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Hartogs theorem for forms:
solvability of Cauchy-Riemann operator at critical degree

CHIN-HUEI CHANG AND HSUAN-PEI LEE

Abstract. The Hartogs Theorem for holomorphic functions is generalized in two
settings: a CR version (Theorem 1.2) and a corresponding theorem based on it
for CK §-closed forms at the critical degree, 0 < k < oo (Theorem 1.1). Part of
Frenkel’s lemma in C* category is also proved.
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ondary).

1. Introduction

Let Py denote the unit polydisc in C¥, N > 1. In Cmtl o > 1, set
1
w= P, x zmHeC‘ §<|zm+1|<1 , m>1.

The classical Hartogs theorem (see [9, p. 55]) states: suppose, for a given holo-
morphic function f on w, there is an open set U C P, such that f has a holo-
morphic extension to U X {z;;+1 € C| |zm+1] < 1]}, then f can be extended holo-
morphically to P,,1. This phenomenon in higher fiber dimension is suggested by
Frenkel’s lemma (see [13, p. 15]).

Let n always be an integer bigger than 1. For z € C" 1" we write z = (z/, 7”)
withz = (z1,...,zm) and 2”7 = (Zna1s . - - » Tman). Set

1
Q=P, x (P,,\EP,,)

where %Pn = {7 € C"| 27" € P,}. The first part of Frenkel’s lemma says: the
Cauchy-Riemann equation

u=f, feCy, Q. 1<g<m+n, 0of=0
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always has a solution u € Cf‘a’qil)(Q) exceptqg =n— 1. Fromnowona (0,n —1)
form will be called of the “critical degree”.

Note that in Hartogs theorem the open set U can be replaced by a subset A of
P, such that A is not contained in a subvariety of codimension one in P,, (see [12,
p. 16]). The following is our first theorem.

Theorem 1.1. With Q, A as above. Let f be a C* d-closed (0, n — 1) form on S,
0 <k <oo. For7 € Py, let yy = QN ({z'} x C") be the fiber over 7' in Q. For
every 7 € A, suppose the Cauchy-Riemann equation on y,,

2_9),2,1) =1
is solvable. Then the Cauchy-Riemann equation on 2
dv=f
is solvable with v € C*(Q).

We explain the notation for the (tangential) Cauchy-Riemann operator used in
this paper. In general, if there is no ambiguity, it is denoted by 9; if the ground space
X is specified, we use dy to denote the Cauchy-Riemann (or tangential Cauchy-
Riemann) operator on X. Also in integral representations, we usually use ¢ for
the dummy variable and z for the resulting variable. In this case, the notation E_)g»
(respectively, d,) denotes the (tangential) Cauchy-Riemann operator with respect to
¢ (respectively, z) variable.

The proof of Theorem 1.1 depends on Theorem 1.2 which is the CR version of
Theorem 1.1. Let p be a C* (k > 3) real valued function in C"*" which is strictly
plurisubharmonic in a neighborhood of {p < 0}. Leto be a C* real valued function
in C™, strictly plurisubharmonic in a neighborhood of {o < 0}. We also assume
that {o < 0} is connected and relatively compact in C”. Set

M={p=0N{o <0} xC").

Assume that dp (respectively, do) does not vanish on {p = 0} (respectively, {o =
0}) and dp A do # 0on dM. Let f be a (0, ¢) form on M such that dy; f = 0 in
distribution sense. It is proved in [1] that if f € Lf)qu)(M) (i.e. fisa(0,q) form
with coefficients in L?), 1 < p < oo, then

dvu = f (%)

is solvable on M with u € Lf)o q_])(M) whenever | < g < n — 1. In the case

g = n — 1, the above equation is solvable with f € C?O q)(M ) (i.e. coefficients of

f are continuous on M.,) if and only if f satisfies the moment condition. Our main
result is the following:
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Theorem 1.2. Let M be as above and A be a subset of {o < 0} not contained in
any subvariety of codimension one in {c < 0}. Let f be a d-closed (0,n — 1) form
with f € C?O n—l)(M) N Ckl(M), 0 < k' < k—3. The equation (x) is solvable with

u € Cé‘(;’nfz) (M) if and only if all the holomorphic moments of f on Ty, 7/ € A
vanish, in other words, for every 7 € A

\/l; h(Z/, g_//)f(zl’ é_//)dé_// — 0

s
4

for every function h holomorphic near T, where T,y = M N ({z'} x C") is the fiber
over?7 in M.

Remark 1.3.

(a) When I'/ is strictly pseudoconvex in {z'} x C", it is well-known that the solv-
ability of the tangential Cauchy-Riemann equation dr ,u = f with f of top
degree is equivalent to the vanishing of all holomorphic moments of f on I',/.
So if Ty is strictly pseudoconvex in {z'} x C" for every 7' € A, the statement
of Theorem 1.2 can be phrased as:

The equation () is solvable with u € C®(M) if and only if o, v = f is solvable
for every 7’ € A.

(b) The CR function version of Hartogs theorem was proved in [2] where the con-
dition for A is stronger but no convexity condition or boundary regularity is
required for M.

We recall the representaion formula for dp-closed form fon M (cf. [1]):

(=D?f(2) =5{/Mf(4)/\9q—1(t, D+ DT FOAQE T8, z)}

oM
+faMf(§) A", 8)(¢,2), zeM 2.7

where Q(t, t*), Q(r, v*, 5), Q(t*, s) are defined in Section 2. It is clear from this
representation that the obstruction to the solvability of (x) is the last integral which
is null when ¢ < n — 1 by type consideration. We therefore in Section 2 define for
fecC ?0, n_l)(M ), 3 f = 0 in distribution sense, the following transform:

Tf(2) = (—1)"_1/8Mf(§) A Q" 8)(8, 2), (2.8)

which may be taken as the global moment of f (cf. ((3.17))). Section 3 consists
of the properties of the operator 7 needed in this paper. For f in the domain of T
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we show that Tf is defined in a set containing M and is d-closed there, so (2.7)
becomes a “jump formula” for f (see Remark 3.3(a) for more details). Next, we
show that T can be defined locally over the base set {o < 0}. Finally, the operator T
is proved to be just defined fiberwise over every point z' € {o < 0}. This enables us
to define 7 on M with arbitrary base set B in C™. In section 4 we define the moment
operator My, for Tf (or f) with respect to a holomorphic function 4. It turns out
that M, (f) is a holomorphic function in the base set. Using this property we prove
a more general Theorem 4.4 which implies Theorem 1.2 immediately. Section 5
contains the proof of Theorem 1.1. The interesting thing here is a procedure which
improves the method in [11] to produce a Ck solution for 0 < k < 0o. The results
of this paper hold for (p,n — 1) forms, 0 < p < n. For simplicity, we only deal
with the case p = 0.

Finally, closely related to the topics in this paper, there is another Hartogs
theorem (see [9, p. 56, 63]) whose higher dimensional analogue is written in a
forthcoming paper.

ACKNOWLEDGEMENTS. We thank the referee for comments that helped to im-
prove the presentation of this paper.

2. Preliminaries

We write { € C™" as (¢/,¢”) where ¢’ € C" and ¢” € C". Similarly, for
differential forms we write df = (d'f,d” f),and 0f = (8’ f, 3" f), where d’-, d”-
denote respectively the differentials with repect to the first 2m variables and those
with respect to the last 2n variables; likewise for 8’- (3’-) and 8”- (3”-). Also we use
de =doy N ANdlyyn, de =doy Ao A NdEy and dE” = dpa Ao AdEpn;
similarly for d¢, d¢’, d¢”, etc..

The following notations and exterior calculus developed by Harvey and Polk-
ing [5] will be used in construting kernels needed in this paper:

Let E', ..., E® (which are called sections) be a collection of N -tuples of C 2
functions in (¢, z) € C¥ x CV. Following Harvey-Polking [5] we use

E', d: E“, d
Q(El’“"Ea):A/\._./\A @2.1)
(E', ¢ —2) (E% ¢ —2)
= - )Ll = jd )Lot
.. E',d 3. E% d
Ay (u,lz o) A.”A(u,j c))
hitorg=—a \ (E-E = 2) (E%. ¢ —2)
where (x,y) = Y x;y; for vectors x,y in CV and d} here is understood to
be the N-vector (d¢i,...,d¢y). Then € is C! away from the singular set

Z = U 2| (E/,¢ —z) = 0}). We can rewrite Q as Q(E!,... | E%) =
Z(j)v_l Q (EY, ..., E%), where Q2 is the sum of components of €2 which are of
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degree g indzj, j = 1,..., N. Outside the singular set Z we have the following
identity:

o
0 QE', ... E") =) (=)/QE'.... ,EJ,... E%). (2.2)
j=1

To construct the sections we use the results of Fornass [3] which we briefly outline
in the following and refer to [3] for details:

We first observe that for any strongly convex domain G ¢ CV with C¥, k > 2
boundary, there exist a C¥ function u with positive real Hessian, a constant ¢ > 0
such that G ={u < 0}, and dpu # 0 in a neighborhood of dG. Furthermore, if we

define
N

ad
HiE, ) = Za—g_(s)(sj — ).
1 J

then it satisfies

H(E, n) > &) — p(n) +clg —nl?

for all £,n in a small neighborhood of G. The section (g?”l(é ) BEREE. &—’;(5 )) will
serve the purpose of this paper in case the given domain is strongly convex.

On the other hand, Fornass proved in [3] that any strongly pseudoconvex do-
main X ¢ CV with C ", k > 2 boundary, admits an embedding into a bounded
strongly convex domain ¥ cCV " with C* boundary for some N’, such that the
boundary of X is mapped into the boundary of Y, and the map is 1-1 holomophic
in a neighborhood of X (cf. [3, Theorem 9] for explicit statements).

Now for any strongly pseudoconvex domain X ¢ CV with C¥, k > 2 bound-
ary, the above oberservation and Forn@ss’ embedding theroem together imply the
existence of H and the section for ¥ ¢ CV’. Their pull-backs to CV then give the
following resuts (cf. [3, Theorem 16]):

There exist a Ck function v which is strictly plurisubharmonic in a neigh-
borhood of X with X = {v < 0}, a constant ¢ > 0 and a function H(&,n) €
Cck1(X. x X.), where X, = {n € CV, v(n) < €} satisfying

H(&,-) isholomorphicin X, 2.3)
dn;,n) € Ckil(Xe x X¢), j=1,..., N, holomorphic in 7, such that (2.4)
N
HE n) =Y njEnE —n)),
1
3¢ >0, suchthatVne X, £ € X (2.5)

2Re H(E, 1) > v(£) — v(n) + clg — %,

de H(§, n)le=y = 9v(§). (2.6)
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Let p, o be as in Section 1. In view of the above discussion, for the strongly
pseudoconvex domain {p < 0} C C™*" there exist t;’s which correspond to the
n;’s in (2.4), and we define the section v(¢, z) as (ty, ..., tyyy). Similarly for
the domain {oc < 0} C C™ we define the section s'(¢’, ') = (51, ..., 5m). We
then use (¢, z) for the section (51(¢’, 2), ..., 5m(¢',2),0,---,0). Lett*(¢, z) =

——

n
(t}(¢,2)s -+ s Ty (£, 2)), Where ¥5(¢, 2) = —v;(z, ¢). Thus v, v* and s are Cck-1

in a neighborhood of M x M.
The kernels Q (¢, t*), Q(t, t*,s), Q(t*, 5) etc., are defined according to for-
mula (2.1).

For f € C?O q)(M), satisfying 9y, f = 0 in distribution sense on M with

1 < g <n+m— 1, we recall the following basic representation formula from [1,
p-543]: forz e M

(=D1f()= 5{/Mf(;)mzq_1(t, ™) (¢, z)+(—1)‘1/8Mf(§)AS2(t, v, 5)(¢, z)}

+/ F@) A", 5)(¢, 2). 2.7)
oM

The last integral in (2.7) is null when ¢ < n — 1 by type consideration. For f €
C ?0 n_])(M ), dpr f = 0 in distribution sense, we define the following transform:

Tf(2) = (—1)"_1/3Mf(§) A Q" 8)(¢, 2). (2.8)

Remark 2.1. A (0,n — 1) form f defined in a subset of C"*" can be decomposed
as follows:

s
f=) fiwhere fj= Y fjodz"“dz"" and s=min(m + 1,n). (2.9)
j=1 || +|Bl=n—1
ler|=j—1
Moreover, when f is d-closed we have:
3 fi =0, 8y f;j = =0y fi41, j=1,...,5s — 1, and 3, f; = 0. (2.10)

The definition of 7 immediately gives

Tf=TH=T/Hr. 2.11)

3. Properties of Tf

In this section we always assume that f € C ?0’ n—1) (M) and 9y f = Oindistribution
sense.
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Lemma 3.1. Tf = 0 if there exists u € C?o,nfz)(M) such that dyu = f on M.

Proof. Suppose there exists u € C?o, n-2) (M) satisfying dpu = f. By the defini-
tion of T f, we have

Tf = (—1)"1/ deu(C) AQ(*, 8)(¢, 2) = / u A QU 5) (¢, 2)
M M

by Stokes’ theorem. Invoking (2.2) the last integral becomes

/ uAn Q") — Q) —0.Q(t*, ) =0
oM
by type considerations. This proves the lemma. O

Lemma 3.2. There is an open neighborhood N of M in {0 < 0} x C", depending
on p only, such that Tf € C'(N). Ontheset U = N N{p > 0} we have
a(Tf)=0.
Proof. Observe that in the definition of 7' the integration is just over d M. By (2.3)-
(2.6), we see that T f is well-defined for z in an open set \V, depending on p only,
containing M in {o < 0} x C" and is C*=2 there.

We show that 8(T f) = 0 in the interior of U. Consider m > 1 first. The
identity (2.2) and type considerations imply 9, (t*, 5) = —9, Q(t*, 5) in this case.
Thus

é(Tf):(—l)"—‘/ f/\Z_)zQ(t*,s)=(—1)”/ f A3 Q" 5)
oM oM

= —/ 5;(f/\Q(t*,5)) = —/ de (f AQ(",5)) =0
oM oM

by Stokes’ theorem. For m = 1, the section s is the Cauchy kernel which is holo-
morphic in both ¢ and z. Hence (2.2) and type consideration give

5.(Tf) = (—1y"! / FAQE.
oM

For z € U\ M we can apply Stokes’ theorem to the above integral and get 3, (T f) =
0asdf = o,t* = 0.

Since Tf € C k=2(N\), we conclude that 8(T f) = 0on U by continuity. The
lemma is proved. O

Remark 3.3.

(a) In (2.7) the form inside the parenthesis after 9y isin C1(M) provided that f is
in C'(M), and so it can be extended to a C! form in {o < 0} x C". By Lemma
3.2 the last form in (2.7) is actually in C¥~2(U) and is 8-closed. Therefore, in
this case, (2.7) becomes a “jump formula” for f. A more general jump formula
can be found in [2], but we don’t need it here.
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(b) In view of (2.10),(2.11) and Lemma 3.2, we see that all the coefficients of T f
are holomorphic in 7’

Let 6 bea C! f}lnction defined in a neighborhood of {o < 0} such that {¢ < 0} C

{o < 0}. Set M = {p=0N{o < 9} x C™). Suppose dp Add # 0 on IM.

Denote by b’ = (b/,0, - - -, 0), where b’ is the section for the Bochner-Martinelli
——

kernel in C”. For f in the domain of 7', define

T'f(2) = (—1)"1f fAQET BN, ).
am

Lemma 3.1 and the proof of Lemma 3.2 still hold for T’ and consequently T’ f is a
d-closed formin U = N N{p > 0} N ({6 < 0} x C"). The next lemma shows that
T is “locally” defined over C™.

Lemma 3.4. Let f be in the domain of T. Then Tf =T’ f on U.

Proof. For 7 € U, apply (2.2) to get
Tf = (—1)"_1/ FAQE", 8¢, 2)
aM
= (—1)”_1/ FAQE* D) —Q(s, b)) — 3:.,Q1%, 5, b))
aM
= (—1)"! / f AQ(*, b') by Stokes’ theorem and type considerations,
oM
= (_1)"—1/ fAQE* D)
aM
-I—(—l)"_lf de (f A Q(r*, b)) by Stokes’ theorem.
M\M
In the last integral we use (2.2) again to get
d: Q" b)) = 3, Q0% b)) = —3,.Q0*, b) + Q*) — Q®)

and the integral vanishes by type considerations. So

Tf — (_l)n—l/ ~f A Q(t*,bl) — T/f.
oM

This completes the proof. O
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Lemma 3.4 has two implications. First, in Lemma 3.1 the assumption on u can
be weakened by u € C ?0’ n—2) (M). Next, it suggests that the strong pseudoconvexity
of the base set can be relaxed when one defines 7'f. This is seen more precisely in
Lemma 3.5.

Fort > 0, set

M, ={p=11Nn{o <0} xC")

M, ={p=t}Nn{6 <0} xC") and

Iy, ={p=t}Nn{} xC") forz € {o <0}.
When t =0 we have I'yy =Ty, M = My, and M = M.

Now fix zj, € {o < 0}. Asin Lemma 3.4, let 6 = |/ — z{|> — €2, where € > 0

is chosen so that {¢ < 0} C {o < 0} and dp A do # 0 on dM. For e small enough
there exist # > 0 small such that FZ(/)’ ; is strongly pseudoconvex in {z;} x C" and

{211z = 29l < €} x "] (z, ) € Ty J C U\ M.

Fix such € and 7. By Lemma 3.4 we have for zo € U satisfying p(zo) > ¢

Tf(z0) = (—1)"_1/3Mf(§) A Q" D)8, 20)

_ (—1)"‘1f (THE@) AR D)@, 20)
oM

where the last equality follows from (2.7) and Lemma 3.1 for 7”.
Since in the last integral

Q™ b)) = R(¢,2) A Qo(b)

where R(¢, z) is a form holomorphic in ¢. Applying Stokes’ theorem to the last
integral in the above formula, we have

Tf(z0) = (—1)"_1/S (T AQE", D), 20)

by type consideration and the fact that 9, Q0(b") = 0, where Sc = {¢'| [/ — zj| =
€} x (¢ (2, £") € Ty ).
Let € tend to zero. It follows from Lemma 1.14 of [Ky] that

Tf(z0) = (—1)"_lcm/ (T)(zg, ¢ A Q(EZ)’,)(Z”, 20)

{”Erzé,t

— Q@md™
— (m=1)!
We thus have the following lemma:

where ¢,

and E’; , is the section constructed from p(") = p(z(. 2" — 1.
0
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Lemma 3.5. For any z;, € {0 < 0}, for any zo = (z(, 2()) € U and for any t > 0

such that p(z0) > t and {z"| p(zg, 2") < t} is strictly pseudoconvex in Un ({zg) x
C™), we have

Tf(z0) = (—1)"_10171/ (T ) (zg. ") A Q(fz)’,)(é'”, 20)- (3.1)

{Nerzé,t
In particular, if {z"| p(zq,, 2") < O} is strictly pseudoconvex which holds for z;, in a
dense open set in {o < 0}, we have

Tf(z0) = (=) e /

Nel"
¢ A

[ ¢ A QEDE" 7). 3.1)

Proof. It remains to prove (3.1’). The denseness of such 26 follows from Sard’s the-
orem. In view of the fact that (3.1) holds for any 0 <7 < p(z0) with {z"| p(z, z") <
t} strictly pseudoconvex in Un ({16}x C™), (3.1) is obtained by taking limit as
such ¢ goes to 0 in (3.1) and by (2.7) and Stokes’theorem. ]

Remark 3.6. Formula (3.1) (or ((3.1"))) is of fundamental importance. It shows
that 7'f can be defined by p only: the connectivity and the strong pseudoconvexity
of the base set {o < 0} can be relaxed. Moreover, it shows that T f has a continuous
extension to the set Uy = N N {p > 0} N ({o <0} x C").

Now instead of {o < 0} we take the base set to be an arbitrary open set B in
C™. Tt is easy to see that all the preceding results about T f still holds. Indeed,
through (3.1) and ((3.1’)) the properties of T f become even more transparent.

4. The moment operator M, (g) and the proof of Theorem 1.2

Let p be the same as before and B be an arbitrary relatively compact open subset in
C™. Set }
M={p=0Nn(B xC".

For an open neighborhood O of M, we set
U=0n{p>0N(BxCH.

Let g be a C' d-closed (0,n — 1) form in U. Let V be an open set in B and h
be a function holomorphic in a neighborhood of {p = 0} N (V x C"). Define the
moment operator of g with respect to 2 on V by

M@ =]  h(, Mg, ¢Mde", where d¢"=dtni1 Ao Adbnin. (4.1)
{”EFZ/

Lemma 4.1. M}, (g)(Z) is a holomorphic function in V.
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Proof. First observe that

Mp(9)(Z) = / h(, Mg, ¢Mdg”

{”EFZ/

where g is defined by (2.9). Fix z;, € V. Choose a domain D in C" with C !
boundary and a neighborhood W of z;, in V such that

Iy Clzg)x D, {p<0)N(WxCHCWxD andWxdDcCU.

For any function 4 holomorphic in W x D it follows from Stokes’ theorem and
(2.9), (2.10) that

M@ = [ h @ e = [ e ea e’
whenever 7/ € W. Now by (2.10)

5.0 My ()() = f

h(Z/, é.//)52/&,1(2/’ C//)d{// — _/ h(Z/, {")5;"g2(zl, {N)d{//
aD aD

whenever 7' € W and so
IM(g) () = —/ den(h(2, £ ga(, £"))dg" = 0.
aD
This completes the proof. O

Remark 4.2. Suppose fisa d-closed (0, n—1) formin C O(M ). In view of Remark
3.6, Tf is well-defined in U = N N {p > 0} N (B x C") where \ is given by
Lemma 3.2. Locally, for each 7 € B there is a small open neighborhood W of 7’
contained in B such that forz € U N (W x C") f can be represented as in (2.7),
we see immediately that M, (f) = M, (T f) for any holomorphic function %. In
other words, the moment of f is well-defined and is holomorphic in z’.

With Remark 4.2 we have:
Corollary 4.3. Fix 7/ € B. All the holomorphic moments of f on T, vanish is

equivalent to Tf(z) = 0 on UN ({Z'} x C"). Moreover, suppose I is strictly
pseudoconvex, equation dr ,u = [ is solvable on Iy if and only if Tf (z) = 0 for

allz € U N {2} x CM).

Proof. To prove the first statement, we need only show that M}, (f) (z)=0forall h
holomorphic near ', implies 7 f(z) = 0 on U N ({z'} x C"). The proof of Lemma
4.1 and Remark 4.2 give

0= My()E) = /F W, YT e

=/ h(', ¢NTf(E,¢Mdg", t >0,
r

it
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whenever I'y ; C U and h is holomorphic near I,/ ;. The last equality follows from
(2.10), (2.11) and Stokes’ theorem. Now suppose I';/; is strictly pseudoconvex.
Let h(Z/, ¢")de" = 2(¥}). By Lemma 3.5 we have Tf(z) = O for z € Un
({Z'} x C™), p(z) > t. By Sard’s theorem 0 is a limit point of such ¢ so the first
statement is proved. The second statement follows from the first statement and
Remark 1.3(a). O

Theorem 4.4. Let p be as in Theorem 1.2. Let B be a connected relatively compact
open subset in C". Set .
M={p=0N(BxC".

Let f be a (0,n — 1) form in CO(M) withd f =0 on M in distribution sense. Let
A be a subset of B not contained in any subvariety of codimension one in B. If for
every 7' € A all the holomorphic moments of f on I, vanish, then T f vanishes
identically on U = N N {p > 0} N (B x C") where N is defined in Lemma 3.2.

Proof. Step 1. The assumption on the set A implies that there is a point p € B
such that the intersection of A with any neighborhood of p is not contained in a
subvariety of codimension one in B. Let V be any connected neighborhood of p
in B. Let h be any function holomorphic near M N (V x C"). By Lemma 4.1
My (f)(Z') is a holomorphic function in V N B. Remark 4.2 and the assumption
give that M, (f)(z) = Mp(Tf)(Z') = 0forall 7/ € V N A. By the choice of p,
we must have M, (f)(z’) identically equal to zero on V.

Step 2. Claim: There is a neighborhood W of p in B such that T f vanishes identi-
callyon U N(W x C").

Proof of the Claim. By Corollary 4.3 it suffices to show that for every 7/ € W,
My (f)(Z') = 0 for all & holomorphic near T, If there is no such neighborhood,
then there exists a sequence {z}}7° C B such that Z’; — pas j — coand Tf (2}, )
does not vanish identically forall j = 1,2, ....

Choose t > OsothatI'),isa C k strictly pseudoconvex real hypersuface in
UnN({ p} x C"). Let W be a connected open neighborhood of p in B such that W
x ("] (p.2) €Tp} CU\M,

For every j = 1,2, ... there is a function / ; holomorphic near Fz/j such that
M, (f )(Z’j) # 0. For simplicity we may assume that Fz/j is strictly pseudoconvex
in {z/l.} x C" (or we do as in the proof of Corollary 4.3).

Fix j so that i € W.Set Dy ={2"| p(p,2") < thand Dy = {z"| p(2}, ") <
0}. By our choice both D, D; are strictly pseudoconvex domains in C" and
D, @ D forevery j = 1,2,.... Since ,o(z;., -) is plurisubharmonic in Dj if
p is plurisubharmonic in U and which can be assumed, it follows from Corollary
5.4.3 of [8] that D, D> form a Runge pair. B

Thus i (z’j, -) can be uniformly approximated on D; by functions holomorphic
on Dy. Let {gx}2 ; be such a sequence of holomorphic functions on Dy. By Step 1,
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forall k > 1 My, (f)(Z) = Mg (Tf)(z') = 0forall z/ € W. Therefore we must
have M, i )(z;.) = 0, contradicting our assumption on Z’j and £ ;. This completes
the proof of the claim.

Step 3. Set S = {/| 2/ € B, Tf(Z,) =0onU N ({} x C")}. By Step2 S
has non-empty interior. In fact, the argument in Step 2 shows that the interior of

S is both open and closed in B. Since B is connected, we conclude that S = B.
Theorem 4.4 is proved. O

From the proof of Theorem 4.4 we have the following:

Corollary 4.5. Under the assumptions of Theorem 4.4, the following statements
are equivalent:

(a) Forall 7' € A, every holomorphic moment of f on I, vanishes.
() Tf(z)=00nU.
() Tf(z)=0forallz €Ty, 7 € A.

(d) 5rz, u = Tf(,") is solvable on T, ; C U for every 7/ € A and for every
t > 0, provided that T ; is strictly pseudoconvex in {z'} x C".

Corollary 4.6. Under the assumptions of Theorem 4.4, if the set {Z'| T, =0, 7' €
B} is not contained in a subvariety of codimension one in B, then Tf = 0 on M.
In particular, if B = {0 < 0}, then 9y is solvable at ¢ = n — 1.

On the other hand, we have

Remark 4.7. Let M = {p = 0} N ({¢ < 0} x C") where p is as in the assumption
of Theorem 4.4 and & is any C! function satisfying dp A d& # 0 on dM. Suppose
M and {6 < 0} are connected and m < n, then for f € C?O q)(M) satisfying

éM f = 0in distribution sense on M with m < g < n 4+ m — 1, considering type,
the following representation formula holds for z € M

(=D f(z)=0 {/Mf({)/\Qq_l(t, ™) (¢, z)+(—1)‘1/8Mf(§)AQ(t, b)), z)}

+ / FOAQ(*, D), 2).
oM

Note that the last integral vanishes form < g < n—2 by type consideration. In other
words, dj; is always solvable for m < ¢ < n — 2 in this case. Thus the tangential
Cauchy-Riemann equation (x) is solvable at g = n — 1 iff T’ f(z) = Tf(z) = 0.
In view of Corollary 4.6, if {6 < 0} is not contained in 7 ({p = 0}), the projection
of {p = 0} to the C™ plane, then (x) is solvableatg = n — 1.

Proof of Theorem 1.2. The solution « is obtained from Corollary 4.5 and formula
(2.7). The regularity of u can be proved by routine procedure, see e.g. [14], and we
omit the details here. O
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5. Proof of Theorem 1.1

Let Py denote the unit polydisc in CV as before. We are going to define a sequence
of subdomains exhausting 2. First choose a sequence of C°° real-valued strictly
convex functions {p1, j}?oz1 in C™*" satisfying:

(p1) {p1,j <0} € {p1,j+1 <O} € Py foreach j = 1;

(p2) UT{p1,j <0} = Puga;

(p3) foreach j = 1,2,..., p1,j(z) = p1,;(z1l, ..., |Zm4n|) and is symmetric in

lzkl, k=1,...,m+n.

Next, for j =1,2,...,setC; ={z € C™ 1 |z < 1+3Lj,k= I,....,m, |zx] <
% + 3%-, k=m+1,...,m 4+ n}. Choose a sequence of C* real-valued strictly
convex functions {07, j}?oz1 satisfying:

(pa) {/)Z,j <0} e C; forj=1,2,...;

(ps) {p2,; =0} C C;\ Cjsrs

(pe) foreach j = 1,2,..., 02 j(z) = p2,j(|z1], -, |Zmn|) and is symmetric in
|zkl, K = 1,...,m and is also symmetric in |zx|, k = m +1,...,m +n
respectively.

Define

Dj={p1,; <0}N{py; >0}, forj=1,2,....
Clearly we have
Dj @Djyq, forj=1,2,... and U D; = Q.
Remark 5.1. Let 7 be the orthogonal projection from C"*" into C™. Set
Ej={zeC"" en(Dj),pj(@) <0} j=12,....
In addition to (p1) — (pe), we choose p1_ j, p2,j so that £ is a relatively compact

convex set in C"*" for each j = 1,2, .... Such functions P1,j» P2, are easy to
construct.

For each j > 1, the boundary of D; can be written as
3Dj = aDjl U aDjz,

where dDj1 = {p1,; =0} N{p2,; = 0}and 9D = {p2,; = 0} N {p1,; < O}.
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Remark 5.2.

(a) Foreach j = 1,2, ..., we can choose strictly plurisubharmonic function o; €
C°°(C™) such that {o; <0} € P, and 9D j» € {0j < 0} x C". Set

Mj={p;=0{N(fo; <0} xC"), j=12,....

It follows from [1] that 5Mju = g is solvable on M| for any L?, 1 < p < oo,
d-closed (0, g) form g on M;,1 < g < n — 1. Furthermore, if g € Ck(Mj)
thenu € CK(M;) for j =1,2,....

(b) If the assumption of Theorem 1.1 is satisfied, then Corollary 4.5 implies that
Tf=0on Mj ={p2,j = 0N (P, xC") with B = P,,. Hence by Theorem 1.2
the conclusions in (a) for the solvability and regularity of 5Mju = gon M; also
hold forg =n —1, j = 1,2, ..., provided that dy;¢ = 0 and g € C¥(M}),
k> 0.

Lemma 5.3. Let g be a d-closed C* (0, q) form on Q with k any nonnegative inte-
gerand1l < q <n—1. For j =1,2,..., the equation dv; = g is solvable with
vj € CK(D}). In fact,

Uj:—/ g/\Q(b)-i—/ g/\Q(b,tLj)+/ g/\Q(b,t;j)
D_]' 3Dj1 3Dj2

1
+(—1)q+/ g/\Q(b,tl,j,t;j)—/ uj AQrj, T )
aDjlﬂang aDjlﬂaDjz

where b is the Bochner-Martinelli section in C"1"; vy, j»X2,j are sections corre-
sponding to py j, p2,j; and uj is the C* solution to m;juj = g on Mj in view of
Remark 5.2(a).

Proof. Since ps, j is a smooth strictly convex function in C"*", the section t} ;. 2)

is well-defined for all z € {0y ; > O} aslongas ¢ € {p2,; < 0}. As usual, one starts
from the formula:

g(z) = —d (/ 8 ALB)E, z)) +/ AR 2).

D; aD;

The lemma is proved by repeated use of (2.2), Stokes’ theorem and type consid-
erations when interploating the integrals with Q(vy ;), SZ(t; j), etc.. We omit the
routine computations. O

By part (b) of Remark 5.2 we have:

Corollary 5.4. Let g be a C*, k > 0, d-closed (0,n — 1) form on Q satisfying
the assumption of Theorem 1.1 Then dp,v; = g is solvable for every j > 1 with

k
vj € Clon—2)(D})
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Proof of Theorem 1.1. By Corollary 5.4 it remains to construct a C* solution v on
Qoutof v, j =1,2,.... The process below is a modification of [11, Lemma 3]
which deals with k = oo

Consider the case n > 2 first. Let v; be given by Corollary 5.4. Set vp = v3.
Obviously vz — v4 is a d-closed form in C é‘o n—2)(D3)- By Lemma 5.3 there exists
wi € Cfy,_3(D2) 5o that 0wy = vy — vs in Dy. Let x1 € C{°(Dy) such that
x1 = 1on Dj. Set

01 =va + I0aw1) € Cfy,_o)(Da).

Then 1 = v3 = 7p on Dy and 39; = f on D4. We use induction to construct 7 j for
J > 1. Suppose we already have v; € Cfo,n—z)(DjH) with 5f)j = fonDj;3and
17]' = ﬁj_l on Dj. Now ﬁj—vj+4 € C?O,n—Z)(Dj'H) andé(ﬁj—vj+4) =0on Dj+3.
By Lemma 5.3 there exists wj | € Cfo,n73)(Dj+2) so that E_iw.,-_H =10; —vjp4 0N
Dji>. Choose xj+1 € C3°(Dj42) such that ;11 = 1on Djy. Set

Bja1 = vj1a + 000 r1wj11) € Clo gy (Dj1a).

We have vj41 = v; on Djy| and 517j+1 = f on Djy4. In this way we get v =
lim;_ o0 0 in Céco,n—z)(D) and Jv = f on D. This proves Theorem 1.1 when
n > 2.

When n = 2, let E; be as in Remark 5.1. Asn = 2 > 1, every function
holomorphic in D; extends holomorphically to E; by Hartogs theorem. Since E
is a bounded convex set in C"*2; it is a Runge domaln in C"*2 (see [7, Theorem
4.7.8]). So the assumption of [11, Lemm 3] is satisfied and the case n = 2 is proved.
This completes the proof of Theorem 1.1. O

With Corollary 5.4 replaced by Lemma 5.3 in the proof of Theorem 1.1 we
immediately have:

Corollary 5.5. Let g be a Ck §-closed O, q) form, 1 < g <n—2, on 2, where k
is any non-negative integer. Then there exists a C k0, g — 1) form u on Q such that
u=g.

Note that Corollary 5.5 is part of Frenkel’s lemma if k = co. The case n < g <
m + n will be proved elsewhere.
There are many applications of the proof of Theorem 1.1, for example we have:

Corollary 5.6. Let D be any bounded pseudoconvex domain in CV. Let k be any
non-negative integer. For any d-closed C* 0, q) form g on D, 1 < q < N, there
exists a C* (0, g — 1) form u on D such that du = g.

Moreover, if g € LP(D), 1 < p < o0, then there exists u € Llpoc(D) such that

u = g.
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Corollary 5.7. Let p be a CK real-valued function on C"*" which is strictly
plurisubharmonic near {p < 0}, 3 < k < oco. Let B be a relatively compact
pseudoconvex domain in C". Set M = {p = 0} N (B x C"). Let f be a c¥
d-closed (0, q) formon M, 0 <k’ <k —3. Then there exists u € Cé‘(;’q_l)(M) such

thatdu = fonMif 1<q<n—1.
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