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Second order parabolic equations and weak uniqueness of
diffusions with discontinuous coefficients

DOYOON KIM

Abstract. We prove the unique solvability of parabolic equations with discon-
tinuous leading coefficients in W 1,2

p ((0, T )×R
d ). Using this result, we establish

the uniqueness of diffusion processes with time-dependent discontinuous coeffi-
cients.
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60H10 (secondary).

1. Introduction

The unique solvability of second order parabolic equations in non-divergence form
is well established if the leading coefficients are uniformly continuous (see [8] and
[9]). More precisely, the parabolic equation

ut = a jk(t, x) ux j xk + b j (t, x) ux j + c(t, x) u + f (t, x)

with appropriate initial and boundary conditions has a unique solution u ∈
W 1,2

p ((0, T )× �), 1 < p < ∞, if a jk(t, x) are uniformly continuous with re-
spect to x uniformly in t (a jk satisfy the uniform ellipticity condition). However,
even if a jk(t, x) are discontinuous, there are some cases where one can expect the
unique solvability of the above equation. The most intensively investigated case is
when the coefficients a jk are in the space of VMO. As noted in [13] (also see ref-
erences therein to find a list of many papers which deal with elliptic and parabolic
equations with VMO coefficients), VMO contains the space of bounded uniformly
continuous functions as a proper subset. However, for example, if a jk are piecewise
constant, then they are not in the space of VMO. This means that we may try to find
another class of discontinuous coefficients a jk (a class that includes piecewise con-
stant coefficients) so that equations with leading coefficients from the class have
strong unique solutions.
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In this paper we prove the existence and uniqueness of a solution u in W 1,2
p ((0, T )×

R
d), 1 < p < ∞, to the above parabolic equation with coefficients a jk(t, x) being

discontinuous at the hyper-plane {(t, 0, x ′) : t ∈ R, x ′ ∈ R
d−1}. Specifically, we

assume that

a jk(t, x) = a+
jk(t, x) for x1 > 0 and a jk(t, x) = a−

jk(t, x) for x1 < 0,

where a+
jk(t, x) and a−

jk(t, x) are defined on R × R
d+ and R × R

d− respectively and
uniformly continuous with respect to spatial variables uniformly in t . In addition,
a±

jk(t, 0, x ′) are uniformly continuous as functions of (t, x ′). We see that a+
jk do not

have any relation with a−
jk , so the coefficients a jk can be discontinuous at the hyper-

plane {(t, 0, x ′) : t ∈ R, x ′ ∈ R
d−1}. Clearly, this contains piecewise constant a jk

with discontinuity at the hyper-plane. An a priori estimate, as usual, is the main
step we achieve, and to do that, we make use of trace operators and multipliers.

When a jk , b j , and c are piecewise constant with discontinuity at the above
hyper-plane, Salsa [12] solved in W 1,2

2 ((0, ∞)×R
d) the equation ut = a jkux j xk +

b j ux j + cu with a non-zero initial condition. For elliptic equations with similar
leading coefficients, see [10], [11], and [5].

In this paper we also discuss the well-posedness of the martingale problem for
Lt , where

Lt = 1

2
a jk(t, ·) ∂2

∂x j∂xk
+ b j (t, ·) ∂

∂x j
.

Here the coefficients a jk(t, x) are allow to be discontinuous at infinitely many par-
allel hyper-planes. For more details, see assumptions in Section 3. In fact, there
are papers which investigate the well-posedness of martingale problems (or well-
posedness of diffusion processes) when the diffusion coefficients a jk(x) are discon-
tinuous in x . Some of them can be [2], [3], and [7]. However, they dealt with coef-
ficients a jk(x) which are independent of t . We here consider time-dependent coef-
ficients which are discontinuous at hyper-planes {(t, γ j , x ′) : t ∈ R, x ′ ∈ R

d−1},
where {γ j } is a subset in R with no limit points. As is shown in [15], the well-
posedness of the martingale problem for Lt follows from the unique solvability of
the corresponding parabolic equation (if the equation is uniquely solvable). Hence
our result on parabolic equations in Section 2 plays a major role in the discussion
of the martingale problem. For complete details about martingale problems, see the
monograph [15].

This paper consists of two sections excluding this introduction. We discuss
parabolic equations and martingale problems in Section 2 and 3 respectively.

A few words about notation. We denote by (t, x) a point in R
d+1. That is,

(t, x) = (t, x1, x ′) ∈ R × R
d = R

d+1, where t ∈ R, x1 ∈ R, x ′ ∈ R
d−1, and

x ∈ R
d . We write R

d+ and R
d− for half-spaces

{(x1, x ′) : x1 > 0, x ′ ∈ R
d−1} and {(x1, x ′) : x1 < 0, x ′ ∈ R

d−1}
respectively. Throughout the paper we set L p = L p(R

d+1).
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2. Second order parabolic equations with discontinuous coefficients

We consider parabolic equations of the form{
ut (t, x) = Lu(t, x) + f (t, x) in (0, T ) × R

d

u(0, x) = 0
,

where

Lu(t, x) = a jk(t, x)ux j xk (t, x) + b j (t, x)ux j (t, x) + c(t, x)u(t, x).

We prove the existence and uniqueness of solutions to the parabolic equations as
above in the Sobolev space W 1,2

p ((0, T ) × R
d), 1 < p < ∞. The definition of

W 1,2
p ((T1, T2) × �) can be found in [8] or [9], where −∞ ≤ T1 < T2 ≤ ∞ and �

is an open set in R
d .

Let us first state the assumptions on coefficients a jk(t, x), b j (t, x), and c(t, x).
Note that in the below the coefficients a jk(t, x) are not uniformly continuous in
x ∈ R

d . The function ω below is an increasing function defined on [0, ∞) such
that ω(ε) → 0 as ε ↘ 0.

Assumption 2.1. The coefficients a jk , j, k = 1, · · · , d, are defined by

a jk(t, x) =
{

a+
jk(t, x) if x1 > 0

a−
jk(t, x) if x1 < 0

,

where a±
jk satisfy the following.

1. a+
jk(t, x) are defined on R × R

d+ and a−
jk(t, x) are defined on R × R

d−.

2. a±
jk(t, x) = a±

k j (t, x), and there exists a constant κ ∈ (0, 1) such that, for any

t ∈ R, x ∈ R
d , and ϑ ∈ R

d ,

κ|ϑ |2 ≤
d∑

j,k=1

a±
jk(t, x)ϑ jϑk ≤ κ−1|ϑ |2.

3. For each t ∈ R,

|a+
jk(t, x) − a+

jk(t, y)| ≤ ω(|x − y|) for x, y ∈ R
d+,

|a−
jk(t, x) − a−

jk(t, y)| ≤ ω(|x − y|) for x, y ∈ R
d−.
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4. For t, s ∈ R and x ′, y′ ∈ R
d−1,

|a+
jk(t, 0, x ′) − a+

jk(s, 0, y′)| ≤ ω(|t − s| + |x ′ − y′|),
|a−

jk(t, 0, x ′) − a−
jk(s, 0, y′)| ≤ ω(|t − s| + |x ′ − y′|).

Assumption 2.2. The coefficients b j (t, x) and c(t, x) are measurable functions de-
fined on R × R

d satisfying

|b j (t, x)| + |c(t, x)| ≤ K

for some positive constant K .

The first case we consider is

ut (t, x) = L0u(t, x) − λu(t, x) + f (t, x) in R × R
d

with

L0 =
{

L+
0 = a+

jk D jk in R × R
d+

L−
0 = a−

jk D jk in R × R
d−

,

where a+
jk and a−

jk are constant. Recall that L p = L p(R
d+1).

Theorem 2.3. For any λ ≥ 0 and u ∈ C∞
0 (Rd+1),

λ‖u‖L p + ‖ut‖L p + ‖uxx‖L p ≤ N‖L0u − λu − ut‖L p , (2.1)

where N depends only on d, p, and κ .

To prove this theorem we need the following function spaces and trace theorem
which can be found in [8, 17]. For a non-negative real number l, let

W l/2,l
p (R × R

d−1) = L p(R, W l
p(R

d−1)) ∩ W l/2
p (R, L p(R

d−1)),

where W s
p(R

d−1), s = 0, 1, 2, · · · , are Sobolev spaces and W s
p(R

d−1), s 
= integer,
s > 0, are Slobodeckij spaces.

Theorem 2.4. Set l = 2 − 1/p. There exists the trace operator T from

W 1,2
p (R × R

d+) onto W l/2,l
p (R × R

d−1) × W (l−1)/2,l−1
p (R × R

d−1)

such that
T u = (

u(t, 0, x ′), ux1(t, 0, x ′)
)

and

‖u(·, 0, ·)‖
Wl/2,l

p (	)
+ ‖ux1(·, 0, ·)‖

W (l−1)/2,l−1
p (	)

≤ N‖u‖W 1,2
p (R×R

d+)
(2.2)

for u ∈ W 1,2
p (R × R

d+), where 	 = R × R
d−1 and N depends only on d and p.

Moreover, T has a bounded linear right inverse (extension operator).
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We also need the following notations, similar to those in [10, 12]. Set

α±(ξ ′) = i
d∑

j=2

a±
1 jξ j , ξ ′ = (ξ2, · · · , ξd) ∈ R

d−1, i = √−1,

β±(ξ ′) =
d∑

j,k=2

a±
jkξ jξk + 1,

and
H±(ξ ′) = (

α±(ξ ′)
)2 + a±

11β
±(ξ ′)

= −
(

d∑
j=2

a±
1 jξ j

)2

+ a±
11

(
d∑

j,k=2

a±
jkξ jξk + 1

)
.

Let s ∈ R. We denote

z+(s, ξ ′) =
−α+(ξ ′) −

√
H+(ξ ′) + i a+

11s

a+
11

,

z−(s, ξ ′) =
−α−(ξ ′) +

√
H−(ξ ′) + i a−

11s

a−
11

,

z(s, ξ ′) = z+(s, ξ ′) − z−(s, ξ ′),
where

√
w means, from now on, that branch of the analytic function w1/2 that has

non-negative real part. Note that

�[z+(s, ξ ′)] = − 1

a+
11

�
[√

H+(ξ ′) + i a+
11s

]
and

�[z−(s, ξ ′)] = 1

a−
11

�
[√

H−(ξ ′) + i a−
11s

]
.

The following estimates hold true for �[z±(s, ξ ′)]. One can find the same estimates
in [12].

Lemma 2.5.

−N2

√
1 + |ξ ′|2 + |s| ≤ �[z+(s, ξ ′)] ≤ −N1

√
1 + |ξ ′|2 + |s|

and

N1

√
1 + |ξ ′|2 + |s| ≤ �[z−(s, ξ ′)] ≤ N2

√
1 + |ξ ′|2 + |s|,

where N1 and N2 depend only on κ .
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Proof. The lemma follows from the fact that κ ≤ a±
11 ≤ κ−1 and

N1|ξ ′|2 ≤ H±(ξ ′) − a±
11 ≤ N2|ξ ′|2, (2.3)

which is proved in Lemma 3 in [10]. Here the constants N1 and N2 depend only
on κ .

The main step in the proof of Theorem 2.3 is to prove that an operator T
defined by

T̃ h = h̃/z(s, ξ ′), h ∈ C∞
0 (R × R

d−1),

can be extended to a bounded operator from

W (l−1)/2,l−1
p (R × R

d−1) into W l/2,l
p (R × R

d−1),

where l = 2 − 1/p and R × R
d−1 = {(t, 0, x ′) : t ∈ R, x ′ ∈ R

d−1}. Here f̃ is the
Fourier transform of f in R × R

d−1. To prove this, we start with a lemma showing
that (1 + s2)1/4/z(s, ξ ′) and iξ j/z(s, ξ ′) are multipliers. Note that we sometimes
mean by R

d , especially in Lemma 2.6 and 2.7, the space {(t, 0, x ′) : t ∈ R, x ′ ∈
R

d−1}.
Lemma 2.6.

(1 + s2)1/4

z(s, ξ ′)
and

i ξ j

z(s, ξ ′)
, j = 2, · · · , d,

are multipliers for L p(R
d). That is, if we set T̃ f (s, ξ ′) = m(s, ξ ′) f̃ , where f ∈

L2(R
d) ∩ L p(R

d) and m(s, ξ ′) is either of the above multipliers, then we have

‖T f ‖L p(Rd ) ≤ N‖ f ‖L p(Rd ),

where N depends only on d, p, and κ .

Proof. Set s = ξ1 (recall that ξ ′ = (ξ2, · · · , ξd)). We prove∣∣∣∣∣ ∂m

∂ξ j1 · · · ∂ξ jm

(
(1 + ξ2

1 )1/4

z(ξ1, ξ ′)

)∣∣∣∣∣ ≤ N

|ξ j1 · · · ξ jm | (2.4)

and ∣∣∣∣ ∂m

∂ξ j1 · · · ∂ξ jm

(
i ξ j

z(ξ1, ξ ′)

)∣∣∣∣ ≤ N

|ξ j1 · · · ξ jm | , j = 2, · · · , d, (2.5)

where m = 1, · · · , d, jk ∈ {1, · · · , d}, and jk 
= jl if k 
= l. Especially, the
constant N depends only on d and κ . Once these inequalities are proved, the lemma
follows from Mikhlin’s theorem (Theorem 6′ on page 109 [14] or see page 289 [8]).
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First, we prove that, for a multi-index α, α = (0, α2, · · · , αd),∣∣∣∣Dα
√

H±(ξ ′) + i a±
11ξ1

∣∣∣∣ ≤ N (1 + |ξ ′|2 + |ξ1|)− |α|−1
2 , (2.6)

where N depends only on d, α, and κ . Using the matrix
√

[a+
jk] and an appropriate

orthogonal change of variables, we can find a matrix A = [σ jk] satisfying the
following:

(i) The mapping x → Ax is a diffeomorphism from R
d+ onto itself.

(ii) For a twice differentiable function v(x) defined on R
d+, set w(x) = v(Ax). Then

L+
0 v(Ax) = �w(x) in R

d+, where, as we recall, L+
0 v = a+

jkvx j xk .

Notice that from the above two properties of A = [σ jk] we have a+
jk = ∑d

l=1 σ jlσkl ,
k = 1, · · · , d, and σ1k = 0, k = 2, · · · , d. Denote by B the sub-matrix formed by
removing the first row and column of A. Then B is a non-singular matrix. Observe
that

|B∗ξ ′|2 =
d∑

j,k=2

(a+
jk − σ j1σk1)ξ jξk = −

d∑
j,k=2

σ j1σk1ξ jξk +
d∑

j,k=2

a+
jkξ jξk

= −
(

d∑
j=2

σ j1ξ j

)2
+

d∑
j,k=2

a+
jkξ jξk = − 1

σ 2
11

(
d∑

j=2

σ11σ j1ξ j

)2
+

d∑
j,k=2

a+
jkξ jξk

= − 1

a+
11

(
d∑

j=2

a+
1 jξ j

)2

+
d∑

j,k=2

a+
jkξ jξk = 1

a+
11

H+(ξ ′) − 1.

Thus √
H+(ξ ′) + i a+

11ξ1 =
√

a+
11

(|B∗ξ ′|2 + 1 + i ξ1
)
.

From this and (2.3) we see that∣∣∣∣Dα
√

H+(ξ ′) + i a+
11ξ1

∣∣∣∣ ≤ N (1 + |ξ ′|2 + |ξ1|)− |α|−1
2 ,

where N depends only on d, α, and κ . By the same calculation, we also have the
above inequality with H−(ξ ′) and a−

11 in place of H+(ξ ′) and a+
11. Therefore, (2.6)

is proved. Moreover, it follows easily that∣∣∣Dα
[(

H±(ξ ′) + i a±
11ξ1

)−1/2
]∣∣∣ ≤ N (1 + |ξ ′|2 + |ξ1|)− |α|+1

2 . (2.7)
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Next, we prove that, for α = (0, α2, · · · , αd),∣∣∣∣Dα

(
1

z(ξ1, ξ ′)

)∣∣∣∣ ≤ N (1 + |ξ ′|2 + |ξ1|)− |α|+1
2 , (2.8)

where N depends only on d, α, and κ . If α = 0, then by Lemma 2.5∣∣∣∣ 1

z(ξ1, ξ ′)

∣∣∣∣ ≤ 1

−�[z+(ξ1, ξ ′)] + �[z−(ξ1, ξ ′)]
≤ N (1 + |ξ ′|2 + |ξ1|)− 1

2 ,

where N depends only on κ . For a multi-index |α| ≥ 1, the inequality (2.8) is
justified using (2.6) and induction.

Finally, we prove that, for α = (0, α2, · · · , αd),∣∣∣∣Dα

[
∂

∂ξ1

(
1

z(ξ1, ξ ′)

)]∣∣∣∣ ≤ N (1 + |ξ ′|2 + |ξ1|)− |α|+3
2 , (2.9)

where N depends only on d, α, and κ . This follows from (2.7), (2.8), and

∂

∂ξ1

(
1

z(ξ1, ξ ′)

)
= i

2z(ξ1, ξ ′)2

 a+
11√

H+(ξ ′) + i a+
11ξ1

+ a−
11√

H−(ξ ′) + i a−
11ξ1

 .

Now we use (2.8) and (2.9) to prove (2.4) and (2.5). For example, if ξ j1 = ξ1 and

Dα = ∂m−1

∂ξ j2 ···∂ξ jm
, then∣∣∣∣∣ ∂m

∂ξ j1 · · · ∂ξ jm

(
(1 + ξ2

1 )1/4

z(ξ1, ξ ′)

)∣∣∣∣∣
=

∣∣∣∣∣ ξ1

2(1 + ξ2
1 )3/4

Dα

(
1

z(ξ1, ξ ′)

)
+ (1 + ξ2

1 )1/4 Dα

[
∂

∂ξ1

(
1

z(ξ1, ξ ′)

)]∣∣∣∣∣
≤ N

(
|ξ1|

(1 + ξ2
1 )3/4(1 + |ξ ′|2 + |ξ1|)(|α|+1)/2

+ (1 + ξ2
1 )1/4

(1 + |ξ ′|2 + |ξ1|)(|α|+3)/2

)

≤ N

|ξ1|(1 + |ξ ′|2 + |ξ1|) |α|
2

≤ N

|ξ j1 · · · ξ jm | .

The other cases are proved in a similar way. The lemma is proved.

Using the above result and interpolation, we prove the following lemma.
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Lemma 2.7. Let T be an operator such that

T̃ h = 1

z(s, ξ ′)
h̃, h ∈ C∞

0 (Rd),

where T̃ h and h̃ are Fourier transforms of T h and h in R
d respectively. Set l =

2 − 1/p, then

‖T h‖
Wl/2,l

p (R×Rd−1)
≤ N‖h‖

W (l−1)/2,l−1
p (R×Rd−1)

, (2.10)

where N depends only on d, p, and κ .

Proof. Define an operator S by

S̃h = (1 + s2)1/4

z(s, ξ ′)
h̃,

where h ∈ C∞
0 (Rd). By Lemma 2.6 the operator S can be extended to a bounded

operator from L p(R,L p(R
d−1)) to L p(R, L p(R

d−1)) and from W 1
p(R, L p(R

d−1))

to W 1
p(R, L p(R

d−1)). Here we used the fact that S(Dαh) = DαS(h). By real
interpolation (see [1]) we have

(L p(R, L p(R
d−1)), W 1

p(R, L p(R
d−1))(l−1)/2, p = W (l−1)/2

p (R, L p(R
d−1)).

Thus

‖Sh‖
W (l−1)/2

p (R,L p(Rd−1))
≤ N‖h‖

W (l−1)/2
p (R,L p(Rd−1))

, (2.11)

where N depends only on d, p, and κ . Since (1 + s2)1/4 is an isometric multiplier
from W l/2

p (R) (=Bl/2
p,p(R)) to W (l−1)/2

p (R) (=B(l−1)/2
p,p (R)),

‖T h‖p

Wl/2
p (R,L p(Rd−1))

=
∫

Rd−1
‖T h(·, x ′)‖p

Wl/2
p (R)

dx ′

=
∫

Rd−1
‖F−1

1 (1 + s2)1/4F1(T h)(·, x ′)‖p

W (l−1)/2
p (R)

dx ′

= ‖Sh‖p

W (l−1)/2
p (R,L p(Rd−1))

,

where F1 and F−1
1 are the Fourier transform and its inverse on R. This and the

inequality (2.11) prove

‖T h‖
Wl/2

p (R,L p(Rd−1))
≤ N‖h‖

W (l−1)/2
p (R,L p(Rd−1))

, (2.12)

where N depends only on d, p, and κ .
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On the other hand, from Lemma 2.6, we know that iξ j/z(s, ξ ′), j = 2, · · · , d ,
are multipliers for L p(R

d). This implies that∫ ∞

−∞
‖T h(t, ·)‖p

W k+1
p (Rd−1)

dt ≤ N
∫ ∞

−∞
‖h(t, ·)‖p

W k
p(Rd−1)

dt,

where k = 0, 1 and N depends only on d, p, and κ . Hence T can be extended to a
bounded operator from

L p(R, W k
p(Rd−1)) to L p(R, W k+1

p (Rd−1)),

where k = 0, 1. Note that by real interpolation (see [1] or Theorem 1.18.4 in [16]),
we have(

L p(R, L p(R
d−1)), L p(R, W 1

p(Rd−1))
)

l−1, p
= L p(R, W l−1

p (Rd−1))

and (
L p(R, W 1

p(Rd−1)), L p(R, W 2
p(Rd−1))

)
l−1, p

= L p(R, W l
p(R

d−1)).

Therefore,

‖T h‖L p(R,Wl
p(Rd−1)) ≤ N‖h‖L p(R,Wl−1

p (Rd−1))
, (2.13)

where N depends only on d, p, and κ .
Finally, recall that

W s/2,s
p (R × R

d−1) = L p(R, W s
p(R

d−1)) ∩ W s/2
p (R, L p(R

d−1)),

where s is either l or l − 1. From this, (2.12), and (2.13), the inequality (2.10)
follows.

We need the Fourier transform of a solution to a parabolic equation defined on
a parabolic half-space (e.g. R × R

d+).

Lemma 2.8. For g(t, x ′) ∈ C∞
0 (R×R

d−1)(= C∞
0 (Rd)), let v+ ∈ W 1,2

p (R×R
d+)

and v− ∈ W 1,2
p (R × R

d−) be the solutions of the equations{
v+

t = L+
0 v+ − v+ in R × R

d+
v+(t, 0, x ′) = g(t, x ′) ,

{
v−

t = L−
0 v− − v− in R × R

d−
v−(t, 0, x ′) = g(t, x ′).

Then

ṽ+
x1(s, 0, ξ ′) = z+(s, ξ ′)g̃(s, ξ ′) and ṽ−

x1(s, 0, ξ ′) = z−(s, ξ ′)g̃(s, ξ ′),

where Fourier transforms are taken with respect to (t, x ′) ∈ R × R
d−1.
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Proof. First consider {
vt = �v − v in R × R

d+
v(t, 0, x ′) = g(t, x ′) , (2.14)

where g ∈ C∞
0 (R × R

d−1). Let

K (t, x1, x ′) =


1

(4π t)d/2

x1

t
e− 1

4t |x |2−t for t > 0, x1 > 0

0 for t ≤ 0, x1 > 0.

Then the solution to (2.14) is

v(t, x1, x ′) = [K (·, x1, ·) ∗ g(·, ·)](t, x ′).

We see that ∫
Rd

e−i(st+ξ ′·x ′)K (t, x1, x ′) dt dx ′ = e−x1

√
1+|ξ ′|2+is .

Thus we have

ṽ(s, x1, ξ
′) = g̃(s, ξ ′)e−x1

√
1+|ξ ′|2+is

and

ṽx1(s, 0, ξ ′) = −g̃(s, ξ ′)
√

1 + |ξ ′|2 + is, (2.15)

where the second equality can be justified as follows. Note that

v(t, x1, x ′) = cd

∫
Rd

ei(ts+x ′·ξ ′)g̃(s, ξ ′)e−x1

√
1+|ξ ′|2+is ds dξ ′,

where cd = (2π)−d/2. Thus

vx1(t, 0, x ′) = lim
h→0

cd

∫
Rd

ei (ts+x ′·ξ ′)g̃(s, ξ ′)e−h
√

1+|ξ ′|2+is − 1

h
ds dξ ′

= −cd

∫
Rd

ei(ts+x ′·ξ ′)g̃(s, ξ ′)
√

1 + |ξ ′|2 + is ds dξ ′.

By taking Fourier transforms, we arrive at (2.15). This, together with the definition
of z+(s, ξ ′), proves the case L+

0 = �. The case L−
0 = � is proved similarly. For

general L+
0 and L−

0 , we use the change of variables in the proof of Lemma 2.6.
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Proof of Theorem 2.3. We prove the inequality (2.1) only for λ > 0 because the
inequality with λ = 0 is obtained by continuity (with respect to λ). In the case λ >

0, since we can use a dilation argument, it is enough to prove (i.e., the inequality
(2.1) with λ = 1)

‖u‖W 1,2
p (R×Rd )

≤ N‖L0u − u − ut‖L p , (2.16)

where N depends only on d, p, and κ .
Let f = ut + u − L0u and g(t, x ′) = u(t, 0, x ′). Consider{
v+

t = L+
0 v+ − v+ in R × R

d+
v+(t, 0, x ′) = g(t, x ′),

{
w+

t = L+
0 w+ − w+ + f in R × R

d+
w+(t, 0, x ′) = 0,

and {
v−

t = L−
0 v− − v− in R × R

d−
v−(t, 0, x ′) = g(t, x ′),

{
w−

t = L−
0 w− − w− + f in R × R

d−
w−(0, t, x ′) = 0.

As is well known, the above equations have unique solutions

v+, w+ ∈ W 1,2
p (R × R

d+), v−, w− ∈ W 1,2
p (R × R

d−)

satisfying (we set l = 2 − 1/p.)

‖v+‖W 1,2
p (R×R

d+)
≤ N‖g‖

Wl/2,l
p (R×Rd−1)

, ‖w+‖W 1,2
p (R×R

d+)
≤ N‖ f ‖L p(R×R

d+), (2.17)

and

‖v−‖W 1,2
p (R×R

d−)
≤ N‖g‖

Wl/2,l
p (R×Rd−1)

, ‖w−‖W 1,2
p (R×R

d−)
≤ N‖ f ‖L p(R×R

d−), (2.18)

where N depends only on d, p, and κ . We see that

u =
{

v+ + w+ in R × R
d+

v− + w− in R × R
d−

.

It then follows that

‖u‖W 1,2
p (R×Rd )

≤ N
(
‖ f ‖L p + ‖g‖

Wl/2,l
p (R×Rd−1)

)
,

where N depends only on d, p, and κ . Therefore, to prove (2.16) we need only
prove

‖g‖
Wl/2,l

p (R×Rd−1)
≤ N‖ f ‖L p , (2.19)

where N depends only on d, p, and κ . We prove this inequality as follows.
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Observe that (in the trace sense)

ux1(t, 0, x ′) = v+
x1

(t, 0, x ′) + w+
x1

(t, 0, x ′) = v−
x1

(t, 0, x ′) + w−
x1

(t, 0, x ′).

Thus

v+
x1

(t, 0, x ′) − v−
x1

(t, 0, x ′) = w−
x1

(t, 0, x ′) − w+
x1

(t, 0, x ′). (2.20)

Set
h(t, x ′) = w−

x1
(t, 0, x ′) − w+

x1
(t, 0, x ′).

Then by Theorem 2.4 we have h ∈ W (l−1)/2,l−1
p (R × R

d−1). In addition, from the
inequality (2.2) and the estimates for w± in (2.17) and (2.18), we have

‖h‖
W (l−1)/2,l−1

p (R×Rd−1)
≤ N‖ f ‖L p ,

where N depends only on d, p, and κ . From this inequality, we notice that the
inequality (2.19) follows if we prove

‖g‖
Wl/2,l

p (R×Rd−1)
≤ N‖h‖

W (l−1)/2,l−1
p (R×Rd−1)

. (2.21)

Notice that by Lemma 2.8, (2.20), and the definition of z(s, ξ ′),

z(s, ξ ′)g̃(s, ξ ′) = h̃(s, ξ ′), i.e., g̃(s, ξ ′) = 1

z(s, ξ ′)
h̃(s, ξ ′).

Then Lemma 2.7 proves the inequality (2.21). The theorem is proved.

Now we solve the first case. Specifically, for a given f ∈ L p = L p(R
d+1) and

λ > 0, there exists a unique u ∈ W 1,2
p (R × R

d) such that

ut = L0u − λu + f.

This can be done, as is well known, using the estimate in Theorem 2.3 and the
method of continuity. In addition, we can find a unique solution u ∈ W 1,2

p ((0, T )×
R

d) of the equation{
ut = L0u − λu + f in (0, T ) × R

d

u(0, x) = 0
,

where 0 < T ≤ ∞.
We now consider the general case. That is, we deal with

ut (t, x) = Lu(t, x) − λu(t, x) + f (t, x) in R × R
d , (2.22)

where the coefficients of L satisfy Assumption 2.1 and 2.2. The problem can be
solved by freezing the coefficients a jk and using the estimate in Theorem 2.3. In-
deed, we can proceed as follows.
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Lemma 2.9. There exist constants ε > 0, λ0, and N, depending only on d, K , p,
κ , and ω, such that if u ∈ C∞

0 (Rd+1) satisfies

supp u ⊂ {(t, x1, x ′), : |t − t0| < ε, |x ′ − x ′
0| < ε}

for some (t0, x ′
0) ∈ R × R

d−1, then

λ‖u‖L p + ‖ut‖L p + ‖uxx‖L p ≤ N‖Lu − λu − ut‖L p (2.23)

for any λ > λ0.

Proof. We can assume that t0 = 0 and x ′
0 = 0. Choose an infinitely differentiable

function η(x1) defined on R satisfying η ≥ 0 and

η(x1) =
{

1 − ε/2 ≤ x1 ≤ ε/2

0 x1 ≥ ε or x1 ≤ −ε
,

where ε will be specified later. Set µ = 1 − η.
First notice that µu ∈W 1,2

p (R×R
d+), µu ∈W 1,2

p (R×R
d−), and (µu)(t,0,x ′)=0.

Thus by the well-known result (see, e.g., Chapter VII and Exercise 7.5 in [9]), there
exist λ′ and N , depending only on d, K , p, κ , and ω, such that, for any λ > λ′,

λ‖µu‖L p(R×R
d+) + ‖(µu)t‖L p(R×R

d+) + ‖(µu)xx‖L p(R×R
d+)

≤ N‖L(µu) − λ(µu) − (µu)t‖L p(R×R
d+).

The same estimate holds true with R
d− in place of R

d+. Hence we have

λ‖µu‖L p + ‖(µu)t‖L p + ‖(µu)xx‖L p ≤ N‖L(µu) − λ(µu) − (µu)t‖L p (2.24)

for any λ > λ′. Note that the above N is independent of ε.
Now consider ηu. We see that

supp(ηu) ⊂ {(t, x1, x ′) : |t | ≤ ε, |x1| ≤ ε, |x ′| ≤ ε}.
Set

L0 =
{

a+
jk(0)D jk if x1 > 0

a−
jk(0)D jk if x1 < 0,

where 0 ∈ R
d+1. Then by Theorem 2.3, we have

λ‖ηu‖L p + ‖(ηu)t‖L p + ‖(ηu)xx‖L p ≤ N‖L0(ηu) − λ(ηu) − (ηu)t‖L p (2.25)

for λ > 0, where N is the same as in Theorem 2.3. Observe that

‖L0(ηu) − λ(ηu) − (ηu)t‖L p

≤ ‖L(ηu) − λ(ηu) − (ηu)t‖L p + ‖(L0 − L)(ηu)‖L p
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and
‖(L0 − L)(ηu)‖L p ≤ N‖(ηu)x‖L p + N‖ηu‖L p + J1 + J2,

where N depends only on d and K , and

J1 = sup
(t,x)∈supp(ηu)

x1≥0

(
|a+

jk(0) − a+
jk(t, x)|

)
‖(ηu)xx‖L p(R×R

d+),

J2 = sup
(t,x)∈supp(ηu)

x1≤0

(
|a−

jk(0) − a−
jk(t, x)|

)
‖(ηu)xx‖L p(R×R

d−).

Also observe that

|a+
jk(0) − a+

jk(t, x1, x ′)| ≤ |a+
jk(0) − a+

jk(t, 0, x ′)| + |a+
jk(t, 0, x ′) − a+

jk(t, x1, x ′)|

≤ ω(|t | + |x ′|) + ω(|x1|).
Similarly,

|a−
jk(0) − a−

jk(t, x1, x)| ≤ ω(|t | + |x ′|) + ω(|x1|).
Hence we can find a sufficiently small ε > 0 depending only on d, K , p, κ , and ω,
such that the following inequality holds.

λ‖ηu‖L p + ‖(ηu)t‖L p + ‖(ηu)xx‖L p

≤ N‖L(ηu) − λ(ηu) − (ηu)t‖L p + 1

4
‖(ηu)xx‖L p + N‖(ηu)x‖L p + N‖ηu‖L p .

Using the interpolation inequality, we find that the right hand side of the above
inequality is not greater than

N‖L(ηu) − λ(ηu) − (ηu)t‖L p + 1

2
‖(ηu)xx‖L p + N ′‖ηu‖L p ,

where N is the same as in (2.25) and N ′ depends only on d, K , p, and κ . This
implies that there exits λ′′ > 0 (specifically, λ′′ ≥ 2N ′) depending only on d, K , p,
and κ , such that

λ‖ηu‖L p + ‖(ηu)t‖L p + ‖(ηu)xx‖L p ≤ 2N‖L(ηu) − λ(ηu) − (ηu)t‖L p

for any λ > λ′′, where N is the one in (2.25). From this inequality and the inequality
(2.24) we can find λ0 and N depending only on d, K , p, κ , and ω, such that the
inequality (2.23) holds true. The lemma is proved.

Lemma 2.10. There exist λ1 and N, depending only on d, K , p, κ , and ω, such
that, for any λ > λ1 and u ∈ C∞

0 (Rd+1), the estimate (2.23) holds true.
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Proof. First note that (recall again that L p = L p(R
d+1))

‖ut‖L p = ‖Lu − λu − (Lu − λu − ut )‖L p

≤ ‖Lu − λu − ut‖L p + N‖uxx‖L p + N‖ux‖L p + (λ + N )‖u‖L p .

Thus we need only to prove that there exist λ1 and N such that, for λ > λ1,

λ‖u‖L p + ‖uxx‖L p ≤ N‖Lu − λu − ut‖L p .

Choose an infinitely differentiable function ζ(t, x ′) defined on R
d (recall that t ∈ R,

x ′ ∈ R
d−1) such that ‖ζ‖L p(Rd ) = 1 and

supp ζ ⊂ {(t, x ′) ∈ R × R
d−1 : |t | < ε, |x ′| < ε},

where ε is as in Lemma 2.9. We denote

ζ s,y′
(t, x ′) = ζ(t − s, x ′ − y′).

Then

|uxx (t, x)|p =
∫

Rd
|uxx (t, x)ζ s,y′

(t, x ′)|p ds dy′. (2.26)

Using the fact that ux j xk ζ = (uζ )x j xk − ux j ζxk − uxk ζx j − uζx j xk , we obtain

|ux j xk (t, x)ζ s,y′
(t, x ′)|p ≤ 2p|(u(t, x)ζ s,y′

(t, x ′))x j xk |p

+ N (|u(t, x)|p + |ux (t, x)|p)ϕ(t − s, x ′ − y′),

where ϕ = |ζx |p + |ζxx |p ∈ L1(R
d). Combining this and (2.26), we have

‖uxx‖p
L p

≤ N
∫

Rd
‖(uζ s,y′

)xx‖p
L p

ds dy′ + N
(
‖u‖p

L p
+ ‖ux‖p

L p

)
.

For each (s, y′) ∈ R
d , we see that u(t, x)ζ s,y′

(t, x ′) satisfies the assumptions in
Lemma 2.9. Thus

‖(uζ s,y′
)xx‖L p ≤ N

∥∥∥ (
L − λ − ∂

∂t

)
(uζ s,y′

)

∥∥∥
L p

for λ > λ0, where λ0 and N are as in Lemma 2.9. We then have

‖uxx‖p
L p

≤ N
∫

Rd

∥∥∥ (
L − λ − ∂

∂t

)
(uζ s,y′

)

∥∥∥p

L p
ds dy′+N

(
‖u‖p

L p
+‖ux‖p

L p

)
. (2.27)
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Note that(
L − λ − ∂

∂t

)
(uζ s,y′

) = ζ s,y′
(Lu − λu − ut )

+ 2a jkux j ζ
s,y′
xk + u

[
a jkζ

s,y′
x j xk + b jζ

s,y′
x j − ζ

s,y′
t

]
,

where, for instance, ζ
s,y′
x j xk (t, x ′) = ζx j xk (t − s, x ′ − y′). Thus∫

Rd

∥∥∥ (
L − λ − ∂

∂t

)
(uζ s,y′

)

∥∥∥p

L p
ds dy′

≤ N

(
‖Lu − λu − ut‖p

L p
+ ‖u‖p

L p
+ ‖ux‖p

L p

)
.

From this and (2.27) we have

‖uxx‖p
L p

≤ N

(
‖Lu − λu − ut‖p

L p
+ ‖u‖p

L p
+ ‖ux‖p

L p

)
. (2.28)

Similarly,

λp‖u‖p
L p

= λp
∫

Rd
‖uζ s,y′‖p

L p
ds dy′

≤ N

(
‖Lu − λu − ut‖p

L p
+ ‖u‖p

L p
+ ‖ux‖p

L p

)
. (2.29)

Therefore, from (2.28) and (2.29) we have

λ‖u‖L p + ‖uxx‖L p ≤ N1‖Lu − λu − ut‖L p + N2
(‖ux‖L p + ‖u‖L p

)
,

where N1 and N2 depend only on d, K , p, κ , and ω. Now we make use of the
argument in the proof of Lemma 2.9 to finish the proof.

Using the estimate proved in the above lemma and the method of continuity,
we arrive at the following theorem.

Theorem 2.11. Let λ > λ1, where λ1 is as in Lemma 2.10. For f ∈ L p(R × R
d),

there exists a unique solution u ∈ W 1,2
p (R × R

d) satisfying the parabolic equation
(2.22). Moreover, the solution u satisfies the estimate (2.23).

Remark 2.12. It follows from Theorem 2.11 that there exists a unique solution
u ∈ W 1,2

p ((0, T ) × R
d) to the equation{

ut (t, x) = Lu(t, x) + f (t, x) in (0, T ) × R
d

u(0, x) = 0
.

Moreover, the solution u satisfies

‖u‖W 1,2
p ((0,T )×Rd )

≤ N‖ f ‖L p((0,T )×Rd ),

where N depends on d, K , T , p, κ , and ω.
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3. Uniqueness of diffusions with discontinuous coefficients

In this section we investigate the well-posedness of the martingale problem for Lt

Lt = 1

2
a jk(t, ·) ∂2

∂x j∂xk
+ b j (t, ·) ∂

∂x j
, (3.1)

where the coefficient a jk and b j satisfy the following assumptions.

Assumption 3.1. a jk(t, x) and b j (t, x) are Borel measurable functions defined on
[0, ∞) × R

d such that, for all t ∈ [0, ∞), x , ϑ ∈ R
d ,

a jk = akj , a jk(t, x)ϑ jϑk ≥ κ|ϑ |2,

|a jk(t, x)| + |b j (t, x)|2 ≤ K (1 + |x |2).
Assumption 3.2. Let I be the set of all integers. There exists a sequence {γ j , j ∈
I } ⊂ R, γ j < γ j+1, with no limit points such that

(i) for x = (x1, x ′), x1 /∈ {γ j , j ∈ I },
lim
y→x

sup
0≤t≤T

|a jk(t, y) − a jk(t, x)| = 0

for all T > 0,
(ii) for x = (γ j , x ′), j ∈ I , there exist a+

jk(t, γ j , x ′) and a−
jk(t, γ j , x ′) defined on

[0, ∞) × R
d−1 such that they are continuous (in (t, x ′)), and they satisfy

lim
(y1,y′)→(γ j ,x ′)

y1>γ j

sup
0≤t≤T

|a+
jk(t, γ j , x ′) − a jk(t, y1, y′)| = 0

and
lim

(y1,y′)→(γ j ,x ′)
y1<γ j

sup
0≤t≤T

|a−
jk(t, γ j , x ′) − a jk(t, y1, y′)| = 0

for all T > 0.

Let � = C([0, ∞), R
d) and F = B(�), where C([0, ∞), R

d) is the Polish
space of continuous R

d -valued functions given on [0, ∞) with metric

d(ω1, ω2) =
∞∑

n=1

1

2n
max

0≤t≤n
(|ω1(t) − ω2(t)| ∧ 1) .

B(�) is, as usual, the Borel σ -field of subsets of �. Define a random variable X on
� by Xt (ω) = ω(t), ω ∈ �.
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We say that the martingale problem for Lt (or martingale problem for a jk and
b j ) is well-posed (see [15], [4]) if, for each (s, x) ∈ [0, ∞) × R

d , there exists a
unique probability measure Ps, x on (�,F) satisfying

Ps, x (Xt = x, 0 ≤ t ≤ s) = 1

such that

f (Xt ) −
∫ t

s
Lr f (Xr ) dr

is a Ps, x - martingale after time s for all f ∈ C∞
0 (Rd).

Remark 3.3. The well-posedness of the martingale problem for the operator Lt in
(3.1) is equivalent to that of the stochastic integral equation

ξt = x +
∫ t

0
σ(r, ξr )dWr +

∫ t

0
b(r, ξr )dr,

where Wt is a Brownian motion, σ is the positive square root of the matrix [a jk]d
j,k=1,

and b = (b j )
d
j=1. The stochastic integral equation is said to be well-posed if, for

every initial condition x ∈ R
d , it admits a weak solution which is unique in the

sense of probability law. For details, see [4].

We first note that, for each (s, x) ∈ [0, ∞) × R
d , there exists a solution to

the martingale problem for Lt . This follows from Remark 2.1 in [7] and references
therein.

To prove uniqueness, we start with coefficients a jk and b j which satisfy as-
sumptions in Section 2.

Lemma 3.4. Let a jk(t, x) and b j (t, x) be Borel measurable functions defined on
[0, ∞) × R

d satisfying Assumption 2.1 and 2.2 in Section 2. Then the martingale
problem for Lt is well-posed.

Proof. Clearly, we need to prove only the uniqueness of a solution to martingale
problem for a jk and b j starting from (s, x) ∈ [0, ∞) × R

d . By Corollary 6.2.6 in
[15], this can be done if we prove that, for each 0 ≤ s < T and f ∈ C∞

0 ([s, T ] ×
R

d), there is a bounded measurable function u defined on [0, T ) × R
d such that

u(s, x) = −E P
[∫ T

s
f (t, Xt ) dt

]
(3.2)

whenever P solves the martingale problem for Lt starting from (s, x) ∈ [0, ∞) ×
R

d .
Let P = Ps, x is a solution to the martingale problem for Lt starting from

(s, x) ∈ [0, ∞) × R
d . For a given f ∈ C∞

0 ([s, T ] × R
d), we set

f̃ =
{

f (t, x) if s ≤ t ≤ T

0 otherwise.
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We also fix a real number p such that d + 1 < p < ∞. Then by remark 2.12 we
can find a unique solution u ∈ W 1,2

p ((0, T ) × R
d) of the equation{

ut + Lt u(t, x) = f̃ in (0, T ) × R
d

u(T, x) = 0
.

Now we find a sequence un ∈ C1,2([0, T ] × R
d) such that each un is bounded

(derivatives are bounded as well), un → u in W 1,2
p ((0, T )×R

d), and un(T, x) = 0.
Note that we have (see Lemma 6.3.1 in [15])

un(s, x) = −E P
[∫ T

s
(unt + Lt un)(t, Xt ) dt

]
for each n, where, as we recall,

(unt + Lun)(t, Xt )

= unt (t, Xt ) + 1

2
a jk(t, Xt )un x j xk (t, Xt ) + b j (t, Xt )un x j (t, Xt ).

Since un(s, x) → u(s, x) pointwise by the Sobolev embedding theorem, to prove
(3.2), it only remains to prove that

E P
[∫ T

s
(unt + Lt un)(t, Xt ) dt

]
→ E P

[∫ T

s
(ut + Lt u)(t, Xt ) dt

]
.

This follows easily from

E P
∫ T

s

∣∣(un
t + Lt u

n)(t, Xt ) − (ut + Lt u)(t, Xt )
∣∣ dt

≤ N‖(unt + Lt un) − (ut + Lt u)‖L p((0,T )×Rd )

≤ N‖un − u‖W 1,2
p ((0,T )×Rd )

→ 0,

where the first inequality is due to Theorem 2.3.4 in [6]. The lemma is proved.

Now we can say that the martingale problem for Lt , where coefficients a jk and
b j satisfying Assumption 3.1 and 3.1, is well-posed. The justification of this claim
follows from Corollary 10.1.2 and Theorem 6.6.1 in [15]. Indeed, we may prove
this as follows.

As noted earlier, we have the existence for the martingale problem for Lt . Thus
by Corollary 10.1.2 in [15] we need only check the well-posedness of the martingale
problem for Lt with bounded a jk and b j satisfying Assumption 3.1 and 3.2. In that
case by Theorem 6.6.1 (and Exercise 6.7.4) in [15] it is enough to show that, for
each (s, x)∈ [0, ∞)×R

d , there exist coefficients ã jk and b̃ j defined on [0, ∞)×R
d
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such that

(i) ã jk = a jk and b̃ j = b j in a neighborhood of (s, x),
(ii) the martingale for L̃ t is well-posed, where

L̃ t = 1

2
ã jk(t, ·) ∂2

∂x j∂xk
+ b̃ j (t, ·) ∂

∂x j
.

Note that {γ j , j ∈ I } has no limit points. Thus, for points (s, x) ∈ [0, ∞) × R
d ,

where x1 /∈ {γ j , j ∈ I }, we can find coefficients ã jk and b̃ j satisfying the above
two conditions. Especially, (ii) is satisfied by results in Ch. 7 in [15].

For points (s, x) ∈ [0, ∞) × R
d , where x1 ∈ {γ j , j ∈ I } (say, for example,

x1 = 0 and 0 ∈ {γ j , j ∈ I }), we find coefficients ã jk and b̃ j defined on [0, ∞)×R
d

such that they satisfy Assumption 2.1 and 2.2 in Section 2 as well as (i) in the above.
In fact, we may set

ã jk = ϕ a jk + (1 − ϕ)δ jk, b̃ j = b j ,

where ϕ is a non-negative infinitely differentiable function defined on R
d+1 such

that ϕ = 1 in a sufficiently small neighborhood of (s, 0, x ′) and supp ϕ dose not
intersect {(t, γk, x ′) : (t, x ′) ∈ [0, ∞) × R

d−1} for all γk ∈ {γ j , j ∈ I } \ {0}. Now
we prove (ii), i.e., the well-posedness of the martingale problem for ã jk and b̃ j ,
using Lemma 3.4. Therefore, we have proved

Theorem 3.5. Under Assumption 3.1 and 3.2, the martingale problem for Lt , where
Lt is as in (3.1), is well-posed.
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[8] O. A. LADYŽENSKAJA, V. A. SOLONNIKOV and N. N. URAL′CEVA, “Linear and Quasi-

linear Equations of Parabolic Type”. Translated from the Russian by S. Smith. Translations
of Mathematical Monographs, Vol. 23, American Mathematical Society, Providence, R.I.,
1967.



76 DOYOON KIM

[9] G. M. LIEBERMAN, “Second Order Parabolic Differential Equations”, World Scientific
Publishing Co. Inc., River Edge, NJ, 1996.

[10] A. LORENZI, On elliptic equations with piecewise constant coefficients, Appl. Anal. 2
(1972), 79–96.

[11] A. LORENZI, On elliptic equations with piecewise constant coefficients, II, Ann. Scuola
Norm. Sup. Pisa Cl. Sci. (3) 26 (1972), 839–870.

[12] S. SALSA, Un problema di Cauchy per un operatore parabolico con coefficienti costanti a
tratti, Matematiche 31 (1977), 126–146.

[13] L. G. SOFTOVA, Quasilinear parabolic operators with discontinuous ingredients, Nonlin-
ear Anal. 52 (2003), 1079–1093.

[14] E. M. STEIN, “Singular Integrals and Differentiability Properties of Functions”, Princeton
Mathematical Series, Vol. 30, Princeton University Press, Princeton, N.J., 1970.

[15] D. W. STROOCK and S. R. SRINIVASA VARADHAN, “Multidimensional Diffusion Pro-
cesses”, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of
Mathematical Sciences], Vol. 233, Springer-Verlag, Berlin, 1979.

[16] H. TRIEBEL, “Interpolation Theory, Function Spaces, Differential Operators”, North-
Holland Mathematical Library, Vol. 18, North-Holland Publishing Co., Amsterdam, 1978.

[17] P. WEIDEMAIER, Maximal regularity for parabolic equations with inhomogeneous bound-
ary conditions in Sobolev spaces with mixed L p-norm, Electron. Res. Announc. Amer.
Math. Soc. (electronic), 8 (2002), 47–51.

School of Mathematics
University of Minnesota
127 Vincent Hall
206 Church St. SE
Minneapolis, MN 55455, U.S.A.
dykim@math.umn.edu


