤ 1 + γ i+1
0 �(E),

λi Ei ⊂ {x : s1,i < 〈x, ei 〉 < s2,i } where s2,i − s1,i ≤ γ0c5

where we have set E0 = E and λ0 = 1 and γ1 is a constant depending only on N
and LN (W�).

Let us now set Ẽ = λN EN . Notice that by construction Ẽ is contained in a
ball of radius R0 depending only on γ0 and c5, i.e., only on N and M� . Therefore,
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from Lemma 3.3 we conclude that there exists a point y0 ∈ RN such that for all
ν ∈ SN−1

∫ +∞

−∞
|HN−1((y0 + Ẽ)ν,s) − HN−1((W�)ν,s)| ds ≤ c7�(E)β(N ) , (3.51)

with c7 depending only on N , m� , M� . Let us now set λ = �N
i=1λi , x0 = y0/λ.

We have∫ +∞

−∞
|HN−1((x0+E)ν,s)−HN−1((W�)ν,s)|ds

≤
∫ +∞

−∞
|HN−1((x0+E)ν,s)−HN−1((x0+E1)ν,s)|ds

+
∫ +∞

−∞
|HN−1((x0+E1)ν,s)−HN−1((W�)ν,s)|ds

≤ LN (E
E1) + 1

λN
1

∫ +∞

−∞
|HN−1((λ1x0+λ1 E1)ν,s)−HN−1((λ1W�)ν,s)|ds

≤ γ1�(E) +
∫ +∞

−∞
|HN−1((λ1x0+λ1 E1)ν,s)−HN−1((λ1W�)ν,s)|ds .

Continuing to estimate the last integral on the right-hand side as we did with the
one on the left hand-side, after N − 1 steps we get, recalling (3.51),∫ +∞

−∞
|HN−1((x0+E)ν,s)−HN−1((W�)ν,s |ds

≤ Nγ1�(E)+
∫ +∞

−∞
|HN−1(((�N

i=1λi )x0+λN EN )ν,s)−HN−1(((�N
i=1λi )W�)ν,s)|ds

≤ Nγ1�(E) +
∫ +∞

−∞
|HN−1((y0+ Ẽ)ν,s)−HN−1((W�)ν,s)|ds

+
∫ +∞

−∞
|HN−1((λW�)ν,s)−HN−1((W�)ν,s)|ds

≤ Nγ1�(E) + c7�(E)β(N ) + (λN − 1)LN (W�) ≤ c̃�(E)β(N ) ,

where c̃ depends only on N , m� , M� .
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This proves the assertion when � < �2. Otherwise, the assertion follows with
a suitably large constant c1.

STEP 2. Let us now assume that E is a set of finite perimeter. From Proposition 2.1
we then get that there exists a bounded C∞ open set E ′ such thatLN (E ′) = LN (E),
LN (E
E ′) ≤ �(E). Thus, from what we have proved in Step 1 it follows that
there exists a point x0 ∈ RN such that (1.12) holds for E ′. Thus, we obtain that for
all ν ∈ SN−1∫ +∞

−∞
|HN−1((x0+E)ν,s)−HN−1((W�)ν,s)|ds

≤ LN (E
E ′) +
∫ +∞

−∞
|HN−1((x0+E ′)ν,s)−HN−1((W�)ν,s)|ds

≤ �(E) + c̃�(E)β(N ) .

Hence, the assertion follows. �
We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let us apply Lemma 1.2 to E . By translating E , if neces-
sary, we may assume that (1.12) holds with x0 = 0, i.e.,∫ +∞

−∞
|HN−1(Eν,s) −HN−1((W�)ν,s)| ds ≤c1�

β(N ) for all ν ∈ SN−1 . (3.52)

Given k ≥ N + 1, by Theorem 2.9 there exists a convex polytope Pk , with at most
k facets, containing W� and such that

LN (Pk \ W�) ≤ c3

k
2

N−1

. (3.53)

Let us denote by νi the exterior normal to the i-th facet of Pk , πi = {x : 〈x, νi 〉 =
si } the hyperplane containing the i-th facet and Hi = {x : 〈x, νi 〉 < si }. Denoting
by l the number of facets of Pk , we have Pk = ∩l

i=1 Hi and

LN (E \ Pk) ≤
l∑

i=1

LN (E \ Hi )

=
l∑

i=1

∫ +∞

si

HN−1(Eνi ,s)ds

=
l∑

i=1

∫ +∞

si

|HN−1(Eνi ,s)−HN−1((W�)νi ,s)|ds, (3.54)



ANISOTROPIC ISOPERIMETRIC INEQUALITIES 647

where the last equality follows from the fact that also W� ⊂ Hi for all i . Estimating
the last integrals in (3.54) by (3.52) we get that

LN (E \ Pk) ≤ kc1�
β(N ) .

Combining this estimate with (3.53) yields

LN (E \ W�) ≤ LN (E \ Pk) + LN (Pk \ W�) ≤ kc1�
β(N ) + c3

k
2

(N−1)

and minimizing the right-hand side with respect to k we get the estimate

LN (E \ W�) ≤ c̃�α(N ) , (3.55)

for � less than some �3 depending on c1, c3, N . The conclusion then follows from
(3.55) and from the fact that, since LN (E) = LN (W�),

LN (W� \ E) = LN (E \ W�) ≤ c̃�α(N ) .

Finally, if � ≥ �3, (1.11) easily follows with a suitable constant c0 depending on
�3 and LN (W�). �

4. Convex sets

In this section we give the proof of Theorem 1.3. Namely, we show that if E is
a convex set, Theorem 1.1 holds with the estimate on the LN measure of E
W�

replaced by a stronger estimate in terms of the Hausdorff distance between E and
W� .
Next lemma shows how the diameter of a convex set of given volume can be esti-
mated by its perimeter.

Lemma 4.1. Let C be any open convex set. Then, there exists a constant c8, de-
pending only on N, such that

diam(C) ≤ c8
[HN−1(∂C)]N−1

[LN (C)]N−2
.

Proof. Let us fix two points x, y ∈ ∂C such that

d := diam(C) = |x − y| .
By rotating and translating, we may always assume without loss of generality that
the vector x − y is parallel to eN and that 〈x, eN 〉 > 〈y, eN 〉. Setting LN (C) = M ,
by Fubini’s theorem there exists s ∈ R such that

HN−1({x ′ ∈ R
N−1 : (x ′, s) ∈ C}) ≥ M

d
.
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Replacing x by y if necessary, we may assume that 〈x, eN 〉 − s ≥ d/2. Let V
denote the convex hull of the point x and the (N−1)-dimensional section Cs . V is a
cone contained in C and a well known property of convex sets (see e.g. [5, Lemma
2.4]) implies that

HN−1(∂V ) ≤ HN−1(∂C) . (4.1)

Let us denote by S ⊂ ∂V the lateral surface of the cone V . Since the height of V is
at least d/2 a simple estimate based on the coarea formula gives

HN−1(S) ≥ d

2(N − 1)
HN−2(∂Cs) . (4.2)

This estimate proves the assertion when N = 2. If N ≥ 3, the classical isoperimet-
ric inequality yields

HN−2(∂Cs) ≥ (N − 1)ω
1

N−1
N−1

[
HN−1(Cs)

] N−2
N−1 ≥ (N − 1)ω

1
N−1
N−1

(
M

d

) N−2
N−1

.

Therefore, from (4.1) and (4.2) we get

HN−1(∂C) ≥ ω
1

N−1
N−1

d

2

(
M

d

) N−2
N−1

.

Hence, the assertion follows.

Lemma 4.2. Let C and W two open convex sets such that LN (C) = LN (W ) and
LN (C
W ) < LN (C)/2. Then, there exists a constant c9, depending only on N,
such that

δH (C, W ) ≤ c9(diam(C) + diam(W ))

(LN (C
W )

LN (C)

)1/N

.

Proof. Let us assume that δH (C, W ) > 0, otherwise there is nothing to prove. Since
the role of C and W in the definition (1.15) of the Hausdorff distance is symmetric,
we may also assume without loss of generality that

δH (C, W ) = sup
x∈C

inf
y∈W

|x − y| .

Since W is convex, the function x ∈ C �→dist(x, W ) is convex. Since a convex
function on a convex set attains its maximum on the boundary, there exists a point
x ∈ ∂C \ W such that δH (C, W ) =dist(x, W ). Let us denote by y the point in ∂W
such that

δH (C, W ) = dist(x, W ) = |x − y| .
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Up to rotation and translation, we may assume that x = 0, that y = (0, . . . , 0, δH )

and that W ⊂ {(x ′, s) ∈ RN : s ≥ δH }. Notice that from this inclusion it follows
that no point of C lies below the hyperplane xN = 0, otherwise the Hausdorff
distance between the two sets C and W would be strictly greater than |x − y|.
Therefore, recalling the assumption LN (C
W ) < LN (C)/2, we have that

LN ({(x ′, s) ∈ C : s > δH }) >
LN (C)

2
.

Thus, by Fubini’s theorem there exists s0 > δH such that

HN−1(Cs0) >
LN (C)

2diam(C)
. (4.3)

Let V be the cone equal to the convex hull of the origin and of the set Cs0 and let

V ′ = {(x ′, s) ∈ V : 0 < s < δH } .

Then, V ′ ⊂ C \ W , and thus, taking into account (4.3), we get

LN (C \ W ) ≥ LN (V ′) =
∫ δH

0
HN−1({(x ′, s) ∈ V ′})ds

=
∫ δH

0
HN−1(Cs0)

( s

s0

)N−1
ds

≥ LN (C)

2diam(C)

δN
H

Ns N−1
0

≥ LN (C)δN
H

2N (diam(C))N
.

From this inequality the assertion follows immediately.

Proof of Theorem 1.3. Let C be a convex set such that LN (C) = LN (W�), with
� = �(C) ≤ 1. We have

HN−1(∂C) ≤ 1

m�

P�(C) ≤ 2

m�

P�(W ) ≤ c ,

where the constant c depends only on N , M� and m� . Thus, from Lemma 4.1 it
follows that

diam(C) ≤ c̃ . (4.4)

Let us assume also that � < �4, with

�4 =
(LN (W�)

2c0

) 1
α(N )

,
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where c0 is the constant provided by Theorem 1.1. With this choice of �4, from
Theorem 1.1 we have that (up to a translation)

LN (C
W�) ≤ c0�
α(N ) ≤ LN (C)

2
.

The result then follows from Lemma 4.2 and (4.4). The case � ≥ �4 is obvious.�
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[6] M. CHLEBÍK, A. CIANCHI and N. FUSCO, The perimeter inequality for Steiner symma-
trization: cases of equality, Ann. of Math. 162 (2005), 525–555.

[7] B. DACOROGNA and C. E. PFISTER, Wulff theorem and best constant in Sobolev inequality,
J. Math. Pures Appl. 71 (1992), 97–118.
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