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Stochastic Poisson-Sigma model

REMI LEANDRE

Abstract. We produce a stochastic regularization of the Poisson-Sigma model
of Cattaneo-Felder, which is an analogue regularization of Klauder’s stochastic
regularization of the Hamiltonian path integral [23] in field theory. We perform
also semi-classical limits.

Mathematics Subject Classification (2000): 53D55 (primary); 60G60, 60H07
(secondary).

1. Introduction

Let us consider a manifold M endowed with a Poisson structure, a bilinear map {., .}
from the space of smooth functions on the manifold into the space of smooth func-
tions on the manifold, anticommutative and satisfying the Jacobi relation. Bayen,
Flato, Fronsdal, Lichnerowicz and Sternheimer [6, 7] have introduced the so-called
program of deformation quantization. These authors get the following formal se-
ries:

frg=Y i"M"Py(f g (1.1)

The P,’s are differential operators. This series is diverging. The program of defor-
mation quantization was carried out by Kontsevich [24]. We refer to the survey of
Dito-Sternheimer about this topic [17].

Cattaneo-Felder [15] have established the link between Kontsevich formula
and quantum field theory. Let us suppose that the manifold is R¢. They consider
the so-called Poisson-Sigma model. Let us recall how it is constructed: we consider
the disk D, 3 points oo, 1, 2 on the boundary of the disk. They consider the space of
forms 7 on D and the space of maps X from D into RY. Let a;, j be the components

of the Poisson structure on R?. Let (z,s) = S be the polar coordinates on D:
tel0,1],s €S I Cattaneo-Felder consider the action:
Z/ ni(S) AdX; + Z/ o j(X)mi Anj = S(X, ) (12)
i JD i,j P
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where X = (Xi,...,Xy) and where n; are 1-forms on D. [15] consider the
following formula for the non-perturbative *-product:
fxn g(x) =[ S (X(1)g(X(2)) expliS/hldDXdDn (1.3)
n,X, X (00)=x

where the field X and the form 7 are chosen at random according to the formal
Lebesgue measure on the configuration space. [15] perform the semi-classical anal-
ysis when 7 — 0 and get the asymptotic expansion:

fangx) =Y ()" Pu(f. ). (1.4)

The objects of Cattaneo-Felder are formal (see [20, 21]) and use the heavy apparatus
of quantum field theory. Our purpose is to add a stochastic regulator in (1.3) in order
to define the functional integral rigorously. We get a stochastic product f g 5 g.

Let us recall that in (1.3), we have to choose two kinds of objects at random:
the field X : D — R< and the forms 1 over D. So we have to introduce stochastic
regulators to define a random field X and to define random forms 7.

In order to define the random field X : D — R?, we will follow the procedure
of Airault-Malliavin [2]. Airault-Malliavin [2] have defined the Brownian motion
over a loop group. Let us recall that infinite dimensional processes over infinite
dimensional manifolds have a long history: see works of Kuo [26], Belopolskaya-
Daletskii [8] and Daletskii [16]. Albeverio-Léandre-Rockner [4] have defined the
Ornstein-Uhlenbeck process over the free loop space, by using the theory of Dirich-
let forms. Brzezniak-Elworthy [12] have given an abstract generalization of the
works of Airault-Malliavin.

In this paper, we are concerned with a (1 4 1)-dimensional theory: this means
we consider a diffusion process on the loop space. Various works in this direction
were done by Brzezniak-Léandre [13, 14], Léandre [34, 35, 36]. Let us remark that
in (1.3), there is the condition X (oco0) = x. [14, 34, 36] have introduced a conve-
nient Brownian bridge in order to do the conditional expectation by X (co) = x.
But there is another procedure to condition functionals: it is the Airault-Malliavin-
Sugita procedure [1, 44]. In this work, we will follow this procedure.

In order to define random forms, we will employ the techniques of [37]. This
means we will not choose our random forms on D according to the formal Lebesgue
measure on the space of forms, but we will introduce a stochastic Gaussian regulator
in order to define the probability measure on the space of forms.

If we do not look at the conditional expectation by X (co) = x, the action §
becomes a stochastic integral, which belongs to all of the Sobolev spaces of the
Malliavin Calculus [41]. We consider the measure

h— E[f(X(1)g(X (2))h(X (c0)) expli S]] .

By Malliavin Calculus, it has a smooth density. Moreover, the magic properties of
the Airault-Malliavin equation tell us that the density of the law of X (co) is strictly
positive.
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We have:

Theorem A.
f st 8 = E[f(X(1)g(X(2)) expli ST/ X (00) = x| (1.5)

defines a continuous bilinear map from Cp° (R?) into Cr (R%).

We use the Malliavin Calculus to prove Theorem A.

We perform a semi-classical analysis when 7 — 0: for that task, we choose
a small leading Brownian motion as well as a small stochastic regularization of 7.
Such considerations were done in [32]. But S is only a stochastic integral: so, by
improving a bit the techniques of [32], we have:

Theorem B.

fsen & = En[ f(X(1)g(X(2)) expli S/ h]|X (00) = x] (1.6)

has, when h — 0 an asymptotic expansion:

frseng =) 1"0Ou(f.8) (1.7)

where the Q,,’s are differential operators acting on f and g.

For that, we use the techniques of asymptotics of Wiener functionals by using
the Malliavin Calculus: we refer to the surveys by Léandre [28], Kusuoka [27] and
Watanabe [45] for this topic.

The reader interested in the relation existing between analysis over loop space
and mathematical physics can consult the survey by Albeverio [3] and the two sur-
veys by Léandre [29, 30].

2. The model without conditioning

Let I[1(x) be a linear map from R” into R?, which depends smoothly from x € R?:
we suppose that the derivatives of all orders of IT are bounded and that (IT(x)e;)
i =1,...,n spans uniformly R? for the canonical basis ey, . .. , e, of R".

Let H = H'2(S';R") be the Hilbert space of maps from the circle S' into
R" such as:

1 1
/ |h(s)|*ds +/ |d/dsh(s)|*ds = |h|* < cc. 2.1
0 0

We write h = (h', ... , h'"). Moreover,

h'(0) = (h, e/) (2.2)
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where
e/(s)=(0,...,0,Aexp[—s] + wexp[s].0, ... ,0) (2.3)

for some A and some p for 0 < s < 1. Moreover el (s) is smooth on ]0, 1[ with half
derivatives at all orders at 0 and 1: ¢/ (0) = ¢/ (1) but d/dse’ (0) # d/dse’ (1).
We have:

hi(s) = (h, e/ (. —s)). (2.4)
‘We consider the Brownian motion with values in H:

Bi(s) = (Bl(s), ..., BI'(s)). (2.5)

The processes B'j (.) are independent and t — Bt] (s) is a Brownian motion with
values in R submitted to the relation:

d(B] (s), B/ (s)) = e(s — sdt 2.6)

where e/ (s) is the j th coordinate of e(s).
We consider the Airault-Malliavin equation [2, 12]:

dox;(s)(x) = T1(x; (s)(x))d; By (5) 5 x0(s)(x) = x. 2.7)

It is a family of Stratonovitch equations. We have shown that s — x;(s)(x) is
1/2 — € Holder by Gronwall lemma and Kolmogorov lemma [39]: we have an
improvement of this result. Namely:

Proposition 2.1. x — (s — x((s)(x)) is almost-surely smooth for the Holder
topology.

Proof. This comes from the fact that s — %xl (s)(x) is almost surely Holder

1/2 — € in s (see [32] for an analogous statement). Namely, the stochastic differen-
tial equation of 2= x;(s)(x) is

D
x;(s)(x) = DIT(x;(s)(x))

D
d ;B 2.8
D(x) D(x)xt(s)(x) 1 Bi(s) (2.8)
and we get by induction the differential equation of %x, (s)(x). O

Let us write for As small:

B;(s + As) = Bi(s) + AsBi(s). (2.9)
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We have (See [35] Part III):
Property H(1). If s’ does not belong to s, s + As[:

d{AsB (s5), B.(s")) = dtC(s, s")As + O(Asz). (2.10)
Property H(2). if |s, s + As[N]s’, s' + As’[= @, we have:
d(AsB.(s), AyB.(s))) = dtC(s, s ) AsAs’ + O(As + As')>. (2.11)

Let us consider a sequence of intervals ]s;, s; + As;[, two intervals being either
disjoint or equal. We denote by |/| the number of intervals and by || /|| the number
of distinct intervals. Let us consider some points r; of the circle which do not belong
to the union of the previous open intervals. Let o, (i) be some processes, which are
B (r;) measurable, previsible, and which are semi-martingales. We suppose that
the local characteristic [22] of each «; (i) have bounded Sobolev norms in the sense
of the Malliavin Calculus [41] for the Gaussian space spanned by the B (r;). We
put iteratively:

t
Il = / I (), (i)dy Ay, By (s7) (2.12)
0

and we get an iterated Stratonovitch integral 7/ (). Let F be a measurable func-
tional for the Gaussian space spanned by the B (r): we suppose that /" has bounded
Sobolev norms in the sense of Malliavin Calculus for the space spanned by the
B.(rj). We denote by I’ the set of indices obtained by selecting from 7 an interval
only one time. The cardinal of I’ is therefore || /].We have the main lemma:

Lemma 2.2.

E[FI'0] = C[]As (2.13)

iel
where C can be estimated in terms of the Sobolev norms of F and of the « (i).

Proof. We apply the Clark-Ocone formula to F' [41]. We select the Itd term in
11 (¢) and the finite energy term in I?(¢). We conclude by applying It6 formula and
Properties H(1) and H(2) and property H(3):

Property H(3).
di(AsB.(s), AgB.(s)) = C(s)Asdt + O(As?)dr . (2.14)
The statement follows by induction on |7]. [l

Remark 2.3. We remark that we have analogue estimates if we consider a prod-
uct [ [;c; I' (¢) of single integrals or if we consider double iterated integrals in the
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product. Namely, we can come back to the situation of Lemma 2.2 by using the
[t6-Stratonovitch formula. We put:

D!
D(x)

D
D(x)

t
I} (s, As)(x) = xt(S)(X)/O DT (x, (s)(x)) Xu () (X)dy As By (s)  (2.15)

and
Itz(s, As)(x)

t n—1
:%xt(s)(x)/(; %xu(S)(X)(DH(xu(S)(X)),IJ (5,A5)(x),dy Ay By (5)). (2.16)

By using the rule of differentiation of stochastic differential equations along a pa-
rameter [10, 25], we have that:

X (s 4 As)(x) = x,(s)(x) + I (s, As)(x) + I (s, As)(x) + O(As*?) . (2.17)

The error term is uniform in x over each compact set of R?.

Let us consider a 1-form on [0, 1] x S!, n = n1ds + nadt. We put a Gaussian
measure on the set of n: 11 and 7, are independent. On the space of n we consider a
Gaussian measure whose reproducing Hilbert space is defined as follows: we con-
sider the space of function taking values in R?? endowed with the Sobolev norm

fsl ((—;’—;2 + Dn(s), n(s))ds = ||n||ild and the space of forms endowed with the
Hilbert norm fol | %n,(.) ||§1ddt. The random forms which are obtained in that way

are almost surely Holder. Let us consider N = 2¥0. We consider the polygonal ap-
proximation s — xtN (s)(x) of s = x;(s)(x). We consider a coordinate )gN () (x)
of it. We put:

A () = /S n3 (s, Ddsx; () (). (2.18)

We have:

Proposition 2.4. When N — oo, Afv’j (x) tends in all of the L? to a real random
variable

/S 03 (s, s (5) () (2.19)

Moreover, the stochastic integral defined in (2.19) depends almost surely smoothly
on x and in all of the LP.

Proof. We omit to write the index j, doing as if the diffusion x;(s)(x) was one
dimensional. We write:

Si+1

AV =) AN = Z/ m(s, dsxN (s)(x) . (2.20)
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Let us decompose Af.v as a sum:

AN = BN + ¢V (2.21)
where
BY = ma(si, 1) Agxe (51 (x) (2.22)
and where:
N Si+1 ds
C; =/ (m2(s, 1) — ma(si, 1) ————— Ay x(5) (%) . (2.23)
Si Si+1 — Si

First step. Convergence of »_ BI.N in all the L7.
We write As; = 1/N. Moreover,

Bl-N = Bi’N1 + Bl{vz -+ error

= ma(si, )1 (si, Asi)(x) + nalsi, )1 (si, Asi)(x) 4 error.  (2.24)

Let us study first the convergence of ) Bl.{vl in all the LP. Let N’ = 2™ be an
integer larger than N. We write:

pY =B} - > B, . (2.25)

1
[Si/,Si/+IJ§[Si,Si+1]

In Bi{vl and in 1! (s;, As;), we get:

d Ay By (si) = > di Ag, By (sir) (2.26)

Lsirssir g 1€ 080, 8i411

and we apply Lemma 2.2 in order to get the estimate:

E[TT pY] =0 [T asi, =othc). 2.27)
l'jEI ijEI/
But there are at most CN” set of multi-indices / such that |[/| = p and ||| = r.

Therefore the result.
Let us study the behaviour of ) Bl.N2 in (2.24).

In I,z(s,-, As;), we write:

duAs,- Bu(si)dvAS[ By(si) = Z duAsj- BM(Sj)dvASj/ Bv(sj’)- (2.28)

Lsjosjr1llsjrs g 1€ i8]
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We select in the decomposition (2.27) the sum where we have s; = s/, and we get
a decomposition of BN into DN + D », where in DL{V => D{Yj’l we consider
only the diagonal terms.

We write:

Z 2 (s;, I)D;’V] — Z’n(sjy t)Bj'\,JZ
— > (ma(si, 1) —ma(sj, DY | +

[sj.sj+11<sisit1]

S om0l - BY). (229

[sj,8j+11<si,8i41]

The first term tends trivially to O in all of the L”. By applying the remark following
Lemma 2.2, the second term tends to zero in all of the L? when N’ — oc.
Let us consider Y _ n2(s;, t)D . Let us show that it tends in all the L? to zero.

Let I = {iy, ..., i} with |[1]| glven According to Lemma 2.2. we have:
E[T] o] = ov=m). (2.30)
ijEI

Hence, we can write DZ.N2 = Zj#j, D;Vj, ,- If we distribute in (DiNZ)’, there are
at most C(N’/N)* products [] D;.;/ 2 where the cardinal described by jj, jy is k.
But k is at least equal to 2. Therefore (2.30). We conclude as in (2.27).

Second step. Convergence of ) C lN in all of the L”.

We write

ZC{V = ZaN(si)Itl(si, As;)(x) + error (2.31)

where oV (s;) is independent of the system of Il1 (si, As;) and tends to O in all of the
L?. Therefore the sum tends to O by the previous considerations in all the L?”.

In order to show that the stochastic integral defined by (2.19) depends almost
surely and in all of the L? from x, we can apply the prev1ous considerations to

gxr, AN ](x) and show that it converges in all the L? to Dx, fsl n2 (s, t)dy x, (5)(x).
The SoboleV imbedding theorem allows to conclude. O

Let us introduce the stochastic Poisson-Sigma action defined as follows:

S(x. (@), ) = Z/o 0’ Adx!()(x)

11x 8!

+ cxe Al 2.32
Z/[o,uxsl""’(x()("))“” (2:32)
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Proposition 2.4 allows us to deduce the following theorem:

Theorem 2.5. The random variable S(x (.)(x), n) is real, and is almost surely dif-
ferentiable in x. For allr, all p > 1:

r

D p
sup E U ——= S0, x. ()| } < oo, (2.33)

This allows us to state the following theorem: let C;° (R?) be the Fréchet space of

smooth functions f on R¢ with bounded derivatives at each order endowed with
the set of semi-norms:

Dr
Dx’"

Il = sup | £ (). (234

Theorem 2.6. The map which sends (f, g) to:
E[f(x1(1)(x))g(x1(2)(x)) exp[i S (x.(.)(x)), )] (2.35)

is a continuous bilinear application from Cp° (RY)Y into Ccr (RY). 1 and 2 denote
in (2.35) two different points of S'.

3. A stochastic star product

Let us recall that, if the Malliavin Calculus has a lot of precursors (see the work of
Hida, Elworthy, Fomin, Albeverio ... ), the main novelty of the Malliavin Calculus
was to complete the differential operations known at that time on the Wiener space
in all of the L?. This allowed Malliavin to recover Hormander’s theorem by prob-
abilistic methods [38]. The first ones who have applied the Malliavin Calculus to
other Gaussian spaces than the traditional Wiener space are Nualart and Sanz [42]
in order to study the Brownian sheet. Here, we apply the Malliavin Calculus in our
situation.
We consider the space H(B) of maps from [0, 1] into H, h;(.)(B), such that

1
J
and the space H (1) of maps from [0, 1] into H?, h;()(n), such that

1
I
H (B) is the Hilbert reproducing space of the Gaussian field B (.) and H (1) is the
Hilbert reproducing space of the Gaussian field 7.

2

dt < o0 3.1

d
aht(-)(B) ,

9 2
a—h,(.)(n) dt < 0. 3.2)
t H4
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If F is a functional which is B (.) and n measurable, we take its derivative in
the direction of H(B) and H(n). V" F is therefore a random element of (H (B) &
H (n))®". We consider its L” norm and we get:

I|Fll,,, = ELIV"F|P1/P (3.3)

which is the collection of Sobolev norms in the sense of the Malliavin Calculus
[41]. F is said to be smooth in the Malliavin sense if || F'[|,, < oo for all r and p.

Lemma 3.1. DD—);x, (s)(x) and %_x]x, (s)(x) are smooth in the sense of Malliavin.
Moreover their Sobolev norms are bounded in s, t € [0, 1] and x,and the kernel of
their derivatives are B (s)- measurable.

Proof. This result is classical [41] if we consider these functionals as B (s)-mea-
surable. But

d/dth,(s)(B) =d/dt(h,(.)(B),e(. —s)). (3.4)

Therefore the result. O

Proposition 3.2. DD—xr, Aiv’j(x) tends to DD—;, fsl né (s, 1) dy x,j (s) (x) in all the

Sobolev spaces and the Sobolev norms of this last stochastic integral are bounded
inx € R%.

Proof. 1f we do not take the derivatives of d,, Ay B, (s) and dy, As By (s)dy, Ag B, (s) in
(2.15) and in (2.16), the result goes by the same methods as the proof of Proposition
2.4, by applying Lemma 3.1. Let us take the derivatives of dy, As B, (s)in (2.15) and
(2.16). They are given by %Ashu ($)(B) = % (hy()(B),e(.—s—As)—e(.—s))y
and therefore the treatment leads to simpler considerations than in the statement of
Proposition 2.4. O

We deduce from Proposition 3.2 that DD—;,S (x.(.)(x), n) is bounded in x in all
the Sobolev spaces. We get, since the stochastic Poisson-Sigma action S(x_(.)(x),n)
is real, that:

Proposition 3.3. Let j(x) be the measure on R which sends h € Cj,(R%) to:
E[f(x1(1)(x))g(x1(2)(x))h(x1(00)(x)) expli S(x.()(x)), mI] (3.5)

where f and g belong to Cp° (RY). 1u(x) has a density q(x,y) with respect to the

/
. D' D' . .
Lebesgue measure and the uniform norm of qu(x, y) can be estimated in

terms of the uniform norms of the derivatives of f and g.

Proof. This comes from the fact that 2= exp[iS(x.(.)(x), 7)] and 2x1(s)(x)

have bounded Sobolev norms in the sense of the Malliavin Calculus in x and from
the Malliavin Calculus [41]. ]
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Proof of Theorem A. x; (c0)(x) is given by a diffusion on R?. Its law has a smooth
density pi(x,y) > 0 with bounded derivatives of all orders in x and y. By using
the Airault-Malliavin-Sugita procedure [1, 44], we get :

MOS0 Bl (1D E)g (0 (2)()) expliSGx.() @), mx1 (00) () =x]. (3.6)
pi(x, x)
Then the result follows, since pi(x, x) > ¢ > 0. Il

4. Semi-classical analysis

Following [40] and [18], let us put € = h'/2. We replace B.(.) by €¢B.(.) and 1 by
€n. We get a random field x (.)(e)(x).

By using the classical rules of differentiation of x;(s)(€)(x) along the parame-
ter € and x [10, 39, 25] and considerations analog to Lemma 3.1, we get:

Lemma 4.1. DDE 7 DT xt ($)(e)(x) and - Do Dx x, (5)(e)(x) are smooth in the sense

of Malliavin for the total Gaussian space. Moreover, their Sobolev norms are
bounded in s,t € [0,1],e € [0, 1] and x in R and the kernels of their deriva-
tives are B (s)-measurable.

We get by adding the new parameter €:

Proposition 4.2. Ii B AL (€)(x) tends to D2 B [end (s, s (5)(€) (x)

in all of the Sobolev spaces of the Malliavin Calculus. The Sobolev norms in the
sense of Malliavin Calculus of the last stochastic integral are bounded in x € R?
and € € [0, 1]. Moreover, they are 0 if r’' =0 orr’ = 1.

We get:

Proposition 4.3. Let (1. (x) be the measure on R? whichto h € Cp(RY) assigns:

E[f(Xl(l)(E)(X))g(x1(2)(6)(x)) expli /€S (x.()(€)(x)), Gn)]h(m(OO)(é)(x))]
4.1)

where f and g belong to C° (R9). Ue(x) has a density qe(x) (e > 0) and when
€ — 0:

qe(x.x) =€ Y " H Qi(f. 8)(x) + O(h") (4.2)
i=1

where Q; are differential operators in f and g.
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Proof. qe(x, x) = e %Gc(x, 0) where g, (x, y) is the density of the measure v,:

E[f(m (1D(€)(0))g(x1(2)(€)(x)) expli /€*S((x.() (€) (x),em)Ih (w)}
(4.3)

The result follows by standard arguments of Malliavin Calculus depending on a
parameter [28, 27, 45] because, in all the Sobolev spaces of Malliavin Calculus,
when € — 0, xi()(e)(x) — x, x1(2)(e)(x) — «x, M tends to the
nondegenerate Gaussian variable IT(x)B;(co) and

e2S<x.<.)(e)(x>,en>%Zai,j(x)fDmAn,»+ZfDmAdBi. (4.4)
i,j i

Let us write the measure v
h— E[Gch(Ze)] 4.5)

G depends smoothly on € in all of the Sobolev spaces of the Malliavin Calculus
as well as Z.. Moreover Z, satisfies uniformly in € Malliavin’s nondegeneracy
condition: sup, E[(VZ., VZ.)"P] < oo for all positive integers p.

We have:

dr . 9"
—vch = E|Gyye)—=h(Ze) | . 4.6
o e |<w>2|<r (O3 (2O (4.6)

But by Malliavin’s condition of nondegeneracy, we can remove the derivative of &
in (4.6) and we get

r

d _
Evef = E[G,(e)h(Zo)] 4.7
Therefore g (x, 0) is smooth in €. .

At € = 0, the Malliavin matrix of the Gaussian Z is deterministic and G, (0)

contains only expressions in the Gaussian terms which are of the same parity as r.
If r is odd

E[G,(0)|T1(x)Bi(00) = 0] =0 (4.8)

because we consider centered Gaussian variables. g¢ (x, 0) has therefore an asymp-
totic expansion Y €'0;(f, g)(x) but only the even powers of € remain in this
asymptotic expansion: namely the odd exponent leads to the expectation of odd
functionals of some centered Gaussian measures, which are 0. The introduction of
derivatives of f and g is due to the asymptotic expansion of f(x1(1)(e)(x)) and of
g(x1(2)(€)(x)) when ¢ — 0 because x1(1)(€)(x) and x1(2)(¢)(x) go to x in all the
Sobolev spaces of the Malliavin Calculus when € — 0. O
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On the other hand, p.(x, x) has an asymptotic expansion:

pe(x,x) =€ 4> hici(x) + O(h") 4.9)

i=1

where the coefficients belong to C,° (R4 and ¢p(x) > ¢ > 0.

Proof of theorem B. We get

S RQi(f, 8)(x) + O(h™)
Sy hici(x) + Oy

f*an g(x) = (4.10)

The result holds because co(x) > ¢ > 0. O
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