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Multivariate moment problems:
Geometry and indeterminateness

MIHAI PUTINAR AND CLAUS SCHEIDERER

Abstract. The most accurate determinateness criteria for the multivariate mo-
ment problem require the density of polynomials in a weighted Lebesgue space
of a generic representing measure. We propose a relaxation of such a criterion to
the approximation of a single function, and based on this condition we analyze the
impact of the geometry of the support on the uniqueness of the representing mea-
sure. In particular we show that a multivariate moment sequence is determinate if
its support has dimension one and is virtually compact; a generalization to higher
dimensions is also given. Among the one-dimensional sets which are not virtually
compact, we show that at least a large subclass supports indeterminate moment
sequences. Moreover, we prove that the determinateness of a moment sequence
is implied by the same condition (in general easier to verify) of the push-forward
sequence via finite morphisms.

Mathematics Subject Classification (2000): 44A60 (primary); 14P05 (secondary).

1. Introduction

Let µ be a positive measure on the real line, rapidly decreasing at infinity. The
asymptotic expansion of the associated Markov function∫
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and the uniquely determined continued fraction development
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depend solely on the sequence of moments

ak =
∫

R

tkdµ(t), k ≥ 0.

The moment sequence (ak) is called determinate if there exists a unique represent-
ing positive measure. This corresponds precisely to the convergence of the associ-
ated continued fraction at non-real points z. Originally, all determinateness criteria
were obtained via very laborious, and often ad hoc, computations involving con-
tinued fractions; for an excellent presentation of these aspects see the monograph
by Perron [15]. The progress in function theory and early functional analysis has
provided a better grasp of this uniqueness problem (cf. the works of Nevanlinna and
Carleman), but it was only when von Neumann’s spectral theory of unbounded sym-
metric operators was completed that determinateness was understood in simple and
efficient terms, see Akhiezer’s monograph [1]. For instance, it is well known today
that the determinateness of the moment sequence (ak) cannot be characterized by a
growth condition of the ak’s, but rather via indirect approximation properties, such
as M. Riesz’ density criterion: (1 + x2)R[x] is dense in the Hilbert space comple-
tion of the polynomials R[x] with respect to the integration functional defined by
the moments.

Much less is known in the case of moments of positive measures acting on
polynomials of several variables. Riesz’ density criterion has several multivariate
counterparts, well exposed in Fuglede’s article [7]; however, they provide only suf-
ficient uniqueness conditions. The best numerical uniqueness conditions are nowa-
days obtained via rather evolved functional analytic methods (cf. [6, 12, 14]), but
again they remain far from being also necessary.

Our note starts with the simple and old observation that, in order to have
uniqueness in the multivariate moment problem (with prescribed supports), one has
to enlarge the polynomial ring to an algebra having sufficiently many elements, so
that they separate all measures rapidly decreasing at infinity; and secondly one has
to keep track in this process of the possible positive extensions of the integration
functional. In practical terms, we show that if a well-chosen, single non-polynomial
function (whose inverse serves as a general denominator in the extended ring of
functions) is approximable (in the canonically attached L2-space) by polynomials,
then the uniqueness of the representing measure follows. This criterion has a well
known parallel in M. Riesz’ work on one-dimensional moment problems [18].

The main theme of our note is derived from the above observation and can
roughly be stated as: The geometry of the support of a measure in Rd affects, and
can be used to test, its determinateness. Apparently this phenomenon was not iden-
tified before.

The contents is the following. In Section 2 we prove a general uniqueness cri-
terion, based on the approximation by polynomials of a single external function.
This will guide the rest of the article. Section 3 contains the main results, show-
ing in particular that a moment problem supported by a one-dimensional set K is
necessarily determinate, provided that K is virtually compact. (See Remark 3.4 for
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the notion of virtual compactness.) We also prove that determinateness on affine
curves can be checked on the push-forward measure via a finite covering. In Sec-
tion 4, using the direct image morphism (of integration along the fibers of a finite
map) we show on the other hand that large classes of non-virtually compact sets of
dimension one carry indeterminate moment sequences. In Section 5 we go back to
the founders of the theory of moments (Stieltjes and Markov), to one of the first
growth conditions ensuring the determinateness of a moment sequence. We adapt
their ideas, via elementary computations, to the multivariate setting. Section 6 con-
tains a variety of examples, illustrating on one hand the limits and on the other hand
the flexibility and universality of our geometric study.

ACKNOWLEDGEMENTS. The present work was started while the first author was
Visiting Professor at the University of Konstanz. He warmly thanks his hosts for
hospitality and excellent working conditions.

2. Preliminaries

Throughout this note we adopt the following notation. If X is an affine R-variety,
then R[X ] is its R-algebra of regular (that is, polynomial) functions, and X (R) is
the set of R-points of X . If f : X → Y is a morphism of affine R-varieties, we
often write f ∗ : R[Y ] → R[X ] for the associated homomorphism of R-algebras.

The real coordinates in affine space are denoted by x = (x1, . . . , xd) ∈ Rd ,
and R[x] stands for the polynomial algebra.

We write in short a(µ) = (aα)α for the multi-sequence of moments of a posi-
tive measure µ on Rd :

aα =
∫

xαdµ(x), α ∈ Z
d
+.

The linear functional associated to µ is written

Lµ : R[x] → R, Lµ(p) =
∫

p(x)dµ(x).

(By using this notation we tacitly imply that all moments exist and are finite.) If µ

is a positive measure on X (R), where X is an affine R-variety, we may consider Lµ

as a linear functional R[X ] → R.
Let K be a closed subset of X (R), and let L : R[X ] → R be a linear functional

which is representable by some positive Borel measure µ on K :

L(p) =
∫

K
p(x)µ(dx)
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for all p ∈ R[X ]. (Recall that this holds for the given L if and only if L(p) ≥ 0
for every p ∈ R[X ] which is non-negative on K , by Haviland’s theorem [10].) We
will say that the moment problem defined by L on K is determinate (or that the
K -moment problem defined by L is determinate) if µ is uniquely determined by L .
Otherwise, the moment problem defined by L on K is said to be indeterminate.

We stress that the question of determinateness depends not only on L , but also
on the set K , in general. It may happen that L has a unique representing measure on
K , but has more than one representing measures on a larger closed set, that is, on
X (R). Therefore, it will be necessary to be clear about the underlying set K when
we speak about determinateness questions. Note also that the Zariski closure of the
support of any representing measure does not depend on the measure, but only on
the moment functional L .

The following technical criterion will be useful:

Proposition 2.1. Let K be a closed subset of Rn, and let µ and ν be positive Borel
measures on K satisfying Lµ = Lν . Let f ∈ C(K , R) be a function satisfying
f ≥ 1, a.e. on K .1

Assume that there exists a sequence of polynomials pn in R[x] such that pn →
1
f under the norm || · || = || · ||2,µ + || · ||2,ν , and let

A0 := A0(K , f ) :=
{

p

f k
: p ∈ R[x], k ≥0,

p(x)

f (x)k
→ 0 for |x | → ∞, x ∈ K

}
.

If A0 separates the points of K , then µ = ν.

Proof. All fractions p
f k (with p ∈ R[x] and k ≥ 0) are integrable with respect to

both µ and ν. We prove by induction on k that∫
p

f k
dµ =

∫
p

f k
dν.

For k = 0 this holds by assumption. For the induction step k → k + 1 note that

p

f k+1
= lim

n→∞

(
pn · p

f k

)
,

both in L1(µ) and L1(ν) (since || f g||21 = 〈| f |, |g|〉2 ≤ || f ||22 ·||g||22 by the Cauchy-
Schwarz inequality), and hence∫

p

f k+1
dµ =

∫
p

f k+1
dν.

Let B denote the subalgebra of C(K , R) consisting of the functions φ for which the
limit of φ(x), for x ∈ K and |x | → ∞, exists in R. So B = C(K +, R) where

1 Almost everywhere with respect to both µ and ν. In practice we will have f ≥ 1 throughout.
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K + = K ∪ {∞} is the one-point compactification of K . (If K is already compact,
put K + = K .) By assumption, the subalgebra A := R1 ⊕ A0 of B separates
the points of K +. Therefore, by the Stone-Weierstraß theorem, A is dense in B
under uniform convergence. Therefore the measures µ and ν coincide as linear
functionals on B, because if b ∈ B and an in A with an → b under || · ||∞, then∫

K an → ∫
K b for both µ and ν since µ(K ) = ν(K ) < ∞. It follows that µ = ν.

(Recall that on a σ -compact, locally compact, metrizable space X , a Borel measure
is determined by the integrals of continuous functions with compact support, see
for instance [2]).

Remarks 2.2. Here are some particular situations where this proposition will be
useful:

1. Assume we have f ∈ R[x] with f ≥ 1 on K for which there is a sequence
pn in R[x] with ||1 − f pn||L ,2 → 0. If A0(K , f ) separates the points of K , then
the moment problem on K given by L is determinate. (Indeed, || 1

f − pn||2 ≤
||1 − f pn||2 since f ≥ 1.) Note that, contrary to the preceding proposition, the
condition ||1 − f pn||L ,2 → 0 is intrinsic in L and its values on polynomials.

2. Assume that an entire function is given in form of its Taylor series

1

f
=

∑
α

cαxα.

Assume that the algebra A0(K , f ) fulfills the separation condition in the statement
of the Proposition, and let µ be a positive measure on K with moments (aα). The
normal convergence condition

lim sup
α

(|cα| · a2α

)1/|α|
< 1

will assure that the partial sums converge to 1/ f in L2(µ), and hence the above
result is applicable. Section 5 contains an illustration in this respect.

3. There are natural choices of continuous functions f ≥ 1 for which A0(K , f )

separates the points of K , like f = 1 + ∑
i x2

i or f = ex2
.

4. On the real line (d = 1) one has a strong converse, going back to the work of M.
Riesz [18] : The moment problem given by L is known to be determinate if and only
if there exists a sequence of polynomials pn for which ||1 − (1 + x2)pn||L ,2 → 0.
See also [1] Section 2.5.

3. Main results

We start by recording an obvious way of producing new indeterminate moment
problems from given ones:
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Lemma 3.1. Let ϕ : X → X ′ be a morphism of affine R-varieties, let K be a
closed subset of X (R) and K ′ a closed subset of X ′(R) with ϕ(K ) ⊂ K ′. If ϕ|K is
injective, and if there exists an indeterminate K -moment problem on X, then there
exists an indeterminate K ′-moment problem on X ′.

Proof. If µ and ν are positive Borel measures on X (R) which have the same mo-
ments, then the direct image measures ϕ∗µ and ϕ∗ν on X ′(R) have the same mo-
ments as well, since∫

X ′(R)

q(x ′)(ϕ∗µ)(dx ′) =
∫

X (R)

(ϕ∗q)(x)µ(dx), q ∈ R[X ′],

where ϕ∗ : R[X ′] → R[X ] is the homomorphism associated to ϕ. Since ϕ|K is
injective, µ �= ν implies ϕ∗µ �= ϕ∗ν. Moreover it is clear that supp(µ) ⊂ K
implies supp ϕ∗(µ) ⊂ ϕ(K ) ⊂ K ′.

If K ⊂ Rn is compact, it is well-known that every K -moment problem is deter-
minate, as a consequence of the Weierstraß approximation theorem. The following
proposition generalizes this fact. It is a variation of Proposition 2.1.

Proposition 3.2. Let X be an affine R-variety, and let K be a closed subset of
X (R). If the algebra H(K ) = {p ∈ R[X ] : p is bounded on K } separates the
points of K , then every K -moment problem is determinate.

Proof. First assume that H = H(K ) is generated by finitely many elements
h1, . . . , hm as an R-algebra. The map h := (h1, . . . , hm) : K → Rm is injec-
tive, and the subset h(K ) of Rm is compact. From Lemma 3.1 we infer that every
K -moment problem is determinate.

If H fails to be finitely generated, we are saved by the following lemma:

Lemma 3.3. Let X be an affine R-variety, let K be a subset of X (R), and let B
be an R-subalgebra of R[X ] which separates the points of K . Then there exists a
finitely generated subalgebra of B with the same property.

Given any R-subalgebra C of R[X ], let

JC = ker (R[X ] ⊗R R[X ] � R[X ] ⊗C R[X ]) ,

and let WC = V (JC ) be the closed subvariety of X × X associated with the ideal
JC . Then C separates the points of K if and only if WC (R) ∩ (K × K ) ⊂ �(R),
where � ⊂ X × X is the diagonal. Indeed, the ideal JC is generated by the elements
c ⊗ 1 − 1 ⊗ c (c ∈ C), as follows directly from the definition of the tensor product.

Now write B = ⋃
α Bα as the ascending union of its finitely generated subal-

gebras. Then JB is the ascending union of the JBα . Since the ideal JB is finitely
generated, there is an index α with JB = JBα . By the previous remark, it follows
that Bα separates the points of K .
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We are now discussing cases to which Proposition 3.2 applies. First let us look
at one-dimensional examples.

Remark 3.4. Let X be an affine curve over R, and let X be its (good) completion.
That is, the unique (up to unique isomorphism) projective curve which contains
X as a Zariski dense open subset and whose points in the complement of X are
nonsingular. Let S = X − X (a finite set), and let K be a closed subset of X (R).
For simplicity, assume that X is irreducible. Following [19] we will say that K is
virtually compact if S contains at least one point which is either non-real or does
not lie in the closure K , the closure being taken in X(R).

Let H = H(K ) be the subring of R[X ] consisting of all regular functions
which are bounded on K . Regarding elements p ∈ R[X ] as rational functions on
X , p is bounded on K if and only if none of the points of K ∩ S is a pole of p. So
H = O(X − T ), where T is the set of points in S which do not lie in K . Therefore
we see (cf. [19, Lemma 5.3]) that K is virtually compact if and only if H �= R, and
that in this case H separates the points of X (R). Hence:

Theorem 3.5. Let X be an irreducible affine curve over R, and let K be a closed
subset of X (R). If K is virtually compact then every moment problem on K is
determinate.

The condition that X is irreducible can be removed (see [19, Definition 5.1 and
Lemma 5.3]). See Example 6.3 below for examples of sets K which are virtually
compact but not compact.

Remark 3.6. For the case of one-dimensional sets K , and for the determinateness
question, this leaves us with the case where K is not virtually compact. In other
words, the case where every polynomial which is bounded on K is constant on K .
With an eye on Proposition 2.1, the following observation is of interest:

Lemma 3.7. Assume that the affine curve X is irreducible, and let K ⊂ X (R) be a
closed subset. Then A0(K , f ) separates the points of X (R) for every non-constant
f in R[X ] with f ≥ 1 on X (R).

(Instead of f ≥ 1 it is only needed here that f vanishes nowhere on X (R).)

Proof. Let Y ⊂ X be the open set where f is regular. So Y is affine, contains
X , and the points in X − Y are nonsingular on X . Since the rational function 1

f

vanishes in the points of X − Y , there exists for every q ∈ R[Y ] an integer k ≥ 1
such that q

f k vanishes at all points of X − Y . Let

I = {
q ∈ R[Y ] : ∀ y ∈ Y − X : q(y) = 0

}
,

an ideal of R[Y ]. If q ∈ I , and if k ≥ 1 is chosen for q as before, the rational
function q

f k lies in A0(K , f ). Since the elements of I separate the points of X (R),
the lemma follows.
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Applying Remark 2.2.1 we conclude:

Corollary 3.8. Let X be an irreducible affine curve and K ⊂ X (R) a closed set. If
there are a non-constant f ∈ R[X ] with f ≥ 1 on K and a sequence pn in R[X ]
with f pn → 1 under || · ||L ,2, the K -moment problem L is determinate.

There are higher-dimensional cases as well which are non-compact and to
which Proposition 3.2 applies. Here is a class of examples:

Example 3.9. Let K1 be a compact subset of Rn , let f : K1 → R be a continuous
function, and let K = {(x, t) ∈ K1×R : t f (x) = 1}, a closed subset of Rn+1. Then
H(K ) separates the points of K . By Proposition 3.2, therefore, any K -moment
problem is determinate.

Remark 3.10. Let K be a closed semi-algebraic subset of Rn , and let X be the
Zariski closure of K (a closed R-subvariety of An). For convenience, assume that
X is irreducible. If the subring H(K ) of R[X ] separates the points of K , then
H(K ) can be shown to be “large” in the sense that it every polynomial on X can be
written as the quotient of two elements of H(K ) (D. Plaumann, unpublished). The
converse is true if dim(K ) = 1, as remarked in Remark 3.4, but it usually fails in
higher dimensions. As an example, take the subset

K = {(x, y) : 0 ≤ x ≤ 1, y ≥ 0, xy ≤ 1}

of the plane R2. Here H(K ) = R[x, xy] has the same quotient field as the poly-
nomial ring R[x, y]. But H(K ) does not separate the points of the positive y-axis
from each other, and so Proposition 3.2 does not apply. In fact, there do exist inde-
terminate K -moment problems, since K contains a half-line.

Given a morphism π : X → Y of affine R-varieties, we associate to any linear
functional L : R[X ] → R on X its push-forward π∗L = L � π∗ : R[Y ] → R on Y .

The second main result states very roughly that a moment problem is determi-
nate, provided that its push-forward under a suitable finite morphism is determinate
and a suitable technical condition is fulfilled. Here is the precise formulation:

Proposition 3.11. Let π : X → Y be a finite morphism of affine R-varieties, and
let K be a closed subset of X (R). Let µ, ν be positive Borel measures on K such
that the moment functionals Lµ, Lν : R[X ] → R exist and are equal.

Assume there is a continuous function f : π(K ) → R which satisfies the con-
ditions of Proposition 2.1 with respect to the measures π∗(µ) and π∗(ν) and the
(closed) set π(K ). Assume moreover that for every q ∈ R[Y ] there exists k ≥ 1
with q

f k ∈ A0(π(K ), f ).

Then µ = ν.

Proof. Consider the pull-back π∗ f = f � π of f via π , a continuous real function
on K . By assumption there is a sequence qn in R[Y ] with qn → 1

f both in L2(π∗µ)
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and L2(π∗ν). It follows that the sequence pn = π∗qn ∈ R[X ] converges to 1
π∗ f

both in L2(µ) and L2(ν). By assumption,

A0(π K , f ) =
{

q

f k
: q ∈ R[Y ], k ≥ 0,

q(y)

f (y)k
→ 0 for |y| → ∞, y ∈ π(K )

}

separates the points of π(K ).
It is obvious that A0(K ,π∗ f ) contains all pull-backs of functions in A0(πK , f ).

To see that A0(K ,π∗ f ) separates the points of K , let x �= x ′ in K . Choose a ∈R[X ]
with a(x) �= a(x ′). Since π is finite, there is an identity an = ∑n

j=1 π∗(b j )an− j

in R[X ], with n ≥ 1 and b j ∈ R[Y ]. By the hypothesis there is k ≥ 1 such that
b j

f l ∈ A0(π K , f ) for j = 1, . . . , n and l ≥ k. From

(
a

π∗ f k

)n

=
n∑

j=1

π∗
(

b j

f jk

)
·
(

a

π∗ f k

)n− j

it follows that a
π∗ f k is bounded on K , and hence a

π∗ f k+1 lies in A0(K , π∗ f ). Clearly,

this function separates x and x ′.

If the target variety is the affine line, we can eliminate the technical condition
from Proposition 3.11 and get the following unconditional statement:

Theorem 3.12. Let X be an affine real curve, and let π : X → A1 be a finite
morphism. If L is a moment functional on X, and if π∗L is determinate (on R),
then L is determinate (on X (R)).

Proof. By M. Riesz’s theorem, there is an approximation (1 + x2)pn(x) → 1 in
R[x] under the L2-norm given by π∗L (see Remark 2.2.4). Pull it back to X and
use Proposition 3.11.

The converse is not true. For an example see Example 6.1 below.

4. New indeterminate moment problems from old ones

Assume we are given an indeterminate moment functional on the affine R-variety
X . We will discuss constructions by which we can produce indeterminate moment
functionals on other R-varieties Y which are related to X in some suitable way.
In particular, this will give us new insights on one-dimensional sets which are not
virtually compact.

First we propose to use actions of finite, or more generally compact, groups.
Let G be a finite group acting on the affine R-variety X (by morphisms), and

let π : X → X/G = Y be the quotient. So Y is affine with coordinate ring R[Y ] =
R[X ]G , the ring of G-invariants, and π corresponds to the inclusion R[Y ] ⊂ R[X ].
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Let K be a closed subset of X (R) which is G-invariant. The image set π(K )

is a closed subset of Y (R), and is topologically the quotient space of X (R) by the
action of G. In particular, the G-invariants in R[X ] separate the G-orbits.

Given a Borel measure ν on the set π(K ), there exists a unique G-invariant
Borel measure µ on K for which π∗(µ) = ν. We will denote it by µ =: π∗(ν).
Namely, for any measurable non-negative function f : K → R, we have∫

K
f (x)µ(dx) =

∫
π(K )

φ f (y)ν(dy),

where φ f : π(K ) → R is given by averaging f over the orbits:

φ f (y) = 1

|G|
∑
g∈G

f (gx)

for x ∈ K with y = π(x). Hence the operations π∗ and π∗ set up a bijective
correspondence between G-invariant positive Borel measures on K and all positive
Borel measures on π(K ).

All of this carries over, essentially unchanged, to the case where G is a linear
algebraic group over R which acts morphically on X , as long as G(R), the group of
its real points, is compact. See [17] for the non-trivial proofs. The quotient variety
is then denoted Y = X//G. The correspondence between G-invariant measures on
X (R) and all measures on π(X (R)) is certainly folklore, but it seems hard to locate
a proper reference. More details will be contained in [5].

Proposition 4.1. Assume that we have an algebraic group action of G on the affine
R-variety X, and that G(R) is compact. Let K be a closed G-invariant subset of
X (R). Assume moreover that ν1 �= ν2 are two Borel measures on π(K ) which
induce the same moment functional on R[Y ] = R[X ]G (all moments are supposed
to exist). Then π∗ν1 �= π∗ν2 are two Borel measures on K which induce the same
moment functional on R[X ].

In particular, from any indeterminate moment problem on the closed subset
π(K ) of Y (R) we get an indeterminate moment problem on K itself.

The following construction generalizes the previous one (case where the group
G is finite). It has the advantage that it applies to much more general situations.

Theorem 4.2. Let π : X → Y be a finite and locally free morphism of affine R-
varieties, of (constant) degree n. Let M be a closed subset of Y (R), and let Z be
the set of all y ∈ Y (R) which have less than n preimages in X (R). Assume that
there exist positive Borel measures µ �= ν on Y (R) with support in M for which
all moments exist and are equal and for which Z is a null set. Then there exists an
indeterminate π−1(M)-moment problem on X.

Before going into the proof, we need to recall an algebraic construction. Given
an extension A ⊂ B of (commutative) rings which makes B into a projective A-
module of finite type, there is a canonical trace map

tr = trB/A : B → A,
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which is A-linear (i.e., tr(ab) = a tr(b) for a ∈ A, b ∈ B), satisfies tr(1) = n if B
has constant rank n over A, and commutes with base change. The latter means that
for every A-algebra C one has

trB⊗AC/C (b ⊗ c) = trB/A(b) · c,

for b ∈ B and c ∈ C . In particular, if B ∼= An = A × · · · × A as an A-algebra, then
the trace is simply the sum of the entries: trB/A(a1, . . . , an) = ∑

i ai .
Concretely, the trace generalizes the well-known construction from field the-

ory: If B is free as an A-module, then trB/A(b) is the trace of the multiplication
map B → B by b, considered as an A-linear endomorphism of B. The same is
true in general, i.e., when B is only assumed to be a projective (i.e., locally free)
A-module, with the proper definition of trace in this case. (See [4] ch. II § 4.3, for
example.)

Proof. Define the measure µ̃ on X (R) by

µ̃(A) := 1

n

∫
Y (R)

φA(y)µ(dy)

(for A ⊂ X (R) any Borel set), where we have put

φA(y) :=
∣∣∣A ∩ π−1(y)

∣∣∣
for y ∈ Y (R). Define ν̃ on X (R) similarly, using ν instead of µ. Since µ(Z) =
ν(Z) = 0, we have π∗µ̃ = µ and π∗ν̃ = ν. Hence, in particular, µ̃ �= ν̃. On the
other hand, again using µ(Z) = 0, we have∫

X (R)

p(x)µ̃(dx) = 1

n

∫
Y (R)

(tr p)(y)µ(dy)

for every p ∈ R[X ]. Here tr = trR[X ]/R[Y ] : R[X ] → R[Y ] is the trace map of X
over Y , see above. The key point is that

(tr p)(y) =
∑

x∈X (R) : π(x)=y

p(x)

holds for every y ∈ Y (R), y /∈ Z , since the trace commutes with base change.
Similarly for ν̃. Since µ and ν have the same moments on Y , it follows that µ̃

and ν̃ have the same moments on X . Moreover it is clear that both have support in
π−1(M).

Remarks 4.3. 1. As soon as the (common) moment functional of µ and ν on R[Y ]
is known explicitly, the proof shows that one also gets an explicit indeterminate
moment functional on X (R). See Example 6.6 below for an illustration.

2. Note that if X and Y are curves, and if Y is non-singular, then any finite
morphism X → Y is automatically locally free. This is so since every torsion-free
module of finite type over a discrete valuation ring is free.
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Corollary 4.4. Let X be an affine curve over R, and suppose that there exists a
finite morphism π : X → A1 of degree n such that the set

{t ∈ R : t has n preimages in X (R)}

is unbounded. Then there exists an indeterminate moment problem on X (R).

Proof. The set of t ∈ R with n real preimages is semi-algebraic, hence it contains
a closed half-line. Since there exist indeterminate Stieltjes moment problems (see
Example 6.4), the assertion follows from Theorem 4.2.

Examples 4.5. 1. Let X be the plane affine curve given by an equation f (x, y) = 0
of total degree d. If the leading form fd(x, y) of f has at least d − 1 different real
linear factors, then Corollary 4.4 applies, showing that there exist indeterminate
moment problems on X (R).

Indeed, any general linear projection from X to a line in the plane is a finite
morphism of degree d, whose fibre at infinity is entirely real and consists of at least
d − 1 different points. Therefore, all real fibres in a neighborhood must contain d
different real points.

2. Let X be A1 minus finitely many real points. Concretely, we may embed X
into the plane via the equation

y(x − a1) · · · (x − am) = 1,

where a1, . . . , am are pairwise different real numbers. Any linear projection from
X to a line whose fibres are neither horizontal nor vertical is a finite morphism of
degree m+1. If the direction of the projection is chosen properly, the fibres (parallel
lines) meet X in m + 1 real points when one moves to infinity. We conclude that
there exist indeterminate moment problems on X (R).

3. From Theorem 3.5 it is clear that X (R) can never be virtually compact, if a
finite morphism X → A1 as in Corollary 4.4 exists. Of course, it is easy to verify
this directly.

4. Unfortunately, the criterion of Corollary 4.4 does not always apply when
X (R) is not virtually compact. An example where it fails to apply is the curve

X : x4 + y3 + y = 0.

It has genus 3, and has a single point at infinity, which is real. Hence in any finite
morphism π : X → A1, the fibres π−1(t) cannot contain more than two real points
for |t | � 0. On the other hand, the degree of any such morphism is at least 3.

We close this section by stating an open problem: Given an irreducible affine
curve X over R and a closed subset K of X (R) which is not virtually compact, does
there always exist an indeterminate K -moment problem on X?



MULTIVARIATE MOMENT PROBLEMS: GEOMETRY AND INDETERMINATENESS 149

5. A classical criterion for determinateness

We have already mentioned in Remark 2.2.2 a general Taylor series method of
proving that a non-polynomial function f is approximable in L2(µ), as a first step
towards fulfilling the conditions in the uniqueness Theorem 2.1. This idea, in an
even more general format, goes back to M. Riesz [18] and, contrary to the finer
uniqueness criteria, such as Carleman’s, is easily adaptable to the multivariate set-
ting.

Before Riesz, a simple numerical criterion for the convergence of continued
fraction associated to a Cauchy transform of a positive measure has appeared in
the pioneering works of Stieltjes and Markov. A couple of decades later, the same
criterion was refined by Perron and Hamburger (see [15, 8, 9]). We adapt below
the Stieltjes-Markov-Perron-Hamburger criterion to the multi-variable framework
proposed in this note. The second proof below is adapted after Perron [15] Satz 14
§ 72 (note that the later editions of his monograph do not contain this material). This
particular proof has the advantage of being self-contained and elementary; possibly
different integral transforms, than the Fourier transform, can lead in a very similar
way to determinateness criteria.

The reader should be aware that the investigation of the strong commutativity
of symmetric operators (going back to the works of Devinatz, Nelson and Nuss-
baum [6, 7, 13, 14]) provides today stronger sufficient conditions for the uniqueness
of the representing measure.

Theorem 5.1. Let (aα)α∈Z
d+ be the sequence of moments of a positive measure on

Rd . If

lim inf
k→∞

( ∑
|α|=k

a2α

α!

)1/k

< ∞,

then the representing measure is unique.

First proof. This proof works under the slightly stronger assumption

sup
k

( ∑
|α|=k

a2α

α!

)1/k

< ∞.

To show that this condition implies uniqueness, consider the entire function

fλ = fλ(x) = exp(−λ|x |2) =
∑
α

(−λ)|α| x2α

α!
,

where λ is a (real) parameter.
Let µ be a representing measure, and let H be the Hilbert space completion

of R[x] in L2(µ). We treat fλ as a power series in λ, with coefficients in H.
The condition in the statement means that the radius of convergence of this power



150 MIHAI PUTINAR AND CLAUS SCHEIDERER

series is positive. Thus, there exists λ0 > 0 with the property that the series for
fλ0 converges in H. Therefore, Proposition 2.1 applies to the function fλ0 and its
partial sums approximations.

Second proof. The condition in Theorem 5.1 means that there exists a positive num-
ber R > 0 with the property that

1

k( j)!

∫
|x |2k( j)dµ(x) ≤

∑
|α|=k( j)

a2α

α!
< Rk( j),

along a sequence k( j) → ∞ of integers.
Let ν be another representing measure, and denote by u · v the scalar product

in Rd . We will prove the equality of the Fourier transforms:∫
eiu·x dµ(x) =

∫
eiu·x dν(x) (5.1)

for all u ∈ Rd . In particular, by general distribution theory, this will imply that the
two measures are equal.

Let n ≥ 1 be a fixed integer. Then

et −
n−1∑
j=0

t j

j!
= et

∫ t

0

e−ssn−1ds

(n − 1)!
.

Fix a vector u ∈ Rd , and apply the above formula to t = iu · x . The result is

eiu·x −
n−1∑
j=0

(iu · x) j

j!
= ineiu·x

(n − 1)!

∫ 1

0
(u · x)neisu·x sn−1ds.

By integrating against the two representing measures one finds∣∣∣∣
∫

eiu·x dµ(x) −
∫

eiu·x dν(x)

∣∣∣∣ ≤ 1

n!

∫
|u · x |nd

(
µ(x) + ν(x)

)
.

(The extra factor n in the denominator appears from the integral
∫ 1

0 sn−1ds.) By the
Cauchy-Schwarz inequality,

|u · x |n ≤ |u|n |x |n,
and from the choice n = n( j) = 2k( j) we infer, for j large,∣∣∣∣

∫
eiu·x dµ(x) −

∫
eiu·x dν(x)

∣∣∣∣ ≤ 2
k( j)!

(2k( j))!
(|u|2 R)k( j).

For j → ∞ (and arbitrary u), the right hand side goes to zero, implying∫
eiu·x dµ(x) =

∫
eiu·x dν(x)

for all u, which suffices to conclude µ = ν.
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Third proof. We assume the lim-inf condition in the statement holds true and con-
sider the marginal sequences

sk(n) = a(0,...,0,n,0,...,0), n ≥ 0,

where the non-zero entry is on the k-th position. Then for a fixed k,

lim inf
n→∞

(
sk(2n)

n!

)1/n

< ∞,

and according to Perron’s criterion, the univariate moment sequence (sk(n))n is
determinate. In view of Petersen’s Theorem [15] (see also [14, 12]) the whole
multi-sequence (aα)α is determinate.

The first proof, where we have assumed a slightly stronger condition, is easily
adaptable to other power series, such as |x |

sinh |x | ,
1

cosh |x | or Bessel’s functions Jn(x),
or even entire functions of infinite order. For instance, the following general result
is within reach with the same methods.

Proposition 5.2. Let F(z) = ∑
cαzα be an entire function on Cd without zeros on

Rd and satisfying lim|x |→∞ |x |N |F(x)| = 0 for x ∈ Rd and all N > 1. Let (aα)

be the moment sequence of a positive measure on Rd . If

sup
α

(
|cα|2 a2α

)1/|2α|
< ∞,

then the sequence (aα) is determinate.

Proof. Let
Fλ(x) =

∑
cαxαλ|α|.

The first proof above applies, mutatis mutandis, and yields the uniqueness of the
representing measure.

Note that in Proposition 2.1, the function 1
F was denoted by f and its modulus

was assumed to be bounded from below by a positive constant.
A theoretical illustration of the above proposition is contained in the next sec-

tion.

6. Examples

Example 6.1. The converse of Theorem 3.12 is not true, by an example due to
Schmüdgen [20]. To be more precise, let σ be an indeterminate and Nevanlinna
extremal measure on the line. So that C[x] is dense in L2(σ ), but (x + i)C[x] is not
dense in L2(σ ). In particular, the function 1 cannot be approximated by elements
of (x + i)C[x], see [1] Theorem 2.5.1 or Section 4.1. We consider the measure
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dν(x) = dσ(x)/(1 + x2) on the line, and its direct image µ = i∗ν in R2 via the
embedding i(x) = (x, x2).

Then ν as well as µ are determinate measures, on R resp. R2. For ν simply
check that (x + i)C[x] is dense in L2(ν), and for µ use the fact that the projection
π1 on the first coordinate is an isomorphism between the parabola and the axis.
Claim 6.2. The measure τ = (π2)∗µ on R is indeterminate. Note that this measure
is carried by [0, ∞). Assume by contradiction that τ is determinate, that is, (1 + y)

C[y] is dense in L2(τ ). In particular, there exists a sequence of polynomials pn
such that

lim
n

∫ ∞

0

∣∣∣(1 + y)pn(y) − √
1 + y

∣∣∣2
dτ(y) = 0,

or equivalently,

0 = lim
n

∫ ∞

−∞

∣∣∣(1 + x2)pn(x2) −
√

1 + x2
∣∣∣2 dσ(x)

1 + x2

= lim
n

∫ ∞

−∞

∣∣∣√1 + x2 pn(x2) − 1
∣∣∣2

dσ(x),

a contradiction. Indeed, Proposition 2.1 applies to the function f (x) = √
1 + x2

and yields the uniqueness of the representing measure.
Similarly we prove that the skew projection π along the parallel lines y−2cx =

const., with c ∈ R fixed, gives an indeterminate measure. For instance, denote the
new variable on the projected line by t = y − 2cx , and assume as before that∫ ∣∣∣(t + c2 + 1) pn(t) − 1

∣∣∣2
dπ∗µ(t) → 0

(n → ∞). This means∫ ∣∣∣(x2 − 2cx + c2 + 1) pn(x2 − 2cx) − 1
∣∣∣2 dσ(x)

(1 + x2)
→ 0,

or ∫ ∣∣∣∣ x − c + i

x + i
(x − c − i) pn(x2 − 2cx) − 1

x + i

∣∣∣∣
2

dσ(x) → 0.

The function
∣∣∣ x−c+i

x+i

∣∣∣ is uniformly bounded from below and above by positive real

numbers, so that∫ ∣∣∣∣(x − c − i) pn(x2 − 2cx) − 1

x − c + i

∣∣∣∣
2

dσ(x) → 0,

and hence ∫ ∣∣∣∣pn(x2 − 2cx) − 1

(x − c)2 + 1

∣∣∣∣
2

dσ(x) → 0.

In view of Proposition 2.1 we deduce that σ is an indeterminate measure, contra-
diction.
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Example 6.3. To illustrate Theorem 3.5, we give a couple of examples of one-
dimensional sets which are virtually compact but not compact. For simplicity we
stick to subsets of the plane. Let p ∈ R[x, y] be an irreducible polynomial, let X
denote the plane affine curve p = 0.

If the leading form (i.e., highest degree form) of p(x, y) is not a product of
linear real factors, then every closed subset K of X (R) is virtually compact. Thus,
every K -moment problem is determinate.

But also if the leading form of p is a product of real linear forms, X (R) may
be virtually compact (let alone closed subsets K ). The reason is that, although the
Zariski closure of the curve X in the projective plane contains only real points at
infinity, some of them may be singular and may blow up to one or more non-real
points. An example is given by the curve p = x + xy2 + y4 = 0.

Finally, even if the entire curve X (R) itself fails to be virtually compact, suit-
able non-compact closed subsets K may still be. For example, this is so for the
hyperelliptic curves y2 = q(x), where q is monic of even degree, not a square.
For example, one easily checks that if deg(q) is divisible by 4, then K is virtually
compact if (and only if) the coordinate function y is bounded on K from above or
from below.

Example 6.4. We reproduce here from [8] one of the simplest indeterminate Stielt-
jes moment sequences. This particular example was discovered by Stieltjes and
refined by Hamburger.

Let ρ and δ be positive constants, and denote

α = 1

2 + δ
, γ = ρ−α.

Then

an = (2 + δ) ρn+1 � ((2 + δ)(n + 1)) =
∫ ∞

0
xne−γ xα

dx, n ≥ 0,

is a moment sequence on the positive semiaxis. A residue integral argument implies∫ ∞

0
xn sin

(
γ xα tan(πα)

)
e−γ xα

dx = 0, n ≥ 0,

see [8] Lemma II. Hence

an =
∫ ∞

0
xn(1 + t sin(γ xα tan(πα))

)
e−γ xα

dx,

for all n ≥ 0 and t ∈ (−1, 1). This shows that the moment sequence (an) is
indeterminate with respect to the support [0, ∞).

Example 6.5. Let X be the (plane affine) curve y2 = q(x), where q(x) ∈ R[x] is
a polynomial. Let K be a closed semi-algebraic subset of X (R) which is invari-
ant under the reflection (x, y) �→ (x, −y). If K is not compact, then there exist
indeterminate moment problems on K .
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Indeed, this follows from Proposition 4.1: The group G of order two acts on X
as above, and the quotient variety is X/G = A1. By hypothesis, the image π(K )

under π : X (R) → R contains a closed half-line. We conclude using the existence
of indeterminate Stieltjes moment problems (previous example).

Example 6.6. Let X be the plane affine curve defined by an equation f (x, y) = 0,
where f has total degree d. Assume that the highest degree form fd(x, y) has at
least d − 1 different real linear factors. After a linear change of coordinates we can
assume that f contains the monomial xd . Thus the projection

π : X → A
1, π(x, y) = y

to the y-axis satisfies the condition from Example 4.5.1. By that reasoning, there
exist indeterminate moment problems on X (R). We indicate how our construction
makes some of them explicit. The set

{y ∈ R : the equation f (x, y) = 0 has d different real roots}
is unbounded. Thus, by a linear change x → ±x + c of coordinates we can achieve
that it contains [0, ∞). (If fd(x, y) has d different real factors, a change x → x + c
is sufficient.) Let

f (x, y) = xd +
d∑

i=1

(−1)i gi (y) xd−i

with gi (y) ∈ R[y]. The trace tr of R[X ] = R[x, y]/( f ) over R[y] satisfies tr(1) =
d and tr(x) = g1(y). The traces of the higher powers of x are the Newton sums,
characterized by the recursion

tr(xk) +
k−1∑
i=1

(−1)i gi (y) tr(xk−i ) + (−1)kk gk(y) = 0

(k = 1, . . . , d). Thus we have

tr(1) = d, tr(x) = g1, tr(x2) = g2
1 − 2g2, tr(x3) = g3

1 − 3g1g2 + 3g3,

and so forth. Let (an)n≥0 be an indeterminate Stieltjes moment sequence, e.g. the
one from Example 6.4. Define the linear functional L : R[x, y] → R by setting
L(yn) = an (n ≥ 0), by extending this linearly to R[y], and by

L
(
h(y)xk) := 1

d
L

(
h(y) tr(xk)

)
(k = 1, . . . , d − 1, h ∈ R[y]). Finally, extend L to arbitrary p ∈ R[x, y] by setting
L(p) := L(r), where r is the remainder of dividing p by f ; that is, p = q f + r
with q, r ∈ R[x, y] and degx (r) < d.

Let K := {(x, y) ∈ R2 : f (x, y) = 0, y ≥ 0}, the part of X (R) contained
in the closed upper half plane. Then L is a K -moment sequence, and as such it is
indeterminate.
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Example 6.7. A simple way to produce universal denominators as in the statement
of Proposition 5.2 is via the Fourier-Laplace transform, and the theory of completely
monotonic functions of several variables, cf. for instance [3].

Let φ ∈ S(Rd), φ ≥ 0, be a non-negative, rapidly decreasing (with all deriva-
tives) function in the Schwartz space. Assume that the support of φ is contained in
the closed positive octant K = (R+)d . Then the Laplace transform

F(z) =
∫

K
e−z·x φ(x)dx

is an analytic function in the tube domain int(K ) × iRd . Although it may not be an
entire function, it is close enough to the hypotheses of Proposition 5.2:

F(x) > 0, x ∈ K ,

and
lim|x |→∞ |x |N F(x) = 0, x ∈ K

for all N ∈ N.
Suppose we want to test the determinateness of a moment sequence (aα), with

prescribed support on K . That is, given two positive measures on K with the same
moments,

aα =
∫

K
xαdµ(x) =

∫
K

xαdν(x), α ∈ Z
d
+,

we want to deduce, under additional assumptions, that µ = ν. Let H be the closure
of polynomials in L2(µ).

In order to adapt Proposition 5.2, we start with the expansion, with t as a
positive parameter:

Ft (y) =
∫

K

(∑
α

(−1)|α| t |α| yαxα

α!

)
φ(x)dx .

Remark that F1 = F . Let us denote

aα(φ) =
∫

K
yαφ(y)dy, α ∈ Z

d
+.

As before, we want to assure the convergence of above series for some value of the
parameter t , in the Hilbert space H (associated to the moment sequence (aα)). That
is, it is sufficient to have ∑

α

t |α|
0 · ‖yα‖H · ‖xα‖1,φ < ∞

for some t0 > 0. In other terms, we are led to the following abstract criterion:
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The moment sequence (aα) is determinate with respect to the first octant K
whenever

sup
α

(
aα(φ)

√
a2α

α!

)1/|α|
< ∞, (6.1)

for at least one non-negative Schwartz function φ with support in K .

For instance one can take φ(x) = ∏d
j=1 ψ(x j ), where ψ(y) = e−y−2(M−y)−2

for
y ∈ (0, M), and ψ(y) = 0 for y ≥ M , where M > 0 is fixed. Denoting

A(k) =
∫ M

0
yke−y−2(M−y)−2

dy, k ≥ 0,

one finds
aα(φ) = A(α1) · · · A(αn).

The crude estimate for the (non-essential) normalization M = 1,

A(k) ≤
∫ 1

0
ykdy = 1

k + 1

yields a result comparable to Theorem 5.1: If

sup
α

( √
a2α

(α + 1)!

)1/|α|
< ∞, (6.2)

then the moment sequence (aα) is determinate. (Here we have put α + 1 := (α1 +
1, . . . , αd + 1).)

As a matter of fact, one can prove that the range of applicability of this partic-
ular method is not bigger, due to the fact that the test function φ is bounded from
below on a rectangle contained in the octant K :

φ(x) ≥ δ1 > 0, xk ∈ [γk, λk], 1 ≤ k ≤ d.

Let m = mink(λk − γk). Assuming also that the support of φ is contained in the
cube [0, M] × · · · × [0, M], and that φ(x) ≤ δ2, x ∈ Rd , we find

δ1
m|α|+d

(α1 + 1) · · · (αd + 1)
≤ δ1

d∏
k=1

λ
αk+1
k − γ

αk+1
k

(αk + 1)
≤ aα(φ) ≤ δ2

M |α|+d

(α1 + 1) · · · (αd + 1)
.

Thus, condition (6.1) holds, if and only if (6.2) is true.
A parallel analysis of the Fourier-Laplace transform of positive measures µ

carried by the first octant in Rd is presented in [11]. However, there the study is
focused on the integral operator

∫
K (p0 − p · x)+dµ(x) and the related Cauchy-

Fantappiè transform
∫

K
dµ(x)

p0−p·x .
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