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The motion of a fluid in an open channel

SIMINA BODEA

Abstract. We consider a free boundary value problem for a viscous, incom-
pressible fluid contained in an uncovered three-dimensional rectangular channel,
with gravity and surface tension, governed by the Navier-Stokes equations. We
obtain existence results for the linear and nonlinear time-dependent problem. We
analyse the qualitative behavior of the flow using tools of bifurcation theory. The
main result is a Hopf bifurcation theorem with Zk -symmetry.
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0. Introduction

In this work we investigate the motion of a viscous, incompressible fluid contained
in an uncovered three-dimensional rectangular channel. The upper surface changes
with the motion of the fluid, so we deal with a free boundary problem. We consider
small perturbations of a uniform flow with a flat free surface. We include the effect
of surface tension; the external forces are gravity, and the wind force which acts on
the free boundary (in Section 5).

The motion of the fluid in the channel is governed by the Navier-Stokes equa-
tions. The variables are, as usual, the velocity and the pressure of the fluid in the in-
terior of the domain and a function parameterizing the free boundary. The pressure
can be expressed in terms of the other two variables, which are coupled as follows:
the fluid velocity at the free boundary prescribes the speed of the boundary, and the
mean curvature of the free surface creates a pressure jump via the surface tension.

We consider the system to be periodic in the direction of the length of the
channel. Technically, we identify the inflow boundary with the outflow boundary
of the channel and then we consider the second spatial variable belonging to the
circle S1. In order to obtain a well-posed model, we have to prescribe the value
of the dynamic contact angle between the walls and the free boundary (see [11, 9])
and we choose it to be π

2 . As boundary conditions, we consider that the walls are
impenetrable together with a perfect slip condition, and a no slip condition for the
bottom.
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The main aim of this paper is to analyse the qualitative behavior of the flow
(oscillations of periodic solutions) using tools of bifurcation theory. In order to
do this we need fundamental facts of existence and regularity of solutions, spec-
tral analysis of the linear system connected with the free boundary value problem
taking into account the underlying symmetries, and techniques of equivariant Hopf
bifurcation theorem.

J. T. Beale studied the problem of the motion of a viscous incompressible fluid
in a semi-infinite domain, bounded below by a solid floor and above by an atmo-
sphere of constant pressure, either with ([2]) or without ([3]) surface tension. In
[2] he used the Fourier transformation to prove resolvent estimates. These esti-
mates combined with the Laplace transformation in time were used to prove the
solvability of the time-dependent problem. He transformed the free boundary value
problem to an initial boundary value problem on a fixed domain in a special way.
This method is crucial in his existence proof and was also adapted and used by
[9, 10, 11]. We will apply it also in this paper.

B. Schweizer treated in [10] the case of a liquid drop (with viscosity and sur-
face tension) in a free space, so a full free boundary problem. With the help of
semigroup methods, he studied linearized equations and get also existence results
for the nonlinear problem. He computed the spectrum of the generator of the semi-
group. Nonreal eigenvalues appeared for large values of the surface tension. An
additional exterior linear force proportional to the normal velocity and acting on
the free surface leaded to a Hopf bifurcation with O(2)-symmetry.

As soon as contact between a fixed boundary and a free boundary arises, the
analytic investigations are getting more complicated. Already in case of a flow in a
domain with non smooth fixed boundary, the regularity of the solutions is restricted
(see e.g. [5]). The problem how to prescribe conditions for the contact is still in
discussion. There exists a huge number of publications dealing with the solvability
of free boundary problems with contact points and lines and therefore only some of
the works and authors can be mentioned.

V. A. Solonnikov proved existence results for free boundary problems for the
Navier-Stokes equations for both static or dynamic contact points and lines. He
proved estimates for stationary problem for limiting values of contact angle 0 or π ,
in weighted Hölder spaces (see [13, 14] and the references presented there). For the
solvability of stationary free boundary problems with a Navier type slip condition
on the rigid walls see [8] and [12]. This condition can be applied in the case of a
domain with rough boundaries by replacing the rough boundary with a smooth one
where the Navier condition is fulfilled.

M. Renardy ([9]) proved existence and uniqueness results for a two dimen-
sional free surface flow problem with open boundaries. Both steady and initial
value problems are investigated. He considered the case where velocity bound-
ary conditions are prescribed on both the inflow and the outflow boundary. The
smoothness of the solution is limited by the singularity at the corner between the
free surface and the inflow (or outflow) boundary.

In [11], B. Schweizer discussed conditions for the dynamic contact angle and
well-posedness of the equations for a flow in a two dimensional domain. For the
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case of π
2 contact angle and slip boundary conditions he proved resolvent estimates

which, using techniques developed in [9], yielded an existence result for the non-
linear initial boundary value problem.

The studies of the oscillatory behavior of a fluid in a channel is continuing
the research of B. Schweizer who analyzed the oscillation of a liquid drop [10].
Due to the solid boundary in our problem, the techniques in this paper have to be
changed due to difficulties arising from the additional boundary conditions. We are
able to obtain results for the channel similar to those B. Schweizer obtained for the
oscillating drop.

1. Formulation of the problem

We first collect the nonlinear equations describing the nonstationary motion of a
viscous, incompressible fluid contained in an uncovered rectangular channel. The
unknown functions are not only the velocity field u and the pressure p̄, but also
the domain �. We consider the channel of width b and length l = 2π to be deep
enough such that the fluid will never overflow it. We impose a periodicity condition
in the direction of the length of the channel (for all unknown functions).

Let (0, b) × (0, 2π) × (−h, +∞), b, h > 0 be the channel and � the domain
occupied by the fluid with the free boundary denoted by � and fixed boundary �

composed from the walls �1, �2 and the bottom �−h . Let C1, C2 be the inter-
section curves between the free boundary and the walls. The periodicity in x2 is
technically incorporated by considering the independent variable x2 belonging to
the circle S1. So, we have identified (and actually eliminated as boundaries) the
surfaces (0, b) × {0} × (−h, +∞) and (0, b) × {2π} × (−h, +∞). The channel
(0, b)× S1 × (−h, +∞) is now considered “without curvature in the x2-direction”,
i.e. the equations will not be transformed (this is not a domain transformation, it is
only an identification).

We take the domain of the fluid at equilibrium to be

�0 = {
(x1, x2, x3) ∈ R

3 : 0 < x1 < b, x2 ∈ S1, −h < x3 < 0
}
,

with the upper boundary �0

�0 = (0, b) × S1 × {0},
and the fixed boundary composed from the walls �1,0,�2,0 and the bottom �−h .
The contact curves between the free boundary and the walls are denoted by
C1,0, C2,0. Where no confusion can appear, we will omit the index 0 from the
notation for the walls and contact lines of the equilibrium domain. When we want
to refer to the walls together, we will denote them by �1,2 and the same for contact
lines C1,2.

To describe the free surface of the fluid, we assume small perturbations of
the equilibrium surface �0 and parametrize the free boundary of the liquid with a
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function η(t, ·) : �0 −→ R. Thus the height of the free surface is a function of
horizontal coordinates: x3 = η(t, x1, x2), (x1, x2) ∈ �0 and the graph of η gives
the shape of �. The domain occupied by the fluid is

� = �(t) = {
(x1, x2, x3) ∈ R

3 : 0 < x1 < b, x2 ∈ S1, −h < x3 < η(t, x1, x2)
}
.

The velocity field is a function u(t, ·) : �(t) −→ R3.
As usual, we introduce the deformation tensor Su with the components

(Su)i j = 1

2
(∂i u j + ∂ j ui )

and the stress tensor σ with the components

σi j = − p̄δi j + 2ν(Su)i j .

The motion of the fluid in the interior is governed by the Navier-Stokes equations
for an incompressible fluid with viscosity ν:

∂t u + (u · ∇)u − ν
u + ∇ p̄ + g∇x3 = 0 (1.1)

∇ · u = 0 (1.2)

where g is the acceleration of gravity. It is natural to substract the hydrostatic
presure from p̄, so we se

p := p̄ − P0 + gx3

where P0 is the atmospheric pressure above the liquid. The density does not appear
because of the nondimensionalization. After substitution, the gravity term in (1.1)
is eliminated.

On the free surface we have the kinematic boundary condition which states
that the fluid particles do not cross the free surface (which is equivalent with the
geometric condition that η always parametrizes the free surface):

∂tη = u3 − (∂1η)u1 − (∂2η)u2 on �. (1.3)

If we neglected the surface tension, the remaining boundary condition on � would
be the continuity of the stress across the free surface, so − ∑3

j=1 σi j n j = P0 ni +
fi ni for i = 1, 2, 3, where n = (n1, n2, n3) is the outward normal to � and f =
( f1, f2, f3) is the exterior force (for example the wind force). The effect of surface
tension is to introduce a discontinuity in the normal stress, proportional to the mean
curvature H(η) of the free surface �. Our boundary condition on � is therefore
(using p := p̄ − P0 + gx3 and x3 = η on �)

p ni − ν

3∑
j=1

(∂i u j + ∂ j ui )n j = (gη + β H(η) + fi )ni i = 1, 2, 3 (1.4)
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where β > 0 is the nondimensionalized coefficient of the surface tension and the
mean curvature of the surface � is given by

H(η) = −∇ · ∇η√
1 + |∇η|2

. (1.5)

We have denoted here by ∇ the gradient with respect to the first two variables x1, x2;
then let 
 := ∇ · ∇.

If nothing else is specified, in the following, we denote by n the outward nor-
mal and by τi , i = 1, 2, the two tangential directions to the surface.

From a physical point of view, the usual boundary condition u = 0 on � can
not be considered here because of the unknown contact between the free surface
and the walls (we can not assume that it is not moving at all on the walls, so we can
not ”stick” the free surface on the fixed boundary); but it is natural to consider the
no-slip condition on the bottom:

u
∣∣
�−h

= 0 (1.6)

and the velocity vanishing in the normal direction of the walls

u · n
∣∣
�1∪�2

:= un
∣∣
�1,2

= u1
∣∣
�1,2

= 0 (1.7)

together with a perfect slip condition

n · Su · τi
∣∣
�1,2

= 0. (1.8)

We need also to prescribe the contact angle between the free surface and the fixed
boundary. We shall choose it to be π

2 . So, the free surface is moving on the walls,
but the value of the contact angle should remain constant. This condition can be
written as:

∇η · n�1 = ∇η · n�2 = ∂1η = 0 on C1 ∪ C2. (1.9)

For similar problems with contact angle 0 or π see [13, 14] and the references
presented there.

The unknown functions u, p, η are periodic in the x2 direction of the chan-
nel, so

(u, p, η)(t, x1, x2, x3) = (u, p, η)(t, x1, x2 + 2π, x3). (1.10)

The initial condition is

(u, η)
∣∣
t=0 = (u0, η0). (1.11)

The Equations (1.1)−(1.11) are the evolutionary nonlinear equations describing the
oscillations of a fluid in an uncovered channel.



82 SIMINA BODEA

2. The existence theory

The linear problem for which we derive estimates is the one obtained by linearizing
Equations (1.1)−(1.11) about equilibrium, replacing the initial data by zero and
introducing a right hand side. We note that the linearization of the mean curvature
in �0 is −
η, where 
 is the Laplacian with respect to the “horizontal” variables
x1, x2. Because �0 = {x3 = 0}, we have ni = δi3, i = 1, 2, 3, in the equation (1.4).

For the beginning we consider the exterior force to be zero. The influence of a
nonzero exterior force (for example the wind force) will be considered for the study
of the Hopf bifurcation in Section 5.

We observe that the equation (2.5) is equivalent to the condition on the vanish-
ing of the tangential stress on �0, so it can be written also in the form n·Su ·τi

∣∣
�0

= 0

We also use the notations Su : Sv := ∑3
i, j=1(Su)i j (Sv)i j , Sn

u := n · Su · n, Sτi
u :=

n · Su · τi . Our linear problem becomes: u(t, ·) : �0 −→ R3, p(t, ·) : �0 −→ R,
η(t, ·) : �0 −→ R,

∂t u − ν
u + ∇ p = 0 (2.1)

∇ · u = 0 (2.2)

∂tη = u3
∣∣
�0

= un
∣∣
�0

(2.3)

(p − 2ν∂3u3)
∣∣
�0

= (p − 2νSn
u )

∣∣
�0

= gη − β
η (2.4)

(∂3ui + ∂i u3)

∣∣∣
�0

= n · Su · τi
∣∣
�0

= 0 (i = 1, 2) (2.5)

u
∣∣
�−h

= 0 (2.6)

u1
∣∣
�1,2

= un
∣∣
�1,2

= 0 (2.7)

∂1ui
∣∣
�1,2

(2.7)= n · Su · τi
∣∣
�1,2

= 0 (i = 2, 3) (2.8)

∂1η
∣∣
x1∈{0,b} = 0 (2.9)

(u, p, η)(t, x1, x2, x3) = (u, p, η)(t, x1, x2 + 2π, x3) (2.10)

(u, η)
∣∣
t=0 = (0, 0) . (2.11)

We want to write the linear equations in the form ∂t x + Lx = 0 and to satisfy
the boundary conditions by the choice of appropriate function spaces. To estimate
solutions of this equation, we use the Laplace transform in time.
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Following [2] and [10], we use a harmonic extension operator and replace the
pressure term from the equation (2.1) by a gradient term which is determined by
the other unknowns (u and η). The harmonic extension function is defined as the
unique solution of the problem


p = 0 in �0 (a)

p
∣∣
�0

= 2νSn
u

∣∣
�0

+ gη − β
η (b) (2.12)

∂n p
∣∣
�1,2

= 0 (c)

∂n p
∣∣
�−h

= ν(∂n Sn
u )

∣∣
�−h

. (d)

So, define the linear operator

H̃ : Hr−1/2(�0) × Hr−3/2(�−h) −→ Hr (�0)
3

which essentially maps a function defined on �0 to its harmonic extension in �0.
The order r of the Sobolev space will be established later. We can consider p as a
harmonic function defined on the whole domain,

p = H̃(2νSn
u

∣∣
�0

+ gη − β
η, ν(∂n Sn
u )

∣∣
�−h

)

= H̃(2νSn
u

∣∣
�0

, ν∂n Sn
u

∣∣
�−h

) + H̃(gη − β
η, 0)

:= H(2νSn
u

∣∣
�0

) + H(gη − β
η). (2.13)

In the last equality of (2.13), we have only simplified the notation for the operator H̃
(i.e. we have not included the condition on the bottom �−h), because generally we
are more interested to solve the problem near the free surface. Anytime when we
refer to H(2νSn

u

∣∣
�0

) we have to understand the condition (2.12)(d) to be satisfied
too, and when we refer to H(gη − β
η) we have to understand the condition
(2.12)(d) with zero right hand side, i.e. ∂n p

∣∣
�−h

= 0.
In the following we will consider complex valued functions and denote with ū

the complex conjugate of u. We use the following notations for the norms: ∀r ∈ R

(r = 0 denotes the L2-norm) ‖u‖Hr (�0)
3 := ‖u‖r,�0 , ‖η‖Hr (�0) := ‖η‖r,�0 .

Definition 2.1. Define the Hilbert spaces (over C):

Xr := {(u, η) ∈ Hr (�0)
3 × Hr+1/2(�0)

∣∣ ∇ · u = 0, un
∣∣
�1,2,−h

= 0}

X̃r := {(u, η) ∈ Xr
∣∣ n · Su · τi

∣∣
�0∪�1,2

= 0, uτi

∣∣
�−h

= 0, ∂1η
∣∣
x1∈{0,b} = 0}

with the natural norm inherited from the product space, and the operator

L : X̃r+2 −→ Xr ,



84 SIMINA BODEA

by

L
(

u
η

)
:=


 −ν
u + ∇H(2νSn

u

∣∣
�0

) + ∇H(gη − β
η)

−un
∣∣
�0


 .

The next lemma can be proved by simple calculations. We will use it especially in
the particular case when u and v satisfy the same conditions.

Lemma 2.2. For smooth functions u, v : �0 → C3 with ∇ · u = 0 there holds

2
∫

�0

Su : Sv̄ = −
∫

�0


u · v̄ + 2
∫

∂�0

n · Su · v̄.

In the case ∇ · v = 0, v
∣∣
�−h

= 0, vn
∣∣
�1,2

= 0, and n · Su · τi
∣∣
�0∪�1,2

= 0 (where

τi is any tangent vector and n the normal vector corresponding to �0, �1 or �2
respectively), we obtain the identity

2
∫

�0

Su : Sv̄ =
∫

�0

[−
u + ∇H(2Sn
u

∣∣
�0

)] · v̄ .

Definition 2.3 (Energy-norms). For functions u, v : �0 → C3, η, σ : �0 → C

we define the scalar products:

〈u, v〉E,�0 :=
∫

�0

u · v̄

〈η, σ 〉E,�0 :=
∫

�0

η · (gσ̄ − β
σ̄ )

〈(
u
η

)
,

(
u
η

)〉
E

:= 〈u, v〉E,�0 + 〈η, σ 〉E,�0 .

The corresponding norms are denoted by ‖ · ‖E,�0 , ‖ · ‖E,�0 and ‖ · ‖E .

The next two theorems prove properties of the spectrum of L in the complex plane.
The proofs follow by simple calculations using partial integration; the first is similar
with that of [10, Lemma 2.4]; see also [4, Theorem 1.2.5, Theorem 1.2.9].

Theorem 2.4 (Position of eigenvalues of L with respect to ‖·‖E ). Let (u,η)∈ X̃r

be an eigenfunction (considered complex) of L with eigenvalue λ. Then

Reλ

∥∥∥∥
(

u
η

)∥∥∥∥2

E
= 2ν

∫
�0

|Su |2 (2.14)

Imλ

∥∥∥∥
(

u
η

)∥∥∥∥2

E
= 2Im

∫
�0

(−un
∣∣
�0

)(gη̄ − β
η̄). (2.15)
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In the case of Imλ 
= 0, the energy equality holds:

‖u‖2
E,�0

= ‖η‖2
E,�0

= 1

2

∥∥∥∥
(

u
η

)∥∥∥∥2

E
. (2.16)

Theorem 2.5. The spectrum of L consists only of eigenvalues and is contained in
a sector

SC = {λ ∈ C
∣∣ |Imλ| ≤ CReλ}.

Using the properties of the Stokes operator, we can easily prove the following
proposition; see [4, Proposition 1.2.6]:

Proposition 2.6.

(a) The operator L−1 : Xr → X̃r+1, r ≥ 1, is bounded.
(b) The operator L−1 : X0 → X̃2 is not bounded.

In order to prove the existence of a solution of the linear problem, for instance
with the help of the Laplace transformation in time, we prove an estimate for the
resolvent of −L, first only on a subspace of the form {( f, 0)

∣∣ f ∈ L2(�0)
3}. We

denote the transformed functions also by (u, η) and investigate the solutions of the
equation

(λ + L)

(
u
η

)
:=

(
λu − ν
u +∇H(2νSn

u

∣∣
�0

) +∇H(gη − β
η)

λη − un
∣∣
�0

)
=

(
f
0

)
. (2.17)

We can prove the next two results:

Theorem 2.7 (The resolvent (λ+L)−1 in the case ( f, 0) ∈ Xr ). There exist con-
stants CR and c such that solutions (u, η) of (2.17) with λ ∈ C \ (−SC ) satisfy for
( f, 0) ∈ Xr , with r ≥ 0, the regularity

‖(u, η)‖Xr+2 ≤ c‖( f, 0)‖Xr (2.18)

and for |λ| large enough, the resolvent estimate

‖(u, η)‖Xr ≤ CR

|λ| ‖( f, 0)‖Xr . (2.19)

Corollary 2.8 (The resolvent (λ+L)−1 for ( f, h)∈ Xr with h 
=0). Let (u, η) be
a solution of the equation

(λ + L)

(
u
η

)
=

(
f
h

)
, (2.20)

with ( f, h) ∈ Xr+2, r ≥ 0. Then there exists a constant M > 0 such that for all
λ ∈ C \ (−SC ), |λ| large enough, there holds:

‖(u, η)‖Xr+2 ≤ M

|λ|‖( f, h)‖Xr+2 . (2.21)
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The proofs of these results for r = 0 are very similar with those of [10, The-
orem 3.1, Corollary 3.2] and they will not be presented here. In order to increase
the regularity order r and to avoid the difficulties with the corners of the domain,
we can perform a reflection across the walls. Our boundary conditions on the walls
allow us to define symmetric extensions of (
u, η, p) across e.g. �1, as follows: u1
will be extended to be odd and u2, u3, η and p will be extended to be even with
respect to x1. The right hand sides can be extended consistently, such that the new
functions satisfy the a problem similar to the old ones, but now in the extended do-
main (−b, b)×S1×(−h, 0) and they will be periodic with respect to x1. In a similar
way like the case r = 0, we can prove now estimates for the symmetric extended
function, using well-known techniques: we differentiate the equations with respect
to the variables x1 and x2, then the corresponding derivatives of u satisfy the same
equations with the differentiated right hand side. The estimates of the derivatives
with respect to x3 can be obtained directly from the Navier-Stokes equation in the
extended domain. We can now restrict ourselves to the initial domain and obtain
the desired estimates for the solution (u, η) of the initial problem (2.17). For more
details see [4, Theorem 1.2.10, Corollary 1.2.14].

We can now apply the inverse of the Laplace transformation and formulate our
existence result for the linear problem.

Theorem 2.9 (Linear existence result for ( f, 0)). We consider L : X̃r+2 → Xr ,
r ≥ 1 and ( f, 0) ∈ L2([0, T ], Xr ), T > 0. Then the problem

(∂t + L)

(
u
η

)
=

(
f
0

)

with initial conditions (u, η)
∣∣
t=0 = (u0, η0) ∈ X̃r+2 has a unique solution

(u, η) ∈ H1([0, T ], X̃r ) ∩ L2([0, T ], X̃r+2).

The particular linear existence result obtained for the special form of the right hand
side ( f, 0) ∈ Xr will be not enough for the proof of the Hopf bifurcation theorem.
We can formulate a result stronger then Theorem 2.7, i.e. for a nonzero second
component of the right hand side, if this is more regular than the space Xr requires.
This means we have to introduce a new space

Xr
3/2 := {( f, h) ∈ Hr (�0)

3 × Hr+3/2(�0)
∣∣ ∇ · f = 0, fn

∣∣
�1,2,−h

= 0} (2.22)

with the natural norm inherited from the product space. Using this notation, our Xr

spaces coincide with the Xr
1/2 spaces, but we will keep the old notation for Xr . The

properties of L : X̃r+2 → Xr
3/2 are stated in the next theorem and follow in the

same way like those one for the special right hand side.
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Theorem 2.10 (Properties of L : X̃r+2 → Xr
3/2). The operator L : X̃r+2 → Xr

3/2,
r ≥ 0, is invertible, the inverse is bounded and we have the regularity estimate

‖(u, η)‖Xr+2 ≤ c‖( f, h)‖Xr
3/2

. (2.23)

The same result holds for the operator λ + L, too, when λ is not an eigenvalue
of −L.

We can immediately formulate the analog of the linear existence Theorem 2.9:

Theorem 2.11 (Linear existence result for ( f, h) with h 
= 0). We consider L :
X̃r+2 → Xr

3/2, r ≥ 1, and ( f, h) ∈ L2([0, T ], Xr
3/2), T > 0. Then the prob-

lem

(∂t + L)

(
u
η

)
=

(
f
h

)
with initial conditions (u, η)

∣∣
t=0 = (u0, η0) ∈ X̃r+2 has a unique solution

(u, η) ∈ H1([0, T ], X̃r
3/2) ∩ L2([0, T ], X̃r+2).

Following [2, 9] and [10], we convert our (initial) nonlinear problem (1.1) - (1.11)
defined on the unknown domain � to one on the equilibrium domain �0 by stretch-
ing or compressing on the vertical line segments. We state here only the main
existence results. For more details, see [4, Section 1.3].

Theorem 2.12 (Nonlinear existence result for X̃ -spaces). For r≥1, small enough
( f, 0) ∈ L2([0, T ], Xr ) and small enough initial values (u0, η0) ∈ X̃r+2, there
exists a unique solution (u, η) ∈ H1([0, T ], X̃r )∩L2([0, T ], X̃r+2) of the nonlinear
problem. ( f is a right hand side introduced in the Equation (1.1)).

Theorem 2.13 (Nonlinear existence result for X̃3/2-spaces). For r ≥ 1, small
enough ( f, h) ∈ L2([0, T ], Xr

3/2) and small enough initial values (u0, η − 0) ∈
X̃r+2, there exists a unique solution (u, η) ∈ H1([0, T ], X̃r

3/2) ∩ L2([0, T ], X̃r+2)

of the nonlinear problem. ( f and h are right hand sides introduced in the Equations
(1.1) and (1.3), respectively).

3. The L-invariant decomposition

We want to split Xr and X̃r into a direct sum of L-invariant subspaces (Xr
i )i∈I .

The normed eigenvectors of −
 on �0, with Neumann boundary conditions in the
x1-direction of the channel, form an orthonormal basis for L2(�0). In order to find
this basis explicitly, we solve the eigenvalue problem

−
η(x1, x2) = λη(x1, x2)

∂1η
∣∣
x1∈{0,b} = 0
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using the method of separation of variables. It is well-known (see e.g. [6], Chapter
VIII, Theorem 8 and the applications presented here) that this problem has a count-
able number of eigenvalues λn,k , n ∈ N, k ∈ Z which are real, positive and simple.
The eigenfunctions are

ηn,k(x1, x2) = cn,k cos
(π

b
nx1

)
eikx2,

the constants cn,k being chosen in such a way that∫
�0

|ηn,k |2dx1 dx2 = 1.

So, L2(�0) can be decomposed into a direct Hilbert sum

L2(�0) =
⊕
n∈N

k∈Z

l2
n,k

where
l2
n,k(�0) = span{ηn,k(x1, x2)}.

Using the basis we found for L2(�0), we will construct a basis for L2(�0)
3 in the

next proposition. The proof is elementary and uses a special Helmholz decomposi-
tion (see [15]). For more details, see [4]. Let 
e3 = (0, 0, 1) be the normal vector
on �0, ∇ = 
e1

∂
∂x1

+ 
e2
∂

∂x2
and ∇⊥ = 
e1

∂
∂x2

− 
e2
∂

∂x1
, where 
e1 = (1, 0, 0) and


e2 = (0, 1, 0) are two tangent vectors to �0.

Proposition 3.1. The set

B = {ηn,k(x1, x2)
e3, ∇ηn,k(x1, x2) , ∇⊥
ηn,k(x1, x2)}

is a basis for L2(�0)
3.

Using the basis B for L2(�0)
3, we can decompose a function u(x1, x2, x3) ∈

L2(�0)
3:

u(x1, x2, x3) =
∑
n∈N

k∈Z

U n,k
1 (x3)∇ηn,k(x1, x2) + U n,k

2 (x3)∇⊥
ηn,k(x1, x2)

+U n,k
3 (x3)η

n,k(x1, x2)
e3

=:
∑
n∈N

k∈Z

un,k(x1, x2, x3)

where U n,k
1,2,3 are arbitrary real functions depending only on x3, not all of them

identically zero. Then,
L2(�0)

3 =
⊕
n∈N

k∈Z

L2
n,k,
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where L2
n,k is the corresponding space in the decomposition of L2(�0)

3, for n, k
fixed.

In order to find a L-invariant decomposition for Xr , we have to see how the
divergence free condition and the boundary conditions are carried over. We fix
n ∈ N and k ∈ Z and find after simple calculations:

Proposition 3.2. The L-invariant decompositions of the spaces Xr and X̃r are:

Xr =
⊕
n∈N

k∈Z

Xr
n,k X̃r =

⊕
n∈N

k∈Z

X̃r
n,k

with

Xr
n,k = {(un,k, ηn,k) ∈ Hr (�0)

3 × Hr+1/2(�0)
∣∣

ηn,k(x1, x2) = cn,k cos
(

π
b nx1

)
eikx2,


un,k(x1, x2, x3) = U n,k
1 (x3)∇ηn,k(x1, x2) + U n,k

3 (x3)η
n,k(x1, x2)
e3,

(U n,k
3 )′(x3) = λn,kU n,k

1 (x3), x3 ∈ (−h, 0),

U n,k
3 (−h) = 0}

X̃r
n,k = {

(un,k, ηn,k) ∈ Xr
n,k

∣∣ U n,k
1 (−h) = 0

U n,k
3 (0) + (U n,k

1 )′(0) = 0
}
.

Since we study the eigenvalue problem for L, we can restrict ourselves to such a
space Xr

n,k and make all considerations there. This is stated in the next proposition.
For the proof, see [4].

Proposition 3.3. Let λ be an arbitrary eigenvalue of L. Then there exist n ∈ N and
k ∈ Z such that λ is an eigenvalue for L

∣∣
X̃r

n,k
.

4. A bifurcation picture with respect to α

Since the Navier-Stokes equations are invariant under the Euclidean group E3 of
all translations, rotations and reflections of space, the group of symmetries of a
given model is a subgroup of E3 determined by the shape of the domain and the
boundary conditions. In our problem, we consider the symmetries obtained by
translations along x2 and reflections through a plane perpendicular to the x2-axis.
The assumption on periodic boundary conditions in the x2-direction allows us to
identify these translations with the action of a circle group. These lead to an O(2)

symmetry, so our problem provides an O(2)-equivariance.
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Remark 4.1. A reflection through the plane {x1 = b
2 } is also a symmetry for our

model. We did not consider it because it does not increase the dimension of the
kernel spaces in the bifurcation theorem. This will become clear from the form of
the function ηn,k .

O(2) is generated by SO(2) together with the flip κ =
(

1 0
0 −1

)
, where

SO(2) consists of planar rotations Rθ =
(

cos θ sin θ

− sin θ cos θ

)
. We refer to elements

of O(2) as 3 × 3 matrices, adding the third line and the third column (0, 0, 1). We
define the action of an element γ ∈ O(2) on Xr by

γ ∗ u := u ◦ γ −1

γ ∗ η := η ◦ γ −1

γ ∗
(

u
η

)
:=

(
γ ∗ u
γ ∗ η

)
.


 (4.1)

SO(2) may be identified with the circle group S1, the identification being Rθ �→ θ .
Using this identification, we describe the action of O(2) = {seiθ : θ ∈ R, s ∈
{id, κ}} on Xr as follows: if 
u = u1
e1 + u2
e2 + u3
e3 is the velocity field,

θ ∗ 
u(x1, x2, x3) := u1(x1, x2 − θ, x3)
e1 + u2(x1, x2 − θ, x3)
e2
+u3(x1, x2 − θ, x3)
e3

κ ∗ 
u(x1, x2, x3) := u1(x1, −x2, x3)
e1 − u2(x1, −x2, x3)
e2
+u3(x1, −x2, x3)
e3

θ ∗ η(x1, x2) := η(x1, x2 − θ)

κ ∗ η(x1, x2) := η(x1, −x2) .




(4.2)

It is easy to see that L is O(2)-equivariant with respect to this action, i.e.

γ ∗ L
(

u
η

)
= L

(
γ ∗

(
u
η

))
.

Lemma 4.2. The function ηn,k has an isotropy subgroup �ηn,k of O(2) isomorphic
to Zk .

The proof follows by simple calculations.
We are now able to study the position of the eigenvalues of L depending on the

gravity g and on the surface tension β. The position can be calculated explicitly for
g = β = 0 and for g, β → +∞. It is not of interest to study the problem for g and
β separately. Anyway, these parameters are physical measures and they are fixed
for a given liquid, but the ”formal” analysis we are presenting here gives us useful
ideas for the study of Hopf bifurcation in the next section. Then

(g − β
)ηn,k = (g + βλn,k)ηn,k =: α ηn,k,

with α := g + βλn,k ∈ [0, ∞).
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Remark 4.3. In this section, n and k are fixed, so λn,k is fixed, and varying α in
the Theorem 4.8 means actually to vary g and β. This is also the reason for which
we do not introduce n and k in the notation α for g + βλn,k .

Let A : (u, p) �→ −ν
u + ∇ p together with the following conditions:

in �0 : ∇ · u = 0
n · Su · τi

∣∣
�0∪�1,2

= 0

un
∣∣
�1,2

= 0

u
∣∣
�−h

= 0


 (4.3)

be the Stokes operator. In order to study eigenvalue problems for A, we have to
impose one boundary condition more, i.e. one for the normal velocity on the free
boundary �0. We have two possibilities, to prescribe the normal velocity on �0
(and obtain than a “Dirichlet” problem for the Stokes operator) or to prescribe the
normal stress on the free boundary (and obtain than a “Neumann” problem for the
Stokes operator). As soon as we have imposed a condition for un

∣∣
�0

or for (p −
2νSn

u )
∣∣
�0

, we can calculate the value of the other one. Because we are in Xr
n,k , both

of them should be multiple of ηn,k . Also, for fixed ηn,k , the pressure p is known as
a function of u and ηn,k (see (2.13)). Therefore, when we don’t need to write the
pressure explicitly, we will simplify the notation:

A(u, p) = −ν
u + ∇ p =: Au.

Definition 4.4 (The Stokes operators AD and AN ). Denote by AD the Stokes op-
erator A on X̃r together with the boundary condition of a vanishing normal com-
ponent of the velocity at the free boundary. It is known that its eigenvalues are
countable, real, positive and simple; we denote them by {κ j } j∈N. The correspond-
ing eigenfunctions with symmetry Zk are unique up to a multiplicative constant.
Let {u j } j∈N be the normed eigenfunctions with symmetry Zk and {p j } j∈N be the
pressure functions such that (p j − 2νSn

u j
)
∣∣
�0

= ηn,k .

Denote by AN the Stokes operator A on X̃r together with the boundary condi-
tion of a vanishing normal stress on the free boundary. It is known that its eigenval-
ues are countable, real, positive and simple; we denote them by {ρ j } j∈N.

The Stokes operators AD and AN are elliptic in the sense of Agmon, Douglis
and Nirenberg (see [1], and also [2, 10]).

Following [10], we define for every µ ∈ C \ {κ j | j ∈ N}, (ũ(µ), p̃(µ)) to be
the unique solution of the problem ( p̃(µ) is here unique up to an additive constant):

(µ − A)ũ(µ) = 0 (4.4)

ũn(µ)
∣∣
�0

= −µηn,k . (4.5)

We know from the perturbation theory for linear operators (see [7], and also [10])
that (ũ(µ), p̃(µ)) is an analytic family of functions for µ ∈ C \ {κ j | j ∈ N}.
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One verifies easily that Xr
n,k are invariant subspaces also for AD and AN .

Therefore the (unique) solution of (4.4)-(4.5) must be in Xr
n,k . In particular ( p̃(µ)−

2νSn
ũ(µ)

)
∣∣
�0

is a multiple of ηn,k . We define r̃(µ) ∈ C by

( p̃(µ) − 2νSn
ũ(µ))

∣∣
�0

=: r̃(µ)ηn,k . (4.6)

Of course, every µ 
= κ j eigenvalue of L together with the corresponding eigen-
function satisfy the problem (4.4)-(4.5). Reciprocally, a µ ∈ C is an eigenvalue on
L with eigenfunction (ũ(µ), ηn,k), if and only if

r̃(µ) = α.

Lemma 4.5. We have: µ ∈ R implies r̃(µ) ∈ R.

Proof. Testing the eigenvalue equation (4.4) with ¯̃u we obtain:

µ

∫
�0

|ũ(µ)|2 =
∫

�0

[−ν
ũ(µ) + ∇H(2νSn
ũ(µ)

∣∣∣
�0

)] ¯̃u(µ)

+
∫

�0

[∇ p̃(µ) − ∇H(2νSn
ũ(µ)

∣∣∣
�0

)] ¯̃u(µ)

= 2ν

∫
�0

Sũ(µ) : S ¯̃u(µ) +
∫

�0

( p̃(µ) − 2νSn
ũ(µ))

¯̃un(µ)

= 2ν

∫
�0

|Sũ(µ)|2 +
∫

�0

r̃(µ)ηn,k(−µ̄η̄n,k)

= 2ν

∫
�0

|Sũ(µ)|2 − µ̄

∫
�0

r̃(µ) |ηn,k |2

and the lemma is proved.

In the following we abbreviate by ‖ · ‖ (without indices) the L2(�0)
3-norm or

the L2(�0)-norm.
The next two proposition are very important for the bifurcation analysis. The

proofs are similar to those presented in [10].

Proposition 4.6 (Properties of ũ(µ)).

(a) In κ j there holds

‖ũ(µ)‖ → +∞ f or µ → κ j . (4.7)

(b) The rescaled functions approximate the eigenfunctions of AD, so

u j := lim
R�µ↗κ j

ũ(µ)

‖ũ(µ)‖ = − lim
R�µ↘κ j

ũ(µ)

‖ũ(µ)‖ . (4.8)
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(c)

‖ũ(µ)‖ → +∞ f or |µ| → +∞. (4.9)

Proposition 4.7 (Properties of r̃(µ)). The function r̃(µ) satisfies:

(a)

lim
R�µ↘0

r̃(µ) = 0 ; (4.10)

(b)

lim
R�µ↘κ j

r̃(µ) = − lim
R�µ↗κ j

r̃(µ) = +∞ ; (4.11)

(c) r̃(µ) is positive for small µ > 0 and ∂µr̃(µ)
∣∣
µ=0 > 0;

(d) it has exactly one turning point on each interval (κ j , κ j+1), j ∈ N;
it does not have turning points on the interval (−∞, κ0);

(e) critical values of r̃(µ) are positive.

We can draw now the graph of r̃ for µ ∈ R (see Figure 1). On (0, κ0) we know
exactly how it looks like, on (κ j , κ j+1) we have two possibilities: r̃ is monoton
descending or has a local maximum and a local minimum, both positive. We have
drawn the graph of r̃ also for negative µ (because we need it for the next section).
We know that r̃ has no negative zeros, and no turning points on (−∞, κ0), so it
should looks like a “parabola” on this interval.

0 µκ κ κ κ κ

r

0 i i+1 j j+1

turning
 points

α

∼

... ...

0

ρ
ρ

0

i+1 ρj+1µmax

(µ)

Figure 1. The Graph of r̃(µ).

The numbers ρ j > 0 are zeros of the r̃(µ), so the shape of r̃ implies

ρ j < κ j < ρ j+1 ∀ j ∈ N.



94 SIMINA BODEA

Theorem 4.8 (The global bifurcation picture in α). For α = 0 all the eigenval-
ues of Lα

∣∣
X̃r

n,k
are real. Denoting them by {µ j } j∈N, it holds

µ0 = 0, µ j+1 = ρ j ∀ j ∈ N.

For some α0 > 0 the first two eigenvalues merge and leave the real axis.
Given a number ω ∈ R, there exists αω > 0 such that for α > αω every interval
(κ j , κ j+1) with κ j+1 < ω contains one and only one eigenvalue µ(α) of Lα (which
is the unique real solution of the equation r̃(µ) = α on this interval) and this real
eigenvalue satisfies

µR(α) ↘ κ j f or α → +∞.

For the nonreal eigenvalues it holds

|µC(α)| → +∞ f or α → +∞.

Proof. The statements for the real eigenvalues of Lα are clear from the graph of r̃ .
For α = 0 we can compute a complete set of eigenfunctions in Xr

n,k :

µ0 = 0 with eigenfunction (0, ηn,k)

µ j+1 = ρ j with eigenfunction (ũ(ρ j ), η
n,k) .

Let µmax be the critical point of r̃ on (0, κ0). Then α0 := r̃(µmax) and from the
shape of r̃ we see that for α ≥ α0 the first two eigenvalues merge and leave the real
axis.

Let ω ∈ R be given, then there exists i ∈ N such that 0 < κ0 < . . . < κi < ω

and define αω to be the biggest local maximum of r̃(µ) on (κ j , κ j+1) for all j ,
j < i . The rest is clear from the shape of r̃ .

It remains now to prove only the assertion on the nonreal eigenvalues. We
suppose we have a sequence of nonreal eigenvalues µ(α) of Lα which are bounded
independent of α, so suppose:

µ(α) → µ∞ ∈ C for a sequence α → +∞.

Denoting the corresponding eigenfunctions of Lα with (ũ(µ(α)), ηn,k), they satisfy
the energy equality ∀α ∈ R:

‖ũ(µ(α))‖2 = α‖ηn,k‖2

and the condition for the normal stress on the free boundary:

( p̃(µ(α)) − 2νSn
ũ(µ(α)))

∣∣
�0

= αηn,k

where p̃(µ(α) is the corresponding pressure function. Because µ(α) is nonreal ∀α,
it never meets κ j and the pair (ũ(µ(α)), p̃(µ(α))) is also a nonzero solution of the
problem (4.4)−(4.5).
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Then the pair (v(µ(α)), q(µ(α))),

v(µ(α)) := ũ(µ(α))

α
and q(µ(α)) := p̃(µ(α))

α
,

satisfies the equations:

(µ(α) − A)v(µ(α)) = 0

vn(µ(α))
∣∣
�0

= −µ(α)

α
ηn,k

(q(µ(α)) − 2νSn
v(µ(α)))

∣∣
�0

= ηn,k .

Passing to the limit α → +∞ in all these equations, using our hypothesis µ(α) →
µ∞ ∈ C and continuity with respect to µ of the functions v and q, the pair of the
limit functions (v(µ∞), q(µ∞))

v(µ∞) := lim
α→+∞ v(µ(α)) and q(µ∞) := lim

α→+∞ q(µ(α))

satisfies the following equations:

(µ∞ − A)v(µ∞) = 0

vn(µ∞)
∣∣
�0

= 0

(q(µ∞) − 2νSn
v(µ∞))

∣∣
�0

= ηn,k

and because the normal stress on the free boundary is ηn,k , the solution v(µ∞) 
≡ 0.
On the other hand, using the energy equality we can calculate:

0 
= ‖v(µ∞)‖2 = lim
α→+∞

∥∥∥∥ ũ(µ(α))

α

∥∥∥∥2

= lim
α→+∞

α‖ηn,k‖2

α2

= 0,

a contradiction, so for nonreal eigenvalues, |µ(α)| → +∞ for α → +∞.

Proposition 4.9.

(a) Eigenvalues of Lα leave the real axis with an infinite speed (with respect to α).
(b) The qualitative shape of r̃ν(µ) is independent of the viscosity ν:

r̃εν(εµ) = ε2r̃ν(µ).

The proof is similar to that presented in [10].
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5. Hopf bifurcation with symmetry

The Hopf bifurcation refers to a phenomenon in which a steady state of an evolution
equation evolves into a periodic orbit as a bifurcation parameter is varied. When the
symmetry appears, the problem becomes more complicated because the symmetry
can lead to multiple eigenvalues. In order to state an equivariant Hopf bifurcation
theorem we have to prove the existence of a pair of purely imaginary eigenval-
ues of L which are Zk-simple together with the transversality condition that these
eigenvalues cross the imaginary axis with a nonzero speed, when the bifurcation
parameter is varied.

In this section we consider the influence of an exterior force (e.g. the wind
force) acting on the free surface of the fluid. In general such a force will depend on
the position and the velocity of the free surface and result in an increase or decrease
of the pressure at the free boundary. With a parameter ξ for the strength we write

(p − 2νSn
u )

∣∣
�0

= gη − β
η + ξ F(η, un
∣∣
�0

).

Linearizing F in 0 we notice that D1 F ·η acts like an additional surface tension, the
effect of which we know in any subspace Xr

n,k (Section 4). So we will concentrate
on a linear force of the form

F(η, un
∣∣
�0

) = D2 F · un
∣∣
�0

.

This force can be written in terms of the representation Xr = ⊕Xr
n,k . We assume

that the decomposition remains invariant and study the force D2 F = −id in Xr
n,k

which has the structure of a negative damping. We are interested in the position of
eigenvalues and restrict all the calculations to Xr

n,k . The linearized equation are the
same like that one in Chapter 1, except the Equation (5.4) where the term ξun

∣∣
�0

appears additionally:

∂t u − ν
u + ∇ p = 0 (5.1)

∇ · u = 0 (5.2)

∂tη
n,k = un

∣∣
�0

(5.3)

(p − 2νSn
u )

∣∣
�0

= gηn,k − β
ηn,k − ξun
∣∣
�0

(5.4)

n · Su · τi
∣∣
�0

= 0, i = 1, 2 (5.5)

u
∣∣
�−h

= 0 (5.6)

un
∣∣
�1,2

= 0 (5.7)

n · Su · τi
∣∣
�1,2

= 0 (5.8)

∂1η
n,k

∣∣
x1∈{0,b} = 0 (5.9)

(u, p, ηn,k)(t, x1, x2, x3) = (u, p, ηn,k)(t, x1, x2 + 2π, x3) . (5.10)
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Because we are working in the space X̃r
n,k or Xr

n,k , so we have a special form for

ηn,k , some of the conditions (5.1)-(5.10) are automatically satisfied; however, for
the seek of completeness we wrote the whole Stokes problem.

In analogy with the previous sections we define the operator

Lξ

(
u

ηn,k

)
:=

(
−ν
u+∇H(2νSn

u

∣∣
�0

)+∇H(gη̄n,k −β
η̄n,k)−∇H(ξun
∣∣
�0

)

−un
∣∣
�0

)
,(5.11)

where H(ξun
∣∣
�0

) := H̃(ξun
∣∣
�0

, 0). We denote by Lξ u the first component in the
definition (5.11).

We prove how the Theorem 2.4 carries over. We observe that the next Theorem
is true also in the whole space X̃r (i.e. for an eigenvector (u, η) ∈ X̃r of Lξ ).

Theorem 5.1 (Position of eigenvalues of Lξ with respect to ‖·‖E ). Let

(
u

ηn,k

)
∈

X̃r
n,k be an eigenfunction (considered complex) of Lξ with eigenvalue µ. Then

Reµ

∥∥∥∥
(

u
ηn,k

)∥∥∥∥2

E
= 2ν

∫
�0

|Su |2 − ξ |µ|2‖ηn,k‖2
0,�0

(5.12)

Imµ

∥∥∥∥
(

u
ηn,k

)∥∥∥∥2

E
= 2Im

∫
�0

(−un
∣∣
�0

)(gη̄n,k − β
η̄n,k). (5.13)

In the case of Imµ 
= 0 the energy equality holds:

‖u‖2
0,�0

= ‖u‖2
E,�0

= ‖ηn,k‖2
E,�0

= 1

2

∥∥∥∥
(

u
ηn,k

)∥∥∥∥2

E
= α‖ηn,k‖2

0,�0
. (5.14)

The proof is similar to that of Theorem 2.4 and follows by simple calculations.
We abbreviate again by ‖ · ‖ without indices the L2(�0)

3-norm (or L2(�0)-
norm) and by 〈·, ·〉 the L2-scalar product.

We want to get a global picture of the position of eigenvalues as in the previous
section, but now depending on the parameter ξ . Looking at the results of Theorem
5.1, we see that two important differences will appear:

(a) The eigenvalues may have a negative real part;
(b) The energy equality for eigenvectors (u, ηn,k) remains unchanged and does not

depend on the bifurcation parameter ξ ; we will exploit this to prove that for
|ξ | → +∞, the nonreal eigenvalues are bounded.

Proposition 5.2.

(a) The modulus of nonreal eigenvalues is bounded independent of ξ .
(b) For |ξ | → +∞ all eigenvalues of Lξ are real.
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Proof. (a) We suppose that for |ξ | → +∞ we can find a sequence of nonreal eigen-
values µ(ξ) ∈ C\R of Lξ with |µ(ξ)| → +∞. For every such complex eigenvalue
with the eigenfunction u(µ(ξ)), we know from the energy equality (5.14):

‖u(µ(ξ))‖2 = α‖ηn,k‖2 is bounded independent of ξ.

The function u(µ(ξ)) satisfies the problem (4.4)−(4.5) (together with the corre-
sponding pressure function). We can use the result of Proposition 4.6(c) from the
previous section, because its proof did not exploit ξ = 0, and we conclude:

‖u(µ(ξ))‖ → +∞, for |µ(ξ)| → +∞,

a contradiction.

(b) For the second part we treat separately the cases ξ → −∞ and ξ → +∞.

(i) ξ → −∞

The Equation (5.12) implies

Reµ(ξ) → +∞ for ξ → −∞
which implies µ(ξ) ∈ R (because the nonreal eigenvalues are bounded).

(ii) ξ → +∞

We suppose that for any ξ arbitrary large, we can find a nonreal eigenvalue
µ(ξ) of Lξ , so we can construct a sequence of nonreal eigenvalues (which are
bounded) and consider µ(ξ) → µ∞. Let (ũ(µ(ξ)), ηn,k) be an eigenfunction of
Lξ corresponding to µ(ξ) and p̃(µ(ξ)) be the corresponding pressure function.
Because µ(ξ) ∈ C \ R, it never meets κ j , so (ũ(µ(ξ)), p̃(µ(ξ))) is a nonzero
solution of (4.4)−(4.5) (for µ(ξ)).
We distinguish two cases:

(1) µ∞ = 0

Letting ξ → +∞, the limit function (ũ(0), p̃(0)) is a solution of the problem
(4.4)−(4.5) for µ = 0, so ũ(0) is identically zero. On the other hand, every
ũ(µ(ξ)) satisfies the energy equality (5.14) and passing to the limit, we obtain

0 = ‖ũ(0)‖2 = lim
ξ→+∞ ‖ũ(µ(ξ))‖2 = α‖ηn,k‖2 
= 0

a contradiction.
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(2) µ∞ 
= 0

Then the pair (v(µ(ξ)), q(µ(ξ))),

v(µ(ξ)) := ũ(µ(ξ))

ξ
and q(µ(ξ)) := p̃(µ(ξ))

ξ

satisfies the equations:

(µ(ξ) − A)v(µ(ξ)) = 0

vn(µ(ξ))
∣∣
�0

= −µ(ξ)

ξ
ηn,k

(q(µ(ξ)) − 2νSn
v(µ(ξ)))

∣∣
�0

= α

ξ
ηn,k + µ(ξ)ηn,k .

Passing to the limit ξ → +∞, using our hypothesis µ(ξ) → µ∞ ∈ C and con-
tinuity with respect to µ of the functions v and q, the pair of the limit functions
(v(µ∞), q(µ∞))

v(µ∞) := lim
ξ→+∞ v(µ(ξ)) and q(µ∞) := lim

ξ→+∞ q(µ(ξ))

satisfies the following equations:

(µ∞ − A)v(µ∞) = 0

vn(µ∞)
∣∣
�0

= 0

(q(µ∞) − 2νSn
v(µ∞))

∣∣
�0

= µ∞ηn,k .

and v(µ∞) 
≡ 0 because the normal stress on the free boundary is still nonzero.
On the other hand, using the energy equality (5.14) we have:

0 
= ‖v(µ∞)‖2 = lim
ξ→+∞

∥∥∥∥ ũ(µ(ξ))

ξ

∥∥∥∥2

= lim
ξ→+∞

α‖ηn,k‖2

ξ2

= 0,

a contradiction.
So, ∃ξ0 > 0 such that for |ξ | > ξ0 all eigenvalues of Lξ are real.

We resume now two useful results from the previous Section 4. First, for ξ = 0
we know:

the first two eigenvalues of L0,α become nonreal when α exceeds α0
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and for the analysis in this section we fixed such an α (and omit it from the notation
of Lξ,α). Second, for µ ∈ C \ {κ j : j ∈ N} we have defined ũ(µ) as the unique
solution of the problem (4.4)−(4.5), and r̃(µ). We know that µ(α) is an eigenvalue
of L0,α ⇔ r̃(µ) = α. With the exterior force acting through ξ , we have:

µ(ξ) ∈ C is an eigenvalue of Lξ ⇐⇒ r̃(µ)ηn,k = αηn,k − ξ ũn
∣∣
�0= αηn,k + ξµηn,k

⇐⇒ r̃(µ) = α + ξµ,

so, we find the real eigenvalues of Lξ at the intersection of the graph of the function
r̃(µ) − α (which is already known) with the line y = ξµ (see Figure 2).

0
µ

κ κ κ κ κ

y =r (   )

0 i i+1 j j+1

∼

...
µmax

µ α

κ κp p+1

y=

y=

ξ

ξ

µ

µ
1

2

the first
2 EV become
complex

Figure 2 . The intersection of the graph of r̃(µ) − α with the line y = ξµ.

We observe:

• For any ξ ∈ R, the line y = ξµ intersects the graph of r̃(µ)−α on each interval
(κ j , κ j+1), j ∈ N, at least once, so Lξ has at least one real eigenvalue lying on
each interval (κ j , κ j+1).

• There exists the values ξ1 < 0 and ξ2 > 0 such that the lines y = ξ1µ and
y = ξ2µ are tangent to the graph of r̃(µ)−α on the interval (0, κ0) and (−∞, 0)

respectively. For ξ ∈ (ξ1, ξ2) the line y = ξµ does not intersect the graph of
r̃(µ)−α for µ ∈ (−∞, κ0). Because of the analyticity of r̃ (the number of zeros
of r̃ , each counted with its multiplicity, is locally constant), a pair of complex
conjugate eigenvalues of Lξ appears for ξ = ξ1 + ε and ξ = ξ2 − ε (ε > 0
small). Denote them by µ0(ξ) and µ1(ξ) with µ0(ξ) = µ̄1(ξ).

• For ξ ∈ (−∞, ξ1), the line y = ξµ intersects the graph of r̃(µ) − α twice for
µ ∈ (0, κ0), so the first two eigenvalues are real and positive.
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• For ξ ∈ (ξ2, +∞), the line y = ξµ intersects the “first part” of the graph of
r̃(µ) − α twice, but for µ ∈ (−∞, 0), so the first two eigenvalues are real and
negative.

We denote the first two eigenvalues of Lξ with µ0(ξ), µ1(ξ) and the ordered se-
quence of the (rest) real eigenvalues with {µ j (ξ)} j∈N, j≥2.

Theorem 5.3 (The global bifurcation picture in ξ ). For ξ ∈ (−∞, ξ1) the first
two eigenvalues of Lξ are real and positive:

0 < µ0(ξ) < µ1(ξ) < κ0.

For ξ → −∞ all eigenvalues of Lξ are real, every interval (κ j , κ j+1) contains one
real eigenvalue µ j+2 of Lξ and µ0(ξ) ↘ 0, µ j+2 ↗ κ j+1, j ∈ N ∪ {−1}.

For ξ ∈ (ξ2, +∞) the first two eigenvalues of Lξ are real and negative:

µ0(ξ), µ1(ξ) < 0.

For ξ → +∞ all eigenvalues of Lξ are real, every interval (κ j , κ j+1) contains one
real eigenvalue µ j+2 of Lξ and µ j+2 ↘ κ j+1, j ∈ N.

There exists a point ξ∗ ∈ (ξ1, ξ2) where a pair of complex conjugate eigen-
values of Lξ crosses the imaginary axis transversally. The imaginary axis can be
crossed only with negative real part of the velocity.

Proof. During this proof we have to keep in mind that each of µ, u, p depends on
ξ , but we will not write this explicitly.

The first two statements are clear from Proposition 5.2(b) and Figure 2, which
also implies (because r̃ is an analytic function): for small ε > 0,

• for ξ = ξ1 + ε the pair of complex conjugate eigenvalues of Lξ has a positive
real part;

• for ξ = ξ2 − ε the pair of complex conjugate eigenvalues of Lξ has a negative
real part.

The eigenvalues of Lξ depend continuously on ξ and together with Proposition
5.2(a) we can conclude: there exists ξ∗ ∈ (ξ1, ξ2) such that µ(ξ∗) is purely imagi-
nary, Reµ(ξ∗) = 0.

The eigenvalues µ(ξ) 
= κ j of Lξ are geometrically simple (in every X̃r
n,k and

up to the Zk-symmetry) because for every eigenfunction (u(µ(ξ)), ηn,k), u(µ(ξ))

satisfies also the problem (4.4)−(4.5) which has unique solution. The eigenvalues
have the same geometric and algebraic multiplicity for |ξ | → +∞; for the proof
see [10].

We have to prove now the transversality (for ξ = ξ∗, ∂ξ (Reµ) 
= 0) and the
direction of crossing (for ξ = ξ∗, ∂ξ (Reµ) < 0).
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From the energy equality (5.14) we see that the norm of the eigenfunction u
does not depend on ξ , and we can calculate:

0 = ∂ξ‖u‖2 = ∂ξ

∫
�0

u · ū =
∫

�0

u · ∂ξ ū + u · ∂ξ ū = 2Re〈u, ∂ξ u〉 . (5.15)

We make first some further calculations, (5.16) and (5.17), for ∂ξ u 
= 0. Multiply-
ing the first component of the eigenvalue equation for Lξ with ∂ξ ū, integrating over
�0 and using Theorem 5.1, we obtain:

〈µu, ∂ξ u〉 = 〈Lξ u, ∂ξ u〉
= 2ν

∫
�0

Su : S∂ξ ū +
∫

�0

(αηn,k − ξun
∣∣
�0

) · ∂ξ ūn
∣∣
�0

= 1

2
∂ξ

(
2ν

∫
�0

Su : Sū

)
+

∫
�0

(α + ξµ)ηn,k(−∂ξ µ̄)η̄n,k

= 1

2
∂ξ

(
Reµ · 2α‖ηn,k‖2 + ξ |µ|2‖ηn,k‖2

)
−∂ξ µ̄ · α‖ηn,k‖2 − ξµ∂ξ µ̄‖ηn,k‖2

= ∂ξ (Reµ)α‖ηn,k‖2 + 1

2
|µ|2‖ηn,k‖2 + 1

2
ξ(∂ξ |µ|2)‖ηn,k‖2︸ ︷︷ ︸

∈ R

−∂ξ µ̄ · α‖ηn,k‖2 − ξµ∂ξ µ̄‖ηn,k‖2 . (5.16)

Differentiating the first component of the eigenvalue equation for Lξ with respect
to ξ , multiplying with ∂ξ ū, integrating over �0 and using Theorem 5.1, we obtain:

0 = 〈∂ξ (µu), ∂ξ u〉 − 〈∂ξ (Lξ u), ∂ξ u〉
= ∂ξµ〈u, ∂ξ u〉 + µ‖∂ξ u‖2

+〈ν
∂ξ u − ∇H(2νSn
∂ξ u

∣∣
�0

), ∂ξ u〉 − 〈∇H(∂ξ (−ξun
∣∣
�0

)), ∂ξ u〉
= ∂ξµ〈u, ∂ξ u〉 + µ‖∂ξ u‖2 − 2ν

∫
�0

S∂ξ u : S∂ξ ū −
∫

�0

∂ξ (ξµ)ηn,k(−∂ξ µ̄)η̄n,k

= ∂ξµ 〈u, ∂ξ u〉︸ ︷︷ ︸
∈ C \ R

+µ ‖∂ξ u‖2︸ ︷︷ ︸
∈ R

− 2ν‖S∂ξ u‖2 + ξ |∂ξµ|2‖ηn,k‖2︸ ︷︷ ︸
∈ R

+µ∂ξ µ̄‖ηn,k‖2 . (5.17)

We prove now that the speed of nonreal eigenvalues never vanishes. Let µ be a
nonreal eigenvalue of Lξ and suppose ∂ξµ = 0, so ∂ξ (Reµ) = ∂ξ (Imµ) = 0. We
prove first that this implies also ∂ξ u = 0. Suppose ∂ξ u 
= 0, so ∂ξ ū 
= 0, too.
Introducing this in the equation (5.17) we obtain

µ‖∂ξ u‖2 = 2ν‖S∂ξ u‖2
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which implies µ ∈ R, a contradiction. So

∂ξµ = 0 �⇒ ∂ξ u = ∂ξ ū = 0 �⇒ ∂ξ Su = 0.

Differentiating the equation (5.12) with respect to ξ we obtain

0 = ∂ξ (Reµ)2α‖ηn,k‖2

= 2ν∂ξ

(∫
�0

|Su |2
)

− ξ∂ξ |µ|2‖ηn,k‖2 − |µ|2‖ηn,k‖2

= −|µ|2‖ηn,k‖2,

a contradiction. Therefore we know for nonreal eigenvalues: ∂ξµ 
= 0, ∀ξ .
In order to prove the transversality condition for ξ = ξ∗ and the direction of

crossing of the imaginary axis, we take the real part of (5.16) together with (5.15)
to obtain:

−Imµ · Im〈u, ∂ξ u〉 (5.15)= Re〈µu, ∂ξ u〉 (5.16)= 1

2
|µ|2‖ηn,k‖2

and the imaginary part of (5.17) to obtain

0 = ∂ξ (Reµ)Im〈u, ∂ξ u〉 + Imµ‖∂ξ u‖2 + Im(µ∂ξ µ̄)‖ηn,k‖2.

Multiplying the last equation with 2Imµ 
= 0 and using the previous equation, we
obtain:

∂ξ (Reµ)|µ|2‖ηn,k‖2 = 2Im2µ‖∂ξ u‖2 + 2Imµ · Im(µ∂ξ µ̄)‖ηn,k‖2.

For ξ = ξ∗, we are on the imaginary axis, so we have

Reµ = 0 ⇒ Im(µ∂ξ µ̄) = Imµ · ∂ξ (Reµ)

|µ|2 = Im2µ 
= 0

and then
−∂ξ (Reµ)‖ηn,k‖2 = 2‖∂ξ u‖2 > 0.

We can formulate results similar to Proposition 2.6, Theorem 2.7 and Theorem
2.10 for Lξ (∀ξ). The proofs follow immediately because only the value of p

∣∣
�0

is

modified with ξun
∣∣
�0

and we can estimate ‖∇H(ξun|�0)‖r,�0 ≤ c‖u‖r+1,�0 :

Proposition 5.4 (Properties of Lξ ).

(a) The operator L−1
ξ : Xr → X̃r+1, r ≥ 1 is bounded ∀ξ .
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(b) The solution (u, η) of the equation Lξ (u, η) = ( f, 0) ∈ Xr satisfies the regular-
ity:

‖(u, η)‖Xr+2 ≤ c‖( f, 0)‖Xr .

(c) The operator Lξ : X̃r+2 → Xr
3/2, r ≥ 0, is invertible and the inverse is bounded

∀ξ . The same result holds for λ +Lξ , too, when −λ is not an eigenvalue of Lξ .
(d) Linear existence results, similar to Theorem 2.9 and Theorem 2.11, hold for Lξ ,

∀ξ , too.

Definition 5.5 (Generalized nonresonance condition). We say that the pair µ±
of pure imaginary eigenvalues of Lξ∗ satisfies the generalized nonresonance condi-
tion, when the following two requirements are fullfiled:

(a) the usual nonresonance condition: ∀a ∈ Z \ {±1}, aµ+ is not an eigenvalue of
Lξ∗ ;

(b) a simplicity condition: for the fixed value ξ∗ of the bifurcation parameter (for
which we have proved the transversality condition), the eigenvalues µ± of Lξ∗
are eigenvalues of Lξ∗

∣∣
X̃n,k

only for one n ∈ N and for one k ∈ Z.

We are now in position to formulate a Hopf bifurcation theorem for the full nonlin-
ear problem. We can consider we have written it in the form (after similar transfor-
mations we have done in Section 2):

(∂t + Lξ )

(
u
η

)
=

(
F(u, η)

0

)
(5.18)

where F contains all the nonlinearities and correction terms. We recall that F has
the following properties: for r ≥ 1, F : Xr+2 → Hr (�0)

3, F(0, 0) = 0, DF
exists and DF(0, 0) = 0.

Theorem 5.6 (Hopf bifurcation theorem). For every space Xn,k there exists a
critical value ξ∗ of the bifurcation parameter ξ such that Lξ∗ has a pair µ± of
purely imaginary eigenvalues and the transversality condition is fullfiled. We as-
sume that this pair of eigenvalues satisfies the generalized nonresonance condition
of Definition 5.5.
Then a Hopf bifurcation occurs and there exists a branch of Zk-symmetric, periodic
solutions of the nonlinear equation.

The proof is classical an will not be presented here. The only difficulty which
appears is to verify the Fredholm-index-zero-property. For more details see [4].
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