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Linear independence of linear forms in polylogarithms

RAFFAELE MARCOVECCHIO

Abstract. For x ∈ C, |x | < 1, s ∈ N, let Lis(x) be the s-th polylogarithm
of x . We prove that for any non-zero algebraic number α such that |α| < 1,
the Q(α)-vector space spanned by 1, Li1(α), Li2(α), . . . has infinite dimension.
This result extends a previous one by Rivoal for rational α. The main tool is a
method introduced by Fischler and Rivoal, which shows the coefficients of the
polylogarithms in the relevant series to be the unique solution of a suitable Padé
approximation problem.

Mathematics Subject Classification (2000): 11J72 (primary); 11J17, 11J91,
33C20 (secondary).

1. Introduction

The aim of this paper is to prove the following statement: for x ∈ C, |x | < 1,
s ∈ N, let Lis(x) be the s-th polylogarithm of x :

Lis(x) =
∑
k≥1

xk

ks
;

then for any non-zero algebraic number α such that |α| < 1, in the sequence of com-
plex numbers 1, Li1(α), Li2(α), . . . infinitely many terms are linearly independent
over the number field Q(α).

More precisely, for any non-zero algebraic number α let h(α) be the Weil ab-
solute logarithmic height of α (see (4.7) below). Let δ(α) = [Q(α) : Q] if α is
real, and let δ(α) = [Q(α) : Q]/2 otherwise. Let τα(a) be the dimension of the
Q(α)-vector space spanned by 1, Li1(α), . . . , Lia(α).

We prove the following:

Theorem 1.1. For any ε, ω, H such that ε, H > 0 and 0 < ω < 1, there exists an
integer ã = ã(ε, ω, H) such that for every a ≥ ã and for every non-zero algebraic
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number α with |α| ≤ ω and h(α) ≤ H the dimension τα(a) satisfies

τα(a) ≥ 1

δ(α)
· 1 − ε

1 + log 2
log a. (1.1)

In the special case of a non-zero rational number α such that |α| < 1, Rivoal [4]
recently proved this result by applying the Nesterenko criterion to suitable linear
forms in 1, Li1(α), . . . , Lia(α) with rational coefficients. Rivoal’s method is based
on the series

n!a−r
∑
k≥1

(k − 1)(k − 2) · · · (k − rn)

ka(k + 1)a · · · (k + n)a
z−k, (1.2)

where r = r(a) is an integer such that 1 ≤ r < a, n ∈ N and z = α−1. He men-
tioned that his result easily extends to real algebraic numbers α, but for technical
reasons the case of complex α is delicate. Indeed, Nesterenko’s criterion needs both
lower and upper bounds of the sequence of the linear forms as n → ∞. Now, to
obtain an asymptotic estimate of (1.2) is straightforward if α is real, but seems hard
for non-real α.

The method of [4] is inspired by Nikishin’s series (see [3])

∑
k≥1

(k − 1)(k − 2) · · · (k − an − q + 1)

ka · · · (k + n − 1)a(k + n)q
z−k, q = 0, . . . , a. (1.3)

Using this tool, Nikishin proved that, for suitable negative rational numbers α, all
the real numbers 1, Li1(α), . . . , Lia(α) are linearly independent over Q. Each series
(1.3) is easily seen to be a linear form in 1, Li1(1/z), . . . , Lia(1/z) with polynomial
coefficients lying in Q[z]. The main feature of (1.3) is that, for q = 0, . . . , a, the
a + 1 vectors of such polynomial coefficients are linearly independent. Thus, by
a straightforward application of our Proposition 4.1 below, the use of the a + 1
series (1.3) requires only upper bounds of the coefficients and of the linear forms,
whereas the use of a single series such as (1.2) also requires a lower estimate of
the corresponding linear form, and here is precisely where one would require a
subtle application of the saddle point method. On the other hand, Nikishin’s method
essentially corresponds to the special case r = a in Rivoal’s series (1.2), so that, for
fixed a, it applies only to a class of α’s smaller than Rivoal’s.

In the present paper we employ a system of a +1 series that encompasses both
Nikishin’s and Rivoal’s ideas:

n!a−r
∑
k≥1

(k − rn)rn

(k)a
n(k + n)q

z−k, q = 0, . . . , a, (1.4)

where (β)m denotes the Pochhammer symbol:

(β)0 = 1, (β)m = β(β + 1) · · · (β + m − 1) (m = 1, 2, . . . ).
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In Section 2 we state the upper bounds and the arithmetic properties of the linear
forms and of the coefficients of (1.4).

The main new point of the present construction is to resume Nikishin’s original
argument, which does not need a precise asymptotic estimate of the sequence of lin-
ear forms. This is possible because a crucial property of (1.4) is the non-vanishing
of the determinant of order a + 1 of the coefficients of 1, Li1(α), . . . , Lia(α), for
q = 0, 1, . . . , a and z = α−1. To achieve our plan, in section 3 we resort to a recent
method introduced by Fischler and Rivoal ([2], Theorem 1), which in particular
shows that the vector (P0(z), . . . , Pa(z)) of the coefficients of the polylogarithms
in the series (1.2):

n!a−r
∑
k≥1

(k − rn)rn

(k)a
n+1

z−k =
a∑

h=1

Ph(z)Lih(1/z) − P0(z)

is the unique non-zero solution (up to a multiplicative constant) of the following
Padé approximation problem:

a∑
h=1

Ph(z)Lih(1/z) − P0(z) = O(z−rn−1) (z → ∞)

a∑
h=1

Ph(z)
(log(1/z))h−1

(h − 1)!
= O((1 − z)an+a−rn−1) (z → 1)

P0(z), P1(z), . . . , Pa(z) ∈ C[z], deg P1(z), . . . , deg Pa(z) ≤ n.

(1.5)

This property extends to the series (1.4) in a natural way (see our Remark 3.1 at the
end of Section 3).

In the last section we complete the proof by using a suitable generalization of
Nikishin’s determinant argument.

We remark that the present extension from polylogarithms of rational numbers
to polylogarithms of algebraic numbers is analogue to the extension made in [1],
where Amoroso and Viola obtain good approximation measures for logarithms of
algebraic numbers by generalizing a previous method of Viola [5] for logarithms of
rational numbers.

ACKNOWLEDGEMENTS. I am grateful to Professor Amoroso for helpful discus-
sions and interesting comments on this work.
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2. Upper bounds

Throughout this paper, a, n, q, r are integers such that 0 ≤ q ≤ a, r = r(a) with
1 ≤ r < a and n ∈ N (we let n → ∞). Let also Dλ = 1

λ! (
d
dt )

λ, and let

Rn(k) = n!a−r (k − rn)rn

(k)a
n(k + n)q

for chosen a, q, r .
In this section, following closely the methods of [3] and [4], we write each

series (1.4) as a linear form in 1, Li1(1/z), . . . , Lia(1/z) with polynomial coeffi-
cients, and we derive the required upper bounds and arithmetic properties of the
linear forms and of the coefficients.

For any a, n, q, r as above, and for any complex number z with |z| > 1, let
Nn(a, q, r; z) be the series (1.4):

Nn(a, q, r; z) =
∑
k≥1

Rn(k)z−k . (2.1)

It is worth noting that Nn(a, q, r; z) is a generalized hypergeometric function of z−1:

Nn(a, q, r; z) = n!a−r (rn)!a+1

((r + 1)n)!a−q((r + 1)n + 1)!q
z−rn−1 ×

×
∑
s≥0

(rn + 1)a+1
s

((r + 1)n + 1)
a−q
s ((r + 1)n + 2)

q
s

z−s

s!
.

We denote (for fixed r and a)

ch,q, j,n =




Da−h(Rn(t)(t + j)a)|t=− j ∈ Q if j = 0, . . . , n − 1; h = 1, . . . , a;
Dq−h(Rn(t)(t + n)q)|t=−n ∈ Q if j = n; h = 1, . . . , q;
0 if j = n; h = q + 1, . . . , a.

The rational function Rn(t) decomposes as follows:

Rn(t) =
a∑

h=1

n∑
j=0

ch,q, j,n

(t + j)h
. (2.2)

We now define the following polynomials in z:

A(h)
n (a, q, r; z) =

n∑
j=0

ch,q, j,n z j (h = 1, . . . , a)

Bn(a, q, r; z) =
a∑

h=1

n∑
j=1

ch,q, j,n

j∑
k=1

1

kh
z j−k .
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For the forthcoming analysis it is useful to remark that the degree of A(h)
n (a, q, r; z)

does not exceed n for 1 ≤ h ≤ q , and does not exceed n − 1 for q + 1 ≤ h ≤ a.
Moreover, for any h = 1, . . . , a the degree of A(h)

n (a, h, r; z) is exactly n, since

0 �= ch,h,n,n = (Rn(t)(t + n)h)|t=−n = ± ((r + 1)n)!

n!r+1
. (2.3)

We also notice that the coefficient of the power z−t in Nn(a, q, r; z) is zero for
t = 1, . . . , rn, and non-zero for all t ≥ rn + 1. In addition, the coefficient of
z−rn−1 in Nn(a, 0, r; z) is

n!a−r (rn)!a+1

((r + 1)n)!a
. (2.4)

Using the decomposition (2.2) in the formula (2.1), one readily sees that

Nn(a, q, r; z) =
a∑

h=1

A(h)
n (a, q, r; z)Lih(1/z) − Bn(a, q, r; z). (2.5)

The next three Lemmas 2.1, 2.2 and 2.3 are very similar to Lemmas 3, 4 and 5
of [4], and to Lemmas 1, 2 and 3 of [3], so we omit the proofs.

Lemma 2.1. For all z ∈ C with |z| > 1

lim sup
n→∞

|Nn(a, q, r; z)|1/n ≤ 1

|z|r ra−r
.

Lemma 2.2. For all z ∈ C we have

lim sup
n→∞

|A(h)
n (a, q, r; z)|1/n ≤ rr 2a+r+1 max{1, |z|} (h = 1, . . . , a),

lim sup
n→∞

|Bn(a, q, r; z)|1/n ≤ rr 2a+r+1 max{1, |z|}.

Lemma 2.3. Let dn be the least common multiple of the integers 1, . . . , n.
Then

da−h
n A(h)

n (a, q, r; z) ∈ Z[z] (h = 1, . . . , a),

da
n Bn(a, q, r; z) ∈ Z[z].

3. A non-vanishing determinant

To shorten our notation, from now on we put A(h)
n (q) = A(h)

n (a, q, r; z), Bn(q) =
Bn(a, q, r; z), Nn(q) = Nn(a, q, r; z).
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Let Mn be the following square matrix of order a + 1:

Mn =




−Bn(0) A(1)
n (0) · · · A(a)

n (0)

−Bn(1) A(1)
n (1) · · · A(a)

n (1)

. . . . . . . . . . . . . . . . . . .

−Bn(a) A(1)
n (a) · · · A(a)

n (a)


 . (3.1)

We claim that for any complex number z �= 1 the matrix Mn is non-singular.
Clearly, det(Mn) is a polynomial in z. On the other hand, for any complex

number z such that |z| > 1, we can add to the first column of Mn a linear combina-
tion of the other columns, namely we can replace −Bn(0) with the sum −Bn(0) +
A(1)

n (0)Li1(1/z) + · · · + A(a)
n (0)Lia(1/z) in the first row of (3.1), −Bn(1) with

−Bn(1) + A(1)
n (1)Li1(1/z) + · · · + A(a)

n (1)Lia(1/z) in the second row of (3.1), and
so on, and by applying (2.5) we immediately see that

det(Mn) = det




Nn(0) A(1)
n (0) · · · A(a)

n (0)

Nn(1) A(1)
n (1) · · · A(a)

n (1)

. . . . . . . . . . . . . . . . . .

Nn(a) A(1)
n (a) · · · A(a)

n (a)


 . (3.2)

We now recall that for t = 1, . . . , rn the coefficient of z−t is zero in each of
Nn(0), . . . , Nn(a), and deg A(h)

n (q) ≤ n for h = 1, . . . , a and for q = 0, . . . , a.
Therefore, expanding the determinant on the right hand side of (3.2) along the first
column, we obtain

det(Mn) = zan−rn−1
∑
k≥0

uk z−k

for suitable rational numbers uk . Moreover, since the elements above the principal
diagonal of the matrix in (3.2) satisfy deg A(h)

n (q) ≤ n − 1 (h = q + 1, . . . , a) and
for the elements of that diagonal deg A(h)

n (h) = n (h = 1, . . . , a), the coefficient u0
is the product of the coefficient of z−rn−1 in Nn(0) and of the leading coefficients
of the polynomials A(1)

n (1), . . . , A(a)
n (a). Thus

0 �= u0 = ±
(

(rn)!

n!r

)a+1

(3.3)

by (2.3) and (2.4). Since z is arbitrary in the domain |z| > 1, from the previous
analysis we infer that the degree of the polynomial det(Mn) is exactly an − rn − 1,
and that its leading coefficient is u0.

Following Fischler and Rivoal [2], we now introduce, for z /∈] − ∞, 0], the
function

Jn(a, q, r; z) = 1

2π i

∮
|t |=µn

Rn(t) z−t dt
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(i = √−1) where µ>1 is arbitrary. As above, we abbreviate Jn(q)= Jn(a, q, r; z).
Using the decomposition (2.2) and Cauchy’s integral formula we obtain

Jn(q) = A(1)
n (q) +

a∑
h=2

A(h)
n (q)

(log 1
z )

h−1

(h − 1)!
. (3.4)

Furthermore,(
dk

dzk
Jn(a, q, r; z)

)
|z=1

= (−1)k

2π i

∮
|t |=µn

n!a−r (t − rn)rn

(t)a
n(t + n)q

(t)k dt,

and letting µ → ∞ we see that Jn(q) vanishes at z = 1 to the order an + q −
rn − 1. As before, we can add to the second column of (3.1) a linear combination
of the subsequent columns, namely we can replace A(1)

n (0) with the sum A(1)
n (0) +

A(2)
n (0)

log 1
z

1! +· · ·+ A(a)
n (0)

(log 1
z )a−1

(a−1)! in the first row of (3.1), A(1)
n (1) with A(1)

n (1)+
A(2)

n (1)
log 1

z
1! + · · · + A(a)

n (1)
(log 1

z )a−1

(a−1)! in the second row of (3.1), and so on, and by
using (3.4) we obtain

det(Mn) = det




−Bn(0) Jn(0) A(2)
n (0) · · · A(a)

n (0)

−Bn(1) Jn(1) A(2)
n (1) · · · A(a)

n (1)

. . . . . . . . . . . . . . . . . .

−Bn(a) Jn(a) A(2)
n (a) · · · A(a)

n (a)


 . (3.5)

Thus, expanding the determinant on the right hand side of (3.5) along the second
column, we see that det(Mn) vanishes at z = 1 with multiplicity at least an−rn−1.
Since deg(Mn) = an − rn − 1, we must have

det(Mn) = ± (rn)!a+1(z − 1)an−rn−1

n!r(a+1)
.

In particular, for any z �= 1 this implies that

det(Mn) �= 0, (3.6)

as we claimed.

Remark 3.1. As is noted in [2, page 1383], by generalizing (1.5) one can prove
that the so-called non-diagonal Padé approximation problem

a∑
h=1

ph(z)Lih(1/z) − p0(z) = O(z−rn−1) (z → ∞)

a∑
h=1

ph(z)
(log(1/z))h−1

(h − 1)!
= O((1 − z)an+q−rn−1) (z → 1)

p0(z), p1(z), . . . , pa(z) ∈ C[z]

deg p1(z), . . . , deg pq(z) ≤ n, deg pq+1(z), . . . , deg pa(z) ≤ n − 1

(3.7)
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has a unique solution (up to a multiplicative constant), namely p0(z) = Bn(q),
ph(z) = A(h)

n (q) (h = 1, . . . , a).

4. Generalization of the Nikishin determinant method

Let K ⊂ C be a number field. Let MK be the set of places of K, and let Id ∈ MK

be the archimedean place associated with the usual absolute value in C. For any
v ∈ MK, let Kv be the completion of K with respect to v, and let ηv = [Kv :
Qv]. Thus, ηId = 1 if K ⊂ R, and ηId = 2 otherwise. Let | · |v be the absolute
value associated with v, normalized as follows: if v|∞ and v is associated with an
embedding σ : K → C, we denote |β|v = |σ(β)| for β ∈ K; if, instead, v|p,
where p is a rational prime, we let |p|v = 1/p. We also put δ = [K : Q]/ηId.

For β = (β1, . . . , βm) ∈ Km we define

h0(β) = 1

[K : Q]

∑
v∈MK

v �=Id

ηv log |β|v,

where |β|v = max{|β1|v, . . . , |βm |v}. We remark that h0(β) depends only on β, and
is independent of the field K.

We need the following:

Proposition 4.1. Let θ = (θ1, . . . , θm) ∈ (C×)m, let

L(n)
i (x) = l(n)

i,1 x1 + · · · + l(n)
i,m xm (i = 1, . . . , m; n ∈ N) (4.1)

be linear forms with coefficients in a number field K ⊂ C, and suppose that for any
n ∈ N the linear forms L(n)

1 , . . . ,L(n)
m are linearly independent.

Assume also that (for i = 1, . . . , m)

lim sup
n→∞

1

n
log |L(n)

i (θ)| ≤ −ρ

lim sup
n→∞

1

n
log max{|l(n)

i,1 |, . . . , |l(n)
i,m |} ≤ c

lim sup
n→∞

1

n
h0(L

(n)
i ) ≤ c′,

(4.2)

where L(n)
i = (l(n)

i,1 , . . . , l(n)
i,m), and ρ, c, c′ are real numbers satisfying c, c′, ρ+c> 0.

Then the dimension τ of the K-vector space spanned by θ1, . . . , θm satisfies

τ ≥ c + ρ

c + δc′ . (4.3)
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Proof. Let

A =

aτ+1,1 · · · aτ+1,m

. . . . . . . . . . . .

am,1 · · · am,m




be a matrix with entries in K, having m − τ linearly independent rows such that

ai,1θ1 + · · · + ai,mθm = 0 (i = τ + 1, . . . , m). (4.4)

Then for each n, up to renumbering L(n)
1 , . . . , L(n)

m , we can assume that the square
matrix


(n) =




l(n)
1,1 · · · l(n)

1,m
. . . . . . . . . . . .

l(n)
τ,1 · · · l(n)

τ,m

aτ+1,1 · · · aτ+1,m
. . . . . . . . . . . .

am,1 · · · am,m




(4.5)

is non-singular. On multiplying by θ1 the first column of 
(n) and using (4.1) and
(4.4) we get

0 �= θ1 det 
(n) = det




L(n)
1 (θ) l(n)

1,2 · · · l(n)
1,m

. . . . . . . . . . . . . . . . . .

L(n)
τ (θ) l(n)

τ,2 · · · l(n)
τ,m

0 aτ+1,2 · · · aτ+1,m
. . . . . . . . . . . . . . . . . .

0 am,2 · · · am,m




. (4.6)

We now apply the product formula to θ1 det 
(n), and for each place v ∈ MK we
use either (4.5) or (4.6), according as v �= Id or v = Id, respectively. We have

0 = ηId log |θ1 det 
(n)| +
∑

v∈MK

v �=Id

ηv log |θ1 det 
(n)|v

≤ ηId
(

log max
1≤i≤τ

|L(n)
i (θ)| + (τ − 1) log max

1≤i≤τ

2≤ j≤m

|l(n)
i, j |)

+τ
∑

v∈MK

v �=Id

ηv log max
1≤i≤τ

1≤ j≤m

|l(n)
i, j |v + γ,

for some real number γ which is independent of n. Dividing by ηId × n and letting
n → ∞, from (4.2) we obtain 0 ≤ −ρ + (τ − 1)c + τδc′, which is the same
as (4.3).
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We are ready to prove Theorem 1.1. Before doing this we recall the definition
of the Weil absolute logarithmic height:

h(β) = 1

[K : Q]

∑
v∈MK

ηv log+ |β|v (β ∈ K). (4.7)

Here and in the sequel log+ x = log max{x, 1} for x ≥ 0. It is well known that
h(β) depends only on β, and is independent of the field K.

Theorem 1.1 now follows from a straightforward application of the following
analogue of Proposition 1 of [4]:

Proposition 4.2. Let a, r be integers such that 1 ≤ r < a, and let α ∈ Q
×

with
|α| < 1. Then

τα(a) ≥ 1

δ(α)
· a log r + (a + r + 1) log 2 − (r + 1) log |α|

a + (a + r + 1) log 2 + r log r + h(α)
. (4.8)

Proof. Let q ∈ [0, a] be an integer. We apply Proposition 4.1 to the linear forms

da
n Nn(q) = da

n A(1)
n (q)Li1(α) + · · · + da

n A(a)
n (q)Lia(α) − da

n Bn(q),

with K = Q(α), δ = δ(α) and z = α−1. The Prime Number Theorem implies that
lim

n→∞
log dn

n = 1. Then by Lemma 2.1 we have

lim sup
n→∞

1

n
log |da

n Nn(q)| ≤ a − (a − r) log r + r log |α| = −ρ.

Moreover, for all places v ∈ MK such that v|∞, by Lemma 2 we get

lim sup
n→∞

1

n
log max{|da

n Bn(q)|v, |da
n A(1)

n (q)|v, . . . , |da
n A(a)

n (q)|v}
≤ a + r log r + (a + r + 1) log 2 + log+ |z|v = cv.

Let c = cId, and note that ρ + c > 0. Finally, Lemma 2.3 gives

max{|da
n Bn(q)|v, |da

n A(1)
n (q)|v, . . . , |da

n A(a)
n (q)|v} ≤ (max{1, |z|v})n

for all places v ∈ MK such that v � ∞. Hence

lim sup
n→∞

1

n
h0

(
da

n Bn(q), da
n A(1)

n (q), . . . , da
n A(1)

n (q)
)

≤ 1

[K : Q]

( ∑
v|∞
v �=Id

ηvcv +
∑
v�∞

ηv log+ |z|v
)

= a + r log r + (a + r + 1) log 2 + h(z) − c

δ(α)
= c′.
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As for c′, we remark that h(z) = h(z−1) = h(α). By (3.6) the linear forms
da

n Nn(0), . . . , da
n Nn(a) are linearly independent.

From Proposition 4.1 we get (4.8).

Proof of Theorem 1.1. Just as in [4], let r be the integer nearest to a(log a)−2.
From Proposition 4.2 we have

a log r + (a + r + 1) log 2 − (r + 1) log |α| = a log a + o(a log a)

a + (a + r + 1) log 2 + r log r + h(α) = (1 + log 2)a + o(a),
(a → ∞),

which implies (1.1) for all a ≥ ã, where ã depends only on ε, |α| and h(α).
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