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Stochastic Poisson-Sigma model

RÉMI LÉANDRE

Abstract. We produce a stochastic regularization of the Poisson-Sigma model
of Cattaneo-Felder, which is an analogue regularization of Klauder’s stochastic
regularization of the Hamiltonian path integral [23] in field theory. We perform
also semi-classical limits.
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1. Introduction

Let us consider a manifold M endowed with a Poisson structure, a bilinear map {., .}
from the space of smooth functions on the manifold into the space of smooth func-
tions on the manifold, anticommutative and satisfying the Jacobi relation. Bayen,
Flato, Fronsdal, Lichnerowicz and Sternheimer [6, 7] have introduced the so-called
program of deformation quantization. These authors get the following formal se-
ries:

f ∗ g =
∑

inhn Pn( f, g). (1.1)

The Pn’s are differential operators. This series is diverging. The program of defor-
mation quantization was carried out by Kontsevich [24]. We refer to the survey of
Dito-Sternheimer about this topic [17].

Cattaneo-Felder [15] have established the link between Kontsevich formula
and quantum field theory. Let us suppose that the manifold is R

d . They consider
the so-called Poisson-Sigma model. Let us recall how it is constructed: we consider
the disk D, 3 points ∞, 1, 2 on the boundary of the disk. They consider the space of
forms η on D and the space of maps X from D into R

d . Let αi, j be the components
of the Poisson structure on R

d . Let (t, s) = S be the polar coordinates on D:
t ∈ [0, 1], s ∈ S1. Cattaneo-Felder consider the action:∑

i

∫
D

ηi (S) ∧ d Xi +
∑
i, j

∫
D

αi, j (X)ηi ∧ η j = S(X, η) (1.2)
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where X = (X1, . . . , Xd) and where η j are 1-forms on D. [15] consider the
following formula for the non-perturbative ∗-product:

f ∗h g(x) =
∫

η,X,X (∞)=x
f (X (1))g(X (2)) exp[i S/h]d DXd Dη (1.3)

where the field X and the form η are chosen at random according to the formal
Lebesgue measure on the configuration space. [15] perform the semi-classical anal-
ysis when h → 0 and get the asymptotic expansion:

f ∗h g(x) =
∑

(ih)n Pn( f, g). (1.4)

The objects of Cattaneo-Felder are formal (see [20, 21]) and use the heavy apparatus
of quantum field theory. Our purpose is to add a stochastic regulator in (1.3) in order
to define the functional integral rigorously. We get a stochastic product f ∗st,h g.

Let us recall that in (1.3), we have to choose two kinds of objects at random:
the field X : D → R

d and the forms η over D. So we have to introduce stochastic
regulators to define a random field X and to define random forms η.

In order to define the random field X : D → R
d , we will follow the procedure

of Airault-Malliavin [2]. Airault-Malliavin [2] have defined the Brownian motion
over a loop group. Let us recall that infinite dimensional processes over infinite
dimensional manifolds have a long history: see works of Kuo [26], Belopolskaya-
Daletskii [8] and Daletskii [16]. Albeverio-Léandre-Röckner [4] have defined the
Ornstein-Uhlenbeck process over the free loop space, by using the theory of Dirich-
let forms. Brzezniak-Elworthy [12] have given an abstract generalization of the
works of Airault-Malliavin.

In this paper, we are concerned with a (1 + 1)-dimensional theory: this means
we consider a diffusion process on the loop space. Various works in this direction
were done by Brzezniak-Léandre [13, 14], Léandre [34, 35, 36]. Let us remark that
in (1.3), there is the condition X (∞) = x . [14, 34, 36] have introduced a conve-
nient Brownian bridge in order to do the conditional expectation by X (∞) = x .
But there is another procedure to condition functionals: it is the Airault-Malliavin-
Sugita procedure [1, 44]. In this work, we will follow this procedure.

In order to define random forms, we will employ the techniques of [37]. This
means we will not choose our random forms on D according to the formal Lebesgue
measure on the space of forms, but we will introduce a stochastic Gaussian regulator
in order to define the probability measure on the space of forms.

If we do not look at the conditional expectation by X (∞) = x , the action S
becomes a stochastic integral, which belongs to all of the Sobolev spaces of the
Malliavin Calculus [41]. We consider the measure

h → E
[

f (X (1))g(X (2))h(X (∞)) exp[i S]
]

.

By Malliavin Calculus, it has a smooth density. Moreover, the magic properties of
the Airault-Malliavin equation tell us that the density of the law of X (∞) is strictly
positive.
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We have:

Theorem A.

f ∗st g = E
[

f (X (1))g(X (2)) exp[i S]|X (∞) = x
]

(1.5)

defines a continuous bilinear map from C∞
b (Rd) into C∞

b (Rd).

We use the Malliavin Calculus to prove Theorem A.
We perform a semi-classical analysis when h → 0: for that task, we choose

a small leading Brownian motion as well as a small stochastic regularization of η.
Such considerations were done in [32]. But S is only a stochastic integral: so, by
improving a bit the techniques of [32], we have:

Theorem B.

f ∗st,h g = Eh
[

f (X (1))g(X (2)) exp[i S/h]|X (∞) = x
]

(1.6)

has, when h → 0 an asymptotic expansion:

f ∗st,h g =
∑

hn Qn( f, g) (1.7)

where the Qn’s are differential operators acting on f and g.

For that, we use the techniques of asymptotics of Wiener functionals by using
the Malliavin Calculus: we refer to the surveys by Léandre [28], Kusuoka [27] and
Watanabe [45] for this topic.

The reader interested in the relation existing between analysis over loop space
and mathematical physics can consult the survey by Albeverio [3] and the two sur-
veys by Léandre [29, 30].

2. The model without conditioning

Let �(x) be a linear map from R
n into R

d , which depends smoothly from x ∈ R
d :

we suppose that the derivatives of all orders of � are bounded and that (�(x)ei )

i = 1, . . . , n spans uniformly R
d for the canonical basis e1, . . . , en of R

n .
Let H = H1,2(S1; R

n) be the Hilbert space of maps from the circle S1 into
R

n such as: ∫ 1

0
|h(s)|2ds +

∫ 1

0
|d/dsh(s)|2ds = ‖h‖2 < ∞ . (2.1)

We write h = (h1, . . . , hn). Moreover,

h j (0) = 〈h, e j 〉 (2.2)
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where

e j (s) = (
0, . . . , 0, λ exp[−s] + µ exp[s], 0, . . . , 0

)
(2.3)

for some λ and some µ for 0 ≤ s ≤ 1. Moreover e j (s) is smooth on ]0, 1[ with half
derivatives at all orders at 0 and 1: e j (0) = e j (1) but d/dse j (0) 
= d/dse j (1).

We have:

h j (s) = 〈h, e j (. − s)〉 . (2.4)

We consider the Brownian motion with values in H :

Bt (s) = (B1
t (s), . . . , Bn

t (s)) . (2.5)

The processes B j
. (.) are independent and t → B j

t (s) is a Brownian motion with
values in R submitted to the relation:

d〈B j
t (s), B j

t (s′)〉 = e(s − s′)dt (2.6)

where e j (s) is the j th coordinate of e(s).
We consider the Airault-Malliavin equation [2, 12]:

dxt (s)(x) = �(xt (s)(x))dt Bt (s) ; x0(s)(x) = x . (2.7)

It is a family of Stratonovitch equations. We have shown that s → xt (s)(x) is
1/2 − ε Hölder by Gronwall lemma and Kolmogorov lemma [39]: we have an
improvement of this result. Namely:

Proposition 2.1. x → (s → x1(s)(x)) is almost-surely smooth for the Hölder
topology.

Proof. This comes from the fact that s → D(r)

Dx (r) x1(s)(x) is almost surely Hölder
1/2 − ε in s (see [32] for an analogous statement). Namely, the stochastic differen-
tial equation of D

Dx xt (s)(x) is

d
D

D(x)
xt (s)(x) = D�(xt (s)(x))

D

D(x)
xt (s)(x)dt Bt (s) (2.8)

and we get by induction the differential equation of D(r)

Dx (r) xt (s)(x).

Let us write for �s small:

Bt (s + �s) = Bt (s) + �s Bt (s). (2.9)
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We have (See [35] Part III):

Property H(1). If s′ does not belong to ]s, s + �s[:

d〈�s B.(s), B.(s
′)〉 = dtC(s, s′)�s + O(�s2). (2.10)

Property H(2). if ]s, s + �s[∩]s′, s′ + �s′[= ∅, we have:

d〈�s B.(s), �s′ B.(s
′)〉 = dtC(s, s′)�s�s′ + O(�s + �s′)3 . (2.11)

Let us consider a sequence of intervals ]si , si + �si [, two intervals being either
disjoint or equal. We denote by |I | the number of intervals and by ‖I‖ the number
of distinct intervals. Let us consider some points r j of the circle which do not belong
to the union of the previous open intervals. Let αt (i) be some processes, which are
B.(r j ) measurable, previsible, and which are semi-martingales. We suppose that
the local characteristic [22] of each αt (i) have bounded Sobolev norms in the sense
of the Malliavin Calculus [41] for the Gaussian space spanned by the B.(r j ). We
put iteratively:

I i+1(t) =
∫ t

0
I i (u)αu(i)du�si Bu(si ) (2.12)

and we get an iterated Stratonovitch integral I I (t). Let F be a measurable func-
tional for the Gaussian space spanned by the B.(r j ): we suppose that F has bounded
Sobolev norms in the sense of Malliavin Calculus for the space spanned by the
B.(r j ). We denote by I ′ the set of indices obtained by selecting from I an interval
only one time. The cardinal of I ′ is therefore ‖I‖.We have the main lemma:

Lemma 2.2.

E[F I I (t)] ≤ C
∏
i∈I ′

�si (2.13)

where C can be estimated in terms of the Sobolev norms of F and of the α.(i).

Proof. We apply the Clark-Ocone formula to F [41]. We select the Itô term in
I I (t) and the finite energy term in I I (t). We conclude by applying Itô formula and
Properties H(1) and H(2) and property H(3):

Property H(3).

dt 〈�s B.(s), �s B.(s)〉 = C(s)�sdt + O(�s2)dt . (2.14)

The statement follows by induction on |I |.
Remark 2.3. We remark that we have analogue estimates if we consider a prod-
uct

∏
i∈I I i (t) of single integrals or if we consider double iterated integrals in the
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product. Namely, we can come back to the situation of Lemma 2.2 by using the
Itô-Stratonovitch formula. We put:

I 1
t (s, �s)(x)= D

D(x)
xt (s)(x)

∫ t

0
D�(xu(s)(x))

D−1

D(x)
xu(s)(x)du�s Bu(s) (2.15)

and

I 2
t (s, �s)(x)

= D

D(x)
xt (s)(x)

∫ t

0

D−1

D(x)
xu(s)(x)

〈
D�(xu(s)(x)),I 1

u (s,�s)(x),du�s Bu(s)
〉
. (2.16)

By using the rule of differentiation of stochastic differential equations along a pa-
rameter [10, 25], we have that:

xt (s + �s)(x) = xt (s)(x) + I 1
t (s, �s)(x) + I 2

t (s, �s)(x) + O(�s3/2) . (2.17)

The error term is uniform in x over each compact set of R
d .

Let us consider a 1-form on [0, 1] × S1, η = η1ds + η2dt . We put a Gaussian
measure on the set of η: η1 and η2 are independent. On the space of η we consider a
Gaussian measure whose reproducing Hilbert space is defined as follows: we con-
sider the space of function taking values in R

2d endowed with the Sobolev norm∫
S1〈(− d2

ds2 + 1)η(s), η(s)〉ds = ‖η‖2
Hd and the space of forms endowed with the

Hilbert norm
∫ 1

0 ‖ ∂
∂t ηt (.)‖2

Hd dt . The random forms which are obtained in that way

are almost surely Hölder. Let us consider N = 2N0 . We consider the polygonal ap-
proximation s → x N

t (s)(x) of s → xt (s)(x). We consider a coordinate x N , j
. (s)(x)

of it. We put:

AN , j
t (x) =

∫
S1

η
j
2(s, t)ds x N , j

t (s)(x) . (2.18)

We have:

Proposition 2.4. When N → ∞, AN , j
t (x) tends in all of the L p to a real random

variable ∫
S1

η
j
2(s, t)ds x j

t (s)(x) . (2.19)

Moreover, the stochastic integral defined in (2.19) depends almost surely smoothly
on x and in all of the L p.

Proof. We omit to write the index j , doing as if the diffusion xt (s)(x) was one
dimensional. We write:

AN
t (x) =

∑
AN

i =
∑ ∫ si+1

si

η2(s, t)ds x N
t (s)(x) . (2.20)
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Let us decompose AN
i as a sum:

AN
i = B N

i + C N
i (2.21)

where

B N
i = η2(si , t)�si xt (si )(x) (2.22)

and where:

C N
i =

∫ si+1

si

(η2(s, t) − η2(si , t))
ds

si+1 − si
�si xt (si )(x) . (2.23)

First step. Convergence of
∑

B N
i in all the L p.

We write �si = 1/N . Moreover,

B N
i = B N

i,1 + B N
i,2 + error

= η2(si , t)I 1
t (si , �si )(x) + η2(si , t)I 2

t (si , �si )(x) + error . (2.24)

Let us study first the convergence of
∑

B N
i,1 in all the L p. Let N ′ = 2N ′

0 be an
integer larger than N . We write:

DN
i = B N

i,1 −
∑

[si ′ ,si ′+1]⊆[si ,si+1]

B N ′
i ′,1 . (2.25)

In B N
i,1 and in I 1

t (si , �si ), we get:

dt�si Bt (si ) =
∑

[si ′ ,si ′+1]⊆[si ,si+1]

dt�si ′ Bt (si ′) (2.26)

and we apply Lemma 2.2 in order to get the estimate:

E
[ ∏

i j ∈I

DN
i j

]
= o(1)

∏
i j ∈I ′

�si j = o(1)C(I ) . (2.27)

But there are at most C Nr set of multi-indices I such that |I | = p and ‖I‖ = r .
Therefore the result.

Let us study the behaviour of
∑

B N
i,2 in (2.24).

In I 2
t (si , �si ), we write:

du�si Bu(si )dv�si Bv(si )=
∑

[s j ,s j+1],[s j ′ ,s j ′+1]⊆[si ,si+1]

du�s j Bu(s j )dv�s j ′ Bv(s j ′). (2.28)
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We select in the decomposition (2.27) the sum where we have s j = s j ′ , and we get
a decomposition of B N

i,2 into DN
i,1 + DN

i,2 where in DN
i,1 = ∑

DN
i, j,1 we consider

only the diagonal terms.
We write:

∑
η2(si , t)DN

i,1 −
∑

η2(s j , t)B N ′
j,2

=
∑

[s j ,s j+1]⊆[si ,si+1]

(η2(si , t) − η2(s j , t))DN
i, j,1 +

∑
[s j ,s j+1]⊆[si ,si+1]

η2(s j , t)(DN
i, j,1 − B N ′

j,2) . (2.29)

The first term tends trivially to 0 in all of the L p. By applying the remark following
Lemma 2.2, the second term tends to zero in all of the L p when N ′ → ∞.

Let us consider
∑

η2(si , t)DN
i,2. Let us show that it tends in all the L p to zero.

Let I = {i1, . . . , i|I |} with ‖I‖ given. According to Lemma 2.2. we have:

E
[ ∏

i j ∈I

DN
i,2

]
= O(N−‖I‖) . (2.30)

Hence, we can write DN
i,2 = ∑

j 
= j ′ DN
j, j ′,2. If we distribute in (DN

i,2)
r , there are

at most C(N ′/N )k products
∏

DN
jl , jl′ ,2 where the cardinal described by jl , jl ′ is k.

But k is at least equal to 2. Therefore (2.30). We conclude as in (2.27).

Second step. Convergence of
∑

C N
i in all of the L p.

We write ∑
C N

i =
∑

αN (si )I 1
t (si , �si )(x) + error (2.31)

where αN (si ) is independent of the system of I 1
t (si , �si ) and tends to 0 in all of the

L p. Therefore the sum tends to 0 by the previous considerations in all the L p.
In order to show that the stochastic integral defined by (2.19) depends almost

surely and in all of the L p from x , we can apply the previous considerations to
Dr

Dxr AN , j
t (x) and show that it converges in all the L p to Dr

Dxr

∫
S1 η

j
2(s, t)ds x j

t (s)(x).
The Sobolev imbedding theorem allows to conclude. �

Let us introduce the stochastic Poisson-Sigma action defined as follows:

S(x.(.)(x), η) =
∑

j

∫
[0,1]×S1

η j ∧ dx j
. (.)(x)

+
∑
i, j

∫
[0,1]×S1

αi, j (x.(.)(x))ηi ∧ η j . (2.32)
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Proposition 2.4 allows us to deduce the following theorem:

Theorem 2.5. The random variable S(x.(.)(x), η) is real, and is almost surely dif-
ferentiable in x. For all r , all p ≥ 1:

sup
x

E

[∣∣∣ Dr

Dxr
S(η., x.(.)(x))

∣∣∣p
]

< ∞ . (2.33)

This allows us to state the following theorem: let C∞
b (Rd) be the Fréchet space of

smooth functions f on R
d with bounded derivatives at each order endowed with

the set of semi-norms:

‖ f ‖r,∞ = sup
x

∣∣∣ Dr

Dxr
f (x)

∣∣∣ . (2.34)

Theorem 2.6. The map which sends ( f, g) to:

E[ f (x1(1)(x))g(x1(2)(x)) exp[i S(x.(.)(x)), η)]] (2.35)

is a continuous bilinear application from C∞
b (Rd) into C∞

b (Rd). 1 and 2 denote
in (2.35) two different points of S1.

3. A stochastic star product

Let us recall that, if the Malliavin Calculus has a lot of precursors (see the work of
Hida, Elworthy, Fomin, Albeverio . . . ), the main novelty of the Malliavin Calculus
was to complete the differential operations known at that time on the Wiener space
in all of the L p. This allowed Malliavin to recover Hörmander’s theorem by prob-
abilistic methods [38]. The first ones who have applied the Malliavin Calculus to
other Gaussian spaces than the traditional Wiener space are Nualart and Sanz [42]
in order to study the Brownian sheet. Here, we apply the Malliavin Calculus in our
situation.

We consider the space H(B) of maps from [0, 1] into H , ht (.)(B), such that

∫ 1

0

∥∥∥∥ ∂

∂t
ht (.)(B)

∥∥∥∥
2

B
dt < ∞ (3.1)

and the space H(η) of maps from [0, 1] into Hd , ht (.)(η), such that

∫ 1

0

∥∥∥∥ ∂

∂t
ht (.)(η)

∥∥∥∥
2

Hd
dt < ∞ . (3.2)

H(B) is the Hilbert reproducing space of the Gaussian field B.(.) and H(η) is the
Hilbert reproducing space of the Gaussian field η.
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If F is a functional which is B.(.) and η measurable, we take its derivative in
the direction of H(B) and H(η). ∇r F is therefore a random element of (H(B) ⊕
H(η))⊗r . We consider its L p norm and we get:

‖F‖r,p = E[‖∇r F‖p]1/p (3.3)

which is the collection of Sobolev norms in the sense of the Malliavin Calculus
[41]. F is said to be smooth in the Malliavin sense if ‖F‖r,p < ∞ for all r and p.

Lemma 3.1. Dr

Dxr xt (s)(x) and D−1

Dx xt (s)(x) are smooth in the sense of Malliavin.
Moreover their Sobolev norms are bounded in s, t ∈ [0, 1] and x,and the kernel of
their derivatives are B.(s)- measurable.

Proof. This result is classical [41] if we consider these functionals as B.(s)-mea-
surable. But

d/dtht (s)(B) = d/dt〈ht (.)(B), e(. − s)〉 . (3.4)

Therefore the result.

Proposition 3.2. Dr

Dxr AN , j
t (x) tends to Dr

Dxr

∫
S1 η

j
2 (s, t) ds x j

t (s) (x) in all the
Sobolev spaces and the Sobolev norms of this last stochastic integral are bounded
in x ∈ Rd.

Proof. If we do not take the derivatives of du�s Bu(s) and dv�s Bv(s)du�s Bu(s) in
(2.15) and in (2.16), the result goes by the same methods as the proof of Proposition
2.4, by applying Lemma 3.1. Let us take the derivatives of du�s Bu(s)in (2.15) and
(2.16). They are given by ∂

∂u �shu(s)(B) = ∂
∂u 〈hu(.)(B), e(.−s −�s)−e(.−s)〉H

and therefore the treatment leads to simpler considerations than in the statement of
Proposition 2.4.

We deduce from Proposition 3.2 that Dr

Dxr S(x.(.)(x), η) is bounded in x in all
the Sobolev spaces. We get, since the stochastic Poisson-Sigma action S(x.(.)(x),η)

is real, that:

Proposition 3.3. Let µ(x) be the measure on Rd which sends h ∈ Cb(R
d) to:

E[ f (x1(1)(x))g(x1(2)(x))h(x1(∞)(x)) exp[i S(x.(.)(x)), η)]] (3.5)

where f and g belong to C∞
b (Rd). µ(x) has a density q(x, y) with respect to the

Lebesgue measure and the uniform norm of Dr

Dxr
Dr ′

Dyr ′ q(x, y) can be estimated in

terms of the uniform norms of the derivatives of f and g.

Proof. This comes from the fact that Dr

Dxr exp[i S(x.(.)(x), η)] and Dr

Dxr x1(s)(x)

have bounded Sobolev norms in the sense of the Malliavin Calculus in x and from
the Malliavin Calculus [41].



STOCHASTIC POISSON-SIGMA MODEL 663

Proof of Theorem A. x1(∞)(x) is given by a diffusion on R
d . Its law has a smooth

density p1(x, y) > 0 with bounded derivatives of all orders in x and y. By using
the Airault-Malliavin-Sugita procedure [1, 44], we get :

µ(x, x)

p1(x, x)
= E[ f (x1(1)(x))g(x1(2)(x)) exp[i S(x.(.)(x), η)]|x1(∞)(x)= x] . (3.6)

Then the result follows, since p1(x, x) > c > 0. �

4. Semi-classical analysis

Following [40] and [18], let us put ε = h1/2. We replace B.(.) by εB.(.) and η by
εη. We get a random field x.(.)(ε)(x).

By using the classical rules of differentiation of xt (s)(ε)(x) along the parame-
ter ε and x [10, 39, 25] and considerations analog to Lemma 3.1, we get:

Lemma 4.1. Dr ′

Dεr ′ Dr

Dxr xt (s)(ε)(x) and Dr ′

Dεr ′ D−1

Dx xt (s)(ε)(x) are smooth in the sense
of Malliavin for the total Gaussian space. Moreover, their Sobolev norms are
bounded in s, t ∈ [0, 1], ε ∈ [0, 1] and x in R

d and the kernels of their deriva-
tives are B.(s)-measurable.

We get by adding the new parameter ε:

Proposition 4.2. Dr ′

Dεr ′ Dr

Dxr AN , j
t (ε)(x) tends to Dr ′

Dεr ′ Dr

Dxr

∫
S1εη

j
2(s, t)ds x j

t (s)(ε)(x))

in all of the Sobolev spaces of the Malliavin Calculus. The Sobolev norms in the
sense of Malliavin Calculus of the last stochastic integral are bounded in x ∈ R

d

and ε ∈ [0, 1]. Moreover, they are 0 if r ′ = 0 or r ′ = 1.

We get:

Proposition 4.3. Let µε(x) be the measure on R
d which to h ∈ Cb(R

d) assigns:

E
[

f (x1(1)(ε)(x))g(x1(2)(ε)(x)) exp[i/ε2S(x.(.)(ε)(x)), εη)]h(x1(∞)(ε)(x))
]

(4.1)

where f and g belong to C∞
b (Rd). µε(x) has a density qε(x) (ε > 0) and when

ε → 0:

qε(x, x) = ε−d
n∑

i=1

hi Q̃i ( f, g)(x) + O(hn) (4.2)

where Q̃i are differential operators in f and g.
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Proof. qε(x, x) = ε−d q̃ε(x, 0) where q̃ε(x, y) is the density of the measure νε :

E

[
f (x1(1)(ε)(x))g(x1(2)(ε)(x)) exp[i/ε2S((x.(.)(ε)(x),εη)]h

(
x1(∞)(ε)(x)−x

ε

)]
.

(4.3)

The result follows by standard arguments of Malliavin Calculus depending on a
parameter [28, 27, 45] because, in all the Sobolev spaces of Malliavin Calculus,
when ε → 0, x1(1)(ε)(x) → x , x1(2)(ε)(x) → x , x1(∞)(ε)(x)−x

ε
tends to the

nondegenerate Gaussian variable �(x)B1(∞) and

ε−2S(x.(.)(ε)(x), εη) →
∑
i, j

αi, j (x)

∫
D

ηi ∧ η j +
∑

i

∫
D

ηi ∧ d Bi . (4.4)

Let us write the measure νε

h → E[Gεh(Zε)] (4.5)

Gε depends smoothly on ε in all of the Sobolev spaces of the Malliavin Calculus
as well as Zε . Moreover Zε satisfies uniformly in ε Malliavin’s nondegeneracy
condition: supε E[〈∇Zε, ∇Zε〉−p] < ∞ for all positive integers p.

We have:

dr

dεr
νεh =

∑
|(r ′)|≤r

E

[
G̃(r ′)(ε)

∂(r ′)

∂y(r ′) h(Zε)

]
. (4.6)

But by Malliavin’s condition of nondegeneracy, we can remove the derivative of h
in (4.6) and we get

dr

dεr
νε f = E[Gr (ε)h(Zε)] (4.7)

Therefore q̃(x, 0) is smooth in ε.
At ε = 0, the Malliavin matrix of the Gaussian Z0 is deterministic and Gr (0)

contains only expressions in the Gaussian terms which are of the same parity as r .
If r is odd

E[Gr (0)|�(x)B1(∞) = 0] = 0 (4.8)

because we consider centered Gaussian variables. q̃ε(x, 0) has therefore an asymp-
totic expansion

∑
εi Qi ( f, g)(x) but only the even powers of ε remain in this

asymptotic expansion: namely the odd exponent leads to the expectation of odd
functionals of some centered Gaussian measures, which are 0. The introduction of
derivatives of f and g is due to the asymptotic expansion of f (x1(1)(ε)(x)) and of
g(x1(2)(ε)(x)) when ε → 0 because x1(1)(ε)(x) and x1(2)(ε)(x) go to x in all the
Sobolev spaces of the Malliavin Calculus when ε → 0.



STOCHASTIC POISSON-SIGMA MODEL 665

On the other hand, pε(x, x) has an asymptotic expansion:

pε(x, x) = ε−d
n∑

i=1

hi ci (x) + O(hn) (4.9)

where the coefficients belong to C∞
b (Rd) and c0(x) > c > 0.

Proof of theorem B. We get

f ∗st,h g(x) =
∑

hi Q̃i ( f, g)(x) + O(hn)∑n
i=0 hi ci (x) + O(hn)

. (4.10)

The result holds because c0(x) > c > 0. �
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Wurzbacher (eds.), Publi. Univ. Strasbourg, Strasbourg, 1996, 5–34.
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[35] R. LÉANDRE, Bundle gerbes and Brownian motion, In: “Lie Theory and Application in

Physics. V.”, V. Dobrev and H. Doebner (eds.). World Scientific, Singapore, 2004, 343–352.
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